首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
基于AFLP和SSR标记的高粱分子遗传连锁图构建   总被引:3,自引:0,他引:3  
以茎秆糖份含量高的高粱自交系1095和低糖高粱自交系N3杂交获得的F2分离群体(205个个体)为材料,采用AFLP(amplified fragment length polymorphism)和SSR(simple sequence repeat)两种分子标记,构建了包含273个(232AFLP,41 SSR)标记,覆盖基因组长度为978.1cM的高粱分子标记连锁遗传图.以SSR标记为锚标记,19个连锁群中,18个连锁群各自被归并于高粱的10个连锁群(A-J)中.该连锁图平均图距和最大图距分别为3.6 cM和19.4 cM,未出现大的空隙(gap>25 cM),归并后的10个连锁群(A-J)分别对应于高粱染色体SBI-01、SBI-02、SBI-03、SBI-04、SBI-07、SBI-09、SBI-10、SBI-08、SBI-06、SBI-05.  相似文献   

2.
黄瓜远缘群体分子遗传连锁图谱的构建和分析   总被引:1,自引:0,他引:1  
以野生黄瓜品种和普通栽培黄瓜品种作亲本获得的142个F2群体为材料,采用AFLP,SRAP,SSR等分子标记进行遗传分析,构建了包含10个连锁群,有159个标记组成的黄瓜遗传连锁图谱,其中包括112个AFLP标记,39个SRAP标记和8个SSR标记。该遗传图谱覆盖基因组长度743.11 cM,平均图距4.67 cM。  相似文献   

3.
青海大黄油菜粒色性状分子标记的开发和图谱整合   总被引:2,自引:1,他引:1  
利用青海大黄油菜和褐籽白菜型油菜09A-126构建BC4和F2分离群体, 结合AFLP与群体分离分析法(bulked segregant analysis, BSA)筛选引物, 获得5个与黄籽基因Brsc1紧密连锁的分子标记Y11~Y15。5个AFLP特异片段的序列, 均与白菜型油菜的A9染色体部分序列表现同源。将5个AFLP标记成功转化为5个SCAR标记(SC11~SC15)。利用目标基因所在染色体区段序列筛选到7个与目标基因紧密连锁的SSR标记(BrID10607、KS10760、B089L03-3和A1~A4)。利用SCAR和SSR标记扫描F2群体中部分单株, 发现SC14和A1为共显性标记。用BC4群体将Brsc1定位在标记Y06和A4之间1.7 Mb的区间内, 遗传距离分别为0.115 cM和0.98 cM。标记Y05和Y12与Brsc1共分离。本研究为黄籽油菜分子标记辅助选择育种体系的建立及目标基因的进一步精细定位和图位克隆奠定了基础。  相似文献   

4.
AFLP,SSR在黄瓜黑星病抗感材料上的多态性比较   总被引:2,自引:2,他引:0  
用AFLP和SSR 2种分子标记技术对黄瓜抗感黑星病材料Q6和Q12,及其F2极性集团和F2群体进行了分析,比较了它们的多态性。结果表明,AFLP和SSR 2种分子标记的多态性比率分别为36.5%,9.6%;阳性比率分别为22%,0。在F2群体中找到了1个AFLP标记E20/M64,与目的基因的遗传距离是4.83 cM;1个SSR标记CSWCT02B,与目的基因的遗传距离是28.7 cM。AFLP的多态性比率要比SSR的多态性比率高。分析探讨了2种分子标记技术的优缺点及其在目的基因连锁标记筛选、基因定位等研究中的应用。  相似文献   

5.
SSR和AFLP分析玉米遗传多样性的研究   总被引:26,自引:3,他引:26  
利用SSR,AFLP两种分子标记方法研究了23个玉米种质材料的遗传多样性,并对这两种分子标记系统进行了比较。利用筛选出的40对SSR引物,检测到了202个等位基因。用12对AFLP引物组,检测到了444条有多态性的带。SSR和AFLP分子标记均有很高的多态性,SSR位点的平均多态性信息量(PIC)值达0.60,而AFLP多态性带比例是72%。两种分子标记结果将玉米种质划分为5组,与系谱分析基本一致,两种分子标记划分的结果也相近。研究认为SSR,AFLP两种分子标记系统均适合于玉米种质的遗传多样性研究。  相似文献   

6.
用AFLP标记饱和大豆SSR遗传连锁图   总被引:5,自引:0,他引:5  
本研究将52个AFLP标记整合到由宛煜嵩等(2005)构建的含有227个SSR标记的大豆遗传连锁图上,绘制成一张基于SSR-AFLP标记的大豆遗传连锁图,总遗传图距为2512cM,相邻标记间的平均距离为9.0cM。AFLP标记的整合使得图谱的总图距增长了32%。在Dla、E、F、G、K连锁群上,AFLP标记主要整合在连锁群的末端,其中G连锁群尤为明显,末端增加了19个AFLP标记,使得G连锁群的长度由原来的121.2cM增加到259.1cM,相邻标记间的平均距离由原来的7.129cM变为7.197cM;在.A2、B1、C2、D2、H、J、L、N、O连锁群,由于加入了AFLP标记使得这些连锁群的标记密度有所增加,改善了标记分布的均匀性。A2连锁群上添加了1个AFLP标记,消除了1个间隙;D2连锁群上添加了2个AFLP标记,提高了原来的一个超过40cM的区间(Satt301和Satt186)标记密度;J连锁群上添加了2个.AFLP标记,消除了2个间隙。AFLP标记整合后,大多数连锁群上的SSR标记的顺序和遗传图距几乎与宛煜嵩等(2005)构建的大豆遗传连锁图上的顺序和图距一致,只有M、N和O3个连锁群上的SSR标记顺序发生了一些变化,如M连锁群上的Satt590、Satt20l和Sattl50及O连锁群上的Satt241和Satt479发生换位;N连锁群上的几个SSR标记的位置发生随机换位。我们认为构建一张理想的遗传图谱,需要来源于不同遗传背景的多种群体、多种类型的遗传标记配合。AFLP标记并非是遗传连锁图构建中常见的大区间、间隙及标记成簇分布等问题的完全解决方案,且认为AFLP标记是构建高密度的遗传连锁图的理想分子标记的看法也值得商榷。  相似文献   

7.
甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱构建   总被引:27,自引:0,他引:27  
以黄籽GH06为母本、黑籽P174为父本杂交得到的第6代重组自交系188个株系为作图群体,通过SRAP、SSR、AFLP和TRAP四种分子标记对该群体进行遗传连锁分析,构建了一张包含20个连锁群、300个标记位点的甘蓝型油菜分子遗传图谱(LOD≥3.0),包括202个SRAP标记、65个SSR标记、23个AFLP标记和10个TRAP标记。图谱总长度1273.7cM,标记间平均距离为4.25cM。连锁群上的标记数在4~56个之间,连锁群长度变动在37.1~109.2cM之间,群内平均图距在1.80~14.20cM之间。LG1包含的标记最多,有56个;标记最少的连锁群(LG9、LG18、LG20)只有4个。LG13的平均图距最大,为14.20cM;LG6的平均图距最小,仅为1.80cM。在整个图谱上,存在图距大于20cM的空隙6个。本研究首次将SRAP及TRAP标记用于甘蓝型油菜遗传图谱的构建,结果表明,SRAP及TRAP标记在甘蓝型油菜遗传图谱的构建上是一种良好的标记系统。  相似文献   

8.
本研究以美洲黄莲(Nelumbo lutea)为母本,亚洲莲单瓣品种‘单洒锦’(N.nucifera‘Dan Sajin’)为父本杂交获得的45株F1为作图群体,利用从莲转录组开发的211对EST-SSR标记和111对已报道的莲SSR标记,构建了莲遗传连锁框架图谱。该图谱包含8个连锁群,定位88个SSR标记,覆盖基因组420.7cM。连锁群的长度介于在7.0~82.0cM之间,连锁群上的标记数在4~23个之间。标记间平均图距为4.8cM,连锁群平均长度为52.6cM。6个偏分离标记集中定位在LG1、LG2和LG4上。该图谱为莲基因定位、图位克隆以及分子标记辅助选择育种等研究提供了一定的理论参考依据。  相似文献   

9.
大白菜分子连锁图谱的构建与分析   总被引:5,自引:1,他引:4  
构建大白菜分子连锁图谱,旨在为紫色等性状的QTL定位奠定基础.以紫菜薹(B.compestris L.var.purpurea Bailey)和结球白菜(B.campestris L.ssp.Pekinensis(Lour.)Olsson)杂交的F2群体为试材,基于231个多态性标记,利用JoinMap 3.0软件,得到包含163个标记、11个连锁群和4个片段的大白菜分子连锁图谱,其中包括117个RSAP标记、38个SRAP标记、5个SSR标记和3个RAPD标记.图谱覆盖基因组长度为821.3 cM,标记间平均图距为5.04 cM.连锁群上23.31%的标记表现偏分离,偏分离标记在连锁群上聚集出现.基于与紫色性状连锁的RAPD标记,推断LG4与大白菜1号染色体对应.该图谱可有效的用于紫色等性状的QTL定位分析.  相似文献   

10.
苦荞SSR分子遗传图谱的构建及分析   总被引:4,自引:1,他引:3  
构建苦荞遗传连锁图谱,为今后有关苦荞基因组结构、重要农艺性状QTL定位、分子标记辅助育种和基因克隆等研究工作奠定基础。以栽培苦荞‘滇宁一号’和苦荞野生近缘种杂交产生的119份F4代分离材料为作图群体,利用SSR分子标记来构建苦荞的分子遗传连锁图谱。本研究构建的连锁图谱包含15个连锁群,由89个标记组成,其中偏分离的标记有22个,占24.7%,每条连锁群上的标记在2~16之间。连锁群长度在6.9~165.8 cM的范围,覆盖基因组860.2 cM,总平均长度9.7 cM。本研究构建了首张苦荞SSR遗传连锁图谱,为苦荞QTL定位、基因克隆、遗传选育等研究奠定了基础。  相似文献   

11.
Y. Mano    M. Muraki    M. Fujimori    T. Takamizo    B. Kindiger 《Plant Breeding》2005,124(5):432-439
Two genetic linkage maps of Zea mays were constructed: one population comprised 94 F2 individuals of a dent ‘B64’ × teosinte (Z. mays ssp. huehuetenangensis) cross while the second consisted of 94 F2 individuals of a ‘B64’ × Caribbean flint ‘Na4’ cross. The level of polymorphism was higher in the ‘B64’ × teosinte combination than the ‘B64’ × ‘Na4’ combination. In the ‘B64’ × teosinte cross, a total of 338 amplified fragment length polymorphism (AFLP) and 75 simple sequence repeat (SSR) markers were mapped to 10 chromosomes, which covered 1402.4 cM. In the ‘B64’ × ‘Na4’ cross, a total of 340 AFLP and 97 SSR markers were mapped to 10 chromosomes, covering 1662.8 cM. Segregation distortion regions were found on chromosomes 4, 5 and 8 in the ‘B64’ × teosinte cross and on chromosome 9 in the ‘B64’ × ‘Na4’ cross. Comparison of the two maps revealed that the maize × teosinte map was 11.5% shorter than the maize × maize map. The maps generated in this study may be useful to identify genes controlling flooding tolerance.  相似文献   

12.
棉花种间BC_1群体偏分离的遗传剖析(英文)   总被引:1,自引:0,他引:1  
余渝  张艳欣  林忠旭  张献龙 《作物学报》2010,3(10):1657-1665
偏分离是指观察到的基因型频率偏离预期的孟德尔频率的遗传分离方式,在大多数的遗传定位研究中非常普遍。在之前我们发表的遗传连锁图中,107个SSR标记在BC1作图群体[(Emian 22×3-79)×Emian22]中表现偏分离。为阐明这些偏分离标记的遗传机制及其在其它群体中的偏分离情况,将其中97个共显性标记在另外两个回交群体中进行验证。结果表明,原图谱中的61个偏分离标记在另外2个回交群体中都表现正常分离,说明杂交方式是导致偏分离的一个重要因素。36个偏分离标记至少在两个群体中仍表现偏分离,偏分离应该是配子选择的结果。偏分离标记分布于14条染色体上,其中D亚基因组上的分布多于A亚基因组。偏分离标记在在第2、第16和第18染色体上分布最多,暗示在这些染色体上存在偏分离位点,该结果有助于在棉花中鉴定偏分离位点。  相似文献   

13.
Genetic study on important traits of tea is difficult because of its self-incompatibility in nature. Moreover, development of a new variety usually needs more than 20 years, since it takes many years from seedling to matured plants for trait investigation. Genetic map is an essential tool for genetic study and breeding. In this study, we have developed an integrated genetic map of tea (Camellia sinensis) using a segregating F1 population derived from a cross between two commercial cultivars (‘TTES 19’ and ‘TTES 8’). A total of 574 polymorphic markers (including SSR, CAPS, STS, AFLP, ISSR and RAPD), 69 markers with highly significant levels of segregation distortion (P < 0.001) (12.0 %) were excluded from further analyses. Of the 505 mapped markers, there were 265 paternal markers (52.5 %), 163 maternal markers (32.3 %), 65 doubly heterozygous dominant markers (12.9 %), and 12 co-dominant markers (2.4 %). The co-dominant markers and doubly heterozygous dominant markers were used as bridge loci for the integration of the paternal and maternal maps. The integrated map comprised 367 linked markers, including 36 SSR, 3 CAPS, 1 STS, 250 AFLP, 13 ISSR and 64 RAPD that were assigned to 18 linkage groups. The linkage groups represented a total map length of 4482.9 cM with a map density of 12.2 cM. This genetic map has the highest genetic coverage so far, which could be applied to comparative mapping, QTL mapping and marker assisted selection in the future.  相似文献   

14.
生物基因组中简单重复序列的多态性是同源染色体不对等交换的结果之一,因此明确不对等交换的热点区域具有重要的理论意义。利用来源于优良玉米杂交种豫玉22的一套重组近交系(RIL)群体,对其遗传组成进行了SSR标记分析,发现40个不对等交换的SSR标记,不对等交换在群体间发生的概率介于0.34%~14.63%之间,每世代发生的频率为10-2~10-1,其中(AG)n重复的标记占发生不对等交换总标记的58.3%。有31个不对等交换标记分布于染色体上的11个热点区域,位于第9染色体以外的其它染色体上,其中第3和第5染色体上各分布2个不对等交换的热点区域。  相似文献   

15.
Adventitious root formation (ARF) at the soil surface is one of the most important adaptations to soil flooding or waterlogging. Quantitative trait loci (QTL) controlling ARF under flooding condition were identified in a 94 F2 individual population by crossing maize (Zea mays L., B64) × teosinte (Z. mays ssp. huehuetenangensis). A base-map was constructed using 66 SSR and 42 AFLP markers, covering 1,378 cM throughout all ten maize chromosomes. The ARF capacity for seedlings was determined by evaluating the degree of root formation at the soil surface following flooding for 2 weeks. ARF showed continuous variation in the F2 population. Interval mapping and composite interval mapping analyses revealed that the QTL for ARF was located on chromosome 8 (bin 8.05). Utilising a selective genotyping strategy with an additional 186 F2 population derived from the same cross combination and 32 AFLP primer combinations, regions on chromosomes 4 (bin 4.07) and 8 (bin 8.03) were found to be associated with ARF. Z. mays ssp. huehuetenangensis contributed all of the QTL detected in this study. Results of the study suggest a potential for transferring waterlogging tolerance to maize from Z. mays ssp. huehuetenangensis.  相似文献   

16.
Sugarcane mosaic virus (SCMV) is one of devastating pathogens in maize (Zea mays L.), and causes serious yield loss in susceptible cultivars. An effective solution to control the virus is utilizing resistant genes to improve the resistance of susceptible materials, whereas the basic work is to analyze the genetic basis of resistance. In this study, maize inbred lines Huangzao4 (resistant) and Mo17 (susceptible) were used to establish an F9 immortal recombinant inbred line (RIL) population containing 239 RILs. Based on this segregation population, a genetic map was constructed with 100 simple sequence repeat (SSR) markers selected from 370 markers, and it covers 1421.5 cM of genetic distance on ten chromosomes, with an average interval length of 14.2 cM. Analysis of the genetic map and resistance by mapping software indicated that a major quantitative trait locus (QTL) was between bin6.00 and bin6.01 on chromosome 6, linked with marker Bnlg1600 (0.1 cM of interval). This QTL could account for 50.0% of phenotypic variation, and could decrease 27.9% of disease index.  相似文献   

17.
小麦分子遗传图谱的加密   总被引:1,自引:1,他引:1  
高密度的分子标记遗传图谱是QTL定位、图位克隆和分子标记辅助选择等研究的基础。以小麦品种“京花1号/小白冬麦”的双单倍体(DH)群体和“农大015/复壮30”的重组自交系(RIL)群体为作图群体,选用在DH群体双亲间的339个多态性标记和在RIL群体双亲间的343个多态性标记分析作图群体各个株系的基因型,对本中心近年开发的SCAR、EST-SSR标记以及他人开发的SSR、EST-SSR标记进行了染色体定位,并利用连锁分析软件Joinmap 4.0将2个作图群体的结果整合,最终构建了10个连锁群,将217个SSR、EST-SSR和SCAR位点定位在9条染色体上,进一步提高了小麦遗传图谱的密度。  相似文献   

18.
In this research, we used two sets of cotton aneuploid (G. hirsutum × G. tomentosum and G. hirsutum × G. barbadense) plants to locate AFLP markers to chromosomes using deletion analysis method. Thirty-eight primer combinations were used to generate 608 polymorphic AFLP markers. A total of 98 AFLP markers were assigned to 22 different cotton chromosomes or chromosome arms. Of those assigned markers, 63.3% were assigned to A genome and 36.7% were assigned to D genome. A low rate (14.3%) of common markers were found between those assigned AFLP markers with the AFLP markers from an intraspecific cross population developed previous in our lab. Based on the 16 common markers, we were able to associate the 13 linkage groups previously identified in our lab to eight chromosomes. Further research will be carried out by using SSR markers with known location to associate unassigned linkage groups to chromosomes.  相似文献   

19.
玉米抗丝黑穗病QTL分析   总被引:13,自引:1,他引:12  
以Mo17(抗)×黄早四(感)的F2分离群体(191个单株)为作图群体,构建了含有84个SSR位点和48个AFLP位点的遗传连锁图谱,全长1 542.9 cM,平均图距11.7 cM。在吉林省公主岭和黑龙江省哈尔滨2个地点通过人工接种方法对184个相应的F3家系(缺失7个)进行抗病鉴定。采用复合区间作图法对抗丝黑穗病数量性状位点(QTL)进行定位及遗传效应分析。在吉林公主岭地区检测到5个QTL,分别位于第1、2、3、8、9染色体上,解释的表型方差为10.0%~16.3%。在黑龙江哈尔滨地区也检测到5个QTL,分别位于第1、2、3、4、7染色体上,解释的表型方差为4.6%~13.4%。比较分析发现,两地一致在第2、3染色体上各检测到1个QTL,其中第2染色体上的表现为超显性效应,第3染色体上的表现为加性效应。研究结果为玉米抗丝黑穗病种质改良提供了重要信息。  相似文献   

20.
In the presented study, the existing AFLP and SSR maps of barley were used to find chromosomal position of four genes controlling different stages of root hair development. Four barley mutants were used in the analysis: the root hairless mutant rhl1.b, mutant rhp1.b with root hair development blocked at the initial bulge formation, mutant rhi1.a with irregular pattern of sparsely located root hairs and mutant rhs1.a with very short root hairs. Each mutant was crossed with parents of ‘Steptoe’/‘Morex’ mapping population and F2 progenies of crosses: mutant × ‘Steptoe’ and mutant × ‘Morex’ were analyzed for segregation of root hair phenotype and polymorphic AFLP and SSR markers. It was possible to map all the analyzed genes on barley chromosomes: rhl1 gene on the short arm of chromosome 7H, rhp1 gene on chromosome 1H, rhs1 locus in the pericentromeric region of chromosome 5H and rhi1 gene on the long arm of chromosome 6H. Subsequently, the Bulk Segregant Analysis and AFLP technique were used for saturation of the identified regions with new markers. The joint maps were constructed using as common points the SSR markers located in the target regions. Linkage maps of the regions around the four genes involved in the root hair formation in barley were composed of 8–11 markers and spanned over 16.1–49.0 cM. The distances between localized genes and the closest markers ranged from 1.0 to 3.8 cM. The identified chromosomal locations of genes can be used for their fine mapping and future map-based cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号