首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paracetamol, the most widely and globally used analgesic and antipyretic, is easily accumulated in aquatic environments. In the present study, the biodegradation of paracetamol in different media (one for general growth, one specific for sulfate reducing bacteria, a mineral salts medium and municipal wastewater) inoculated with two types of sludge (from anaerobic lagoon and from oxidation ditch) under different oxygenic conditions (anoxic; moderate oxygenation in open flasks and high oxygenation by aeration) was investigated. In addition, bacteria with relative abundances increasing simultaneously with paracetamol degradation, when this drug was the only carbon source, thus with a putative role in its degradation, were identified using 16S rRNA gene sequences. The results show that aerobic microorganisms had a major role in the degradation of paracetamol, with 50 mg/L totally removed from municipal wastewater after 2 days incubation with aeration, and that the metabolites 4-aminophenol and hydroquinone plus one compound not identified in this work were produced in the process. The identification of bacteria with a role in the degradation of paracetamol revealed a strain from genus Pseudomonas with the highest final relative abundance of 21.2%, confirming previous works reporting strains of this genus as paracetamol decomposers. Besides, genera Flavobacterium, Dokdonella and Methylophilus were also in evidence, with initial relative abundances of 1.66%, 1.48 and 0.00% (not detected) in the inoculum and 6.91%, 3.80 and 3.83% after incubation, respectively. Therefore, a putative role of these genera in paracetamol biodegradation is suggested for the first time.
Graphical Abstract ?
  相似文献   

2.
Trigeneric hybrids may help establish evolutionary relationships among different genomes present in the same cellular-genetic background, and also offers the possibility to transfer different alien characters into cultivated wheat. In this study, a new trigeneric hybrid involving species from the Triticum, Psathyrostachys and Secale was synthesized by crossing wheat-P. huashanica amphiploid (PHW-SA) with wheat-S. cereale amphiploid (Zhongsi 828). The crossability of F1 hybrid was high with 35.13%, and the fertility was 41.95%. The morphological characteristics of F1 plants resembled the parent Zhongsi 828. The trigeneric hybrids pollen mother cells (PMCs) regularly revealed averagely 19.88 univalents, 9.63 ring bivalents, 3.97 rod bivalents, 0.60 trivalents and 0.03 tetravalents per cell. Multivalents consisted of trivalents and tetravalents can be observed in 52.7% of cells. A variation of abnormal lagging chromosome, micronuclei and chromosome bridge were formed at anaphase I and telophase II. The mean chromosomes number of F2 progenies was 2n = 46.13, and the distribution range was 42–53. GISH results revealed that most F2 plants had 6–12 S. cereale chromosomes, and only 0–2 P. huashanica chromosomes were detected. The results indicated that S. cereale chromosomes can be preferentially transmitted in the F2 progenies of trigeneric hybrid than P. huashanica chromosomes. A survey of disease resistances revealed that the stripe rust resistance from the PHW-SA were completely expressed in the F1 and some F2 plants. The trigeneric hybrid could be a useful bridge for the transference of P. huashanica and S. cereale chromatins to common wheat.  相似文献   

3.
The present study was conducted to isolate and characterize rhizobial strains from root nodules of cultivated legumes, i.e. chickpea, mungbean, pea and siratro. Preliminary characterization of these isolates was done on the basis of plant infectivity test, acetylene reduction assay, C-source utilization, phosphate solubilization, phytohormones and polysaccharide production. The plant infectivity test and acetylene reduction assay showed effective root nodule formation by all the isolates on their respective hosts, except for chickpea isolate Ca-18 that failed to infect its original host. All strains showed homology to a typical Rhizobium strain on the basis of growth pattern, C-source utilization and polysaccharide production. The strain Ca-18 was characterized by its phosphate solubilization and indole acetic acid (IAA) production. The genetic relationship of the six rhizobial strains was carried out by random amplified polymorphic DNA (RAPD) including a reference strain of Bradyrhizobium japonicum TAL-102. Analysis conducted with 60 primers discriminated between the strains of Rhizobium and Bradyrhizobium in two different clusters. One of the primers, OPB-5, yielded a unique RAPD pattern for the six strains and well discriminated the non-nodulating chickpea isolate Ca-18 from all the other nodulating rhizobial strains. Isolate Ca-18 showed the least homology of 15% and 18% with Rhizobium and Bradyrhizobium, respectively, and was probably not a (Brady)rhizobium strain. Partial 16S rRNA gene sequence analysis for MN-S, TAL-102 and Ca-18 strains showed 97% homology between MN-S and TAL-102 strains, supporting the view that they were strains of B. japonicum species. The non-infective isolate Ca-18 was 67% different from the other two strains and probably was an Agrobacterium strain.  相似文献   

4.
The round melon Praecitrullus fistulosus (Stocks) Pangalo has been cultivated in Asia since ancient times and has been considered an underexploited crop in the western world. In the USA, there is an increased interest in using P. fistulosus as a commercial vegetable, and possibly as a rootstock for grafting watermelon, melon, or cucumber. However, the taxonomic classification of P. fistulosus is incomplete and for many years it has been considered a close relative of watermelon [Citrullus lanatus subsp. vulgaris (Schrad. ex Eckl. et Zeyh.) Fursa] and was previously classified as Citrullus lanatus subsp. fistulosus (Stocks) Duthie et J.B. Fuller. Here, we used two sets of DNA markers to assess the genetic similarity of P. fistulosus in relation to Citrullus spp. {including Citrullus lanatus subsp. vulgaris, C. lanatus subsp. lanatus, Citroides group [also known as C. lanatus (Thunb.) Matsum. et Nakai subsp. lanatus var. citroides (Bailey) Mansf. ex Greb.], and C. colocynthis (L.) Schrad.}, Cucumis spp. (including C. melo, C. sativus, C. anguria, C. meeusei, C. zeyheri), Benincasa hispida (Thunb.) Cogn., Lagenaria siceraria (Mol.) Standl. and Cucurbita spp. (including C. moschata Duchesne and the winter squash C. maxima Duchesne). The first marker set comprised 501 markers that were produced by 38 primer pairs derived from watermelon expressed sequenced tags (ESTs) containing simple sequence repeat (SSR) motifs (designated as EST-SSR primers; produced 311 markers), and by 18 primer pairs derived from ESTs that do not contain SSR motives (designated here as EST-PCR primers; produced 190 markers). The second marker set comprised 628 markers that were produced by 18 sequence related amplified polymorphism (SRAP) primer pairs. The phylogenetic data indicated that among these cucurbit species, the wax gourd B. hispida is the closest to the P. fistulosus. Pollen observations, using light microscopy, indicated that each of the cucurbit genera examined here has unique pollen morphology. The Cucurbita spp. have globular pollen grains with a stigmatic surface. The L. siceraria has polygonal pollen grains with symmetrical boundaries, while the Citrullus spp. and Cucumis spp. have ovular (conical) and triangular shaped pollen grains (respectively). The B. hispida and P. fistulosus have spherical or semispherical pollen grains. These pollen features appear to be in agreement with the phylogenetic relationships of these two species based on DNA markers. Analysis with 12 SRAP primer pairs revealed low genetic diversity among 18 United States Plant Introductions (PIs) of P. fistulosus, indicating the need to expand the germplasm collection of this cucurbit crop.  相似文献   

5.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

6.
This study reports for the first time the presence of diazotrophic bacteria belonging to the genera Achromobacter and Zoogloea associated with wheat plants. These bacterial strains were identified by the analysis of 16S rDNA sequences. The bacterium IAC-AT-8 was identified as Azospirillum brasiliense, whereas isolates IAC-HT-11 and IAC-HT-12 were identified as Achromobacter insolitus and Zoogloea ramigera, respectively. A greenhouse experiment involving a non-sterilized soil was carried out with the aim to study the endophytic feature of these strains. After 40 days from inoculation, all the strains were in the inner of roots, but they were not detected in soil. In order to assess the location inside wheat plants, an experiment was conducted under axenic conditions. Fifteen days after inoculation, preparations of inoculated plants were observed by the scanning electron microscope, using the cryofracture technique, and by the transmission electron microscope. It was observed that all isolates were present on the external part of the roots and in the inner part at the elongation region, in cortex cells, but not in the endodermis or in the vascular bundle region. No colonizing bacterial cells were observed in wheat leaves.  相似文献   

7.
The genus Arachis is divided into nine taxonomic sections. Section Arachis is composed of annual and perennial species, while section Heteranthae has only annual species. The objective of this study was to investigate the genetic relationships among 15 Brazilian annual accessions from Arachis and Heteranthae using RAPD markers. Twenty-seven primers were tested, of which nine produced unique fingerprintings for all the accessions studied. A total of 88 polymorphic fragments were scored and the number of fragments per primer varied from 6 to 17 with a mean of 9.8. Two specific markers were identified for species with 2n = 18 chromosomes. The phenogram derived from the RAPD data corroborated the morphological classification. The bootstrap analysis divided the genotypes into two significant clusters. The first cluster contained all the section Arachis species, and the accessions within it were grouped based upon the presence or absence of the ‘A’ pair and the number of chromosomes. The second cluster grouped all accessions belonging to section Heteranthae.  相似文献   

8.
This study aimed to investigate the effect of inoculation with plant growth-promoting Rhizobium and Pseudomonas species on NaCl-affected maize. Two cultivars of maize (cv. Agaiti 2002 and cv. Av 4001) selected on the basis of their yield potential were grown in pots outdoors under natural conditions during July. Microorganisms were applied at seedling stage and salt stress was induced 21 days after sowing and maintained up to 50% flowering after 120 days of stress. The salt treatment caused a detrimental effect on growth and development of plants. Co-inoculation resulted in some positive adaptative responses of maize plants under salinity. The salt tolerance from inoculation was generally mediated by decreases in electrolyte leakage and in osmotic potential, an increase in osmoregulant (proline) production, maintenance of relative water content of leaves, and selective uptake of K ions. Generally, the microbial strain acted synergistically. However, under unstressed conditions, Rhizobium was more effective than Pseudomonas but under salt stress the favorable effect was observed even if some exceptions were also observed. The maize cv. Agaiti 2002 appeared to be more responsive to inoculation and was relatively less tolerant to salt compared to that of cv. Av 4001.  相似文献   

9.
A novel dwarf mutant of Brassica napus L. em. Metzg., named NDF-1, was derived from a high doubled haploid line ‘3529’ of which seeds were jointly treated with chemical inducers and fast neutron bombardment. The germination results showed that the germination of NDF-1 was insensitive in response to exogenous gibberellic acid 3 (GA3). The studies on growth response to exogenous GA3 showed that NDF-1 seeding has at least 10-fold insensitivity than the wild-type. Moreover, no matter what concentrations of GA3 were added to the seedlings and adult plants, the NDF-1 could not restore the wild type phenotype. These results indicated that the B. napus dwarf mutant NDF-1 was GA-insensitive mutant. The histological observations showed that the key reason of leading NDF-1 to dwarf was the reduction of hypocotyls and stems cell numbers.  相似文献   

10.
DNA sequences of nuclear gene Got2 was studied in 60 accessions of Aegilops tauschii, 29 of subsp. tauschii and 31 of subsp. strangulata. It was found that Got2 allozyme polymorphism in Ae. tauschii is due to a single, unique, mutation which led to replacement of glutamic acid by isoleucine in residue 256 of the enzyme molecule, encoded by Got2. As revealed by Got2 DNA sequences variation, initially in its history Ae. tauschii was presented by subsp. strangulata, and among phylogenetic lineages of subsp. strangulata, the lineage “t-91s” (TauL3) is the most ancient, a relict one. Subspecies tauschii is relatively “young”. Initially it was presented by the lineage marked by combination of allozyme alleles Got2 105 and Acph1 100. In the past it inhabited the Continental area from Caucasia to Pakistan, but later on it was forced out by newly originated, now—a major lineage of subsp. tauschii, marked by Got2 100. This lineage extended the Continental area of the species up to Kirgizstan, but actually failed to penetrate into pre-Caspian area, occupied by subsp. strangulata. These results essentially differ from those obtained previously, using chloroplast DNA (cpDNA) sequences polymorphism. As revealed by cpDNA, the major, “usual”, subsp. strangulata (TauL2) is “younger” than subsp. tauschii, which resided on phylogenetic tree between relict lineage “t-91s”of subsp. strangulata—and major subsp. strangulata. But both cpDNA and Got2 DNA sequences indicate that the level of genetic variation in subsp. tauschii is much lower than in subsp. strangulata. According to Got2 DNA sequences variation, it was Ae. tauschii subsp. strangulata lineage “k-109″ which donated genome D to Triticum aestivum L. This lineage includes accessions: k-109 from South-Eastern Precaspian Azerbaijan; KU-2105, KU-2159 from Western Precaspian Iran; KU-2080 from Eastern Precaspian Iran.  相似文献   

11.
Among 371 oat accessions from the world collection of the Vavilov Institute of Plant Genetic Resources (VIR) mostly represented by the landraces from Asia (Maritime Territory of Russian Federation, Mongolia, China, Japan, North Korea, India, Iran, Afghanistan, and Bhutan) ninety five were heterogeneous for resistance to the North Caucasus populations of the greenbug (Schizaphis graminum Rondani). Damage ratings of resistance in 47 accessions were high, low level of resistance was identified in 48 genotypes. Higher frequency of greenbug resistant accessions (60.5%) was found among landraces from Mongolia. Lines with high expression of the resistance were selected from seven landraces with wide range of damage ratings. North Caucasus populations of S. graminum from Krasnodar area and Dagestan significantly differ by the frequencies of virulence to host plant. Seven virulence phenotypes differentially interacting with oat genotypes were found in the Krasnodar population and 10 phenotypes were revealed in the Dagestan population. Results of the experiments with the greenbug test clones revealed that all the lines selected from the accessions VIR-2490, VIR-2539, VIR-4074, VIR-12213, VIR-12214 (Mongolia), VIR-6688 (India) and VIR-13624 (North Korea) are protected by diverse alleles of resistance genes which differ from the earlier identified gene Grb3. These lines are supposed to have aphid resistance genes nonidentical to the Grb1 and Grb2. The accessions VIR-6688, VIR-4074 and VIR-12214 possess high resistance to Krasnodar and Dagestan greenbug populations and the accession VIR-13624 is protected by the most effective gene (genes) of resistance to the both populations from North Caucasus.  相似文献   

12.
A total of 8117 suitable SSR-contaning ESTs were acquired by screening from a Malus EST database, among which dinudeotide SSRs were the most abundant repeat motif, within which, CT/TC followed by AG/GA were predominant. Based on the suitable sequences, we developed 147 SSR primer pairs, of which 94 pairs gave amplifications within the expected size range while 65 pairs were found to be polymorphic after a preliminary test. Eighteen primer pairs selected randomly were further used to assess genetic relationship among 20 Malus species or cultivars. As a result, these primers displayed high level of polymorphism with a mean of 6.94 alleles per locus and UPGMA cluster analysis grouped twenty Malus accessions into five groups at the similarity level of 0.6800 that were largely congruent to the traditional taxonomy. Subsequently, all of the 94 primer pairs were tested on four accessions of Pyrus to evaluate the transferability of the markers, and 40 of 72 functional SSRs produced polymorphic amplicons from which 8 SSR loci selected randomly were employed to analyze genetic diversity and relationship among a collection of Pyrus. The 8 primer pairs produced expected bands with the similar size in apples with an average of 7.375 alleles per locus. The observed heterozygosity of different loci ranged from 0.29 (MES96) to 0.83 (MES138), with a mean of 0.55 which is lower than 0.63 reported in genome-derived SSR marker analysis in Pyrus. The UPGMA dendrogram was similar to the previous results obtained by using RAPD and AFLP markers. Our results showed that these EST-SSR markers displayed reliable amplification and considerable polymorphism in both Malus and Pyrus, and will contribute to the knowledge of genetic study of Malus and genetically closed genera.  相似文献   

13.

Purpose

Chickpea is generally cultivated after seed treatment with host-specific Mesorhizobium ciceri, the nitrogen-fixing bacterium forming root nodules. Some species of free-living cyanobacteria are capable of nitrogen fixation. We examined the rhizosphere microbiota changes and the potential for plant growth promotion by applying a free-living, nitrogen-fixing cyanobacterium and the biofilm formulation of cyanobacterium with M. ciceri, relative to M. ciceri applied singly, to two each of desi and kabuli varieties of chickpea.

Materials and methods

Denaturing gradient gel electrophoresis (DGGE) profiles of archaeal, bacterial and cyanobacterial communities and those of phospholipid fatty acids (PLFAs) were obtained to evaluate the changes of the microbial communities in the chickpea rhizosphere. Plant growth attributes, including the pod yields and the availabilities of soil macronutrients and micronutrients, were monitored.

Results and discussion

The DGGE profiles showed distinct and characteristic changes due to the microbial inoculation; varietal differences exerted a marked influence on the archaeal and cyanobacterial communities. However, bacterial communities were modulated more by the type of microbial inoculants. Abundance of Gram-negative bacteria (in terms of notional PLFAs) differed between the desi and the kabuli varieties inoculated with M. ciceri alone, and the principal component analysis of PLFA profiles confirmed the characteristic effect of microbial inoculants tested. Microbial inoculation led to increases in the 100-seed weight and differential effects on the concentrations of available nitrogen and phosphorus, and those of iron, zinc and copper, suggesting their increased cycling in the rhizosphere.

Conclusions

Microbial inoculation of chickpea brought out the characteristic changes in rhizosphere microbiota. Consequently, the growth promotion of chickpea and nutrient cycling in its rhizosphere distinctively differed. Further studies are needed to analyse the association and dynamic changes in the microbial communities to define the subset of microorganisms selected by chickpea in its rhizosphere and the influence of microbial inoculation.
  相似文献   

14.
Complete sequences of transcribed spacers and introns from the trnT trnF region of chloroplast DNA (cp DNA) were generated from Musaceae species to establish the phylogenetic relationships among 3 species of Ensete including the economically important Ensete ventricosum (Welw.) Cheesman and 13 species of Musa. Parsimony analysis and pair wise distance data produced a single tree, with Ensete and Musa as clearly distinguished clades. Six Musa and three Ensete clades were generated. The topology of these clades did not change when the data were split into spacers and introns, although the split resulted in poor bootstrap support. Removing a hotspot from the entire data set improved clade support. The clades produced are discussed with reference to existing taxonomic and phylogenetic treatments. In contrast to previous suggestions, most of the Rhodochlamys species that we investigated clustered together with strong support establishing their distinctiveness from the Musa species studied. Ensete glaucum (Roxb.) Cheesman and Musa beccartii Simmonds appear to represent ancestral forms of Ensete and Musa, respectively for the presently studied species, and both genera have a common ancestor that is yet to be established. Our data also show that E. ventricosum cannot be reduced to E. glaucum, nor can E. gilleti (De Wild.) Cheesman be reduced to E. ventricosum, as some authorities have suggested. Ensete gilleti or a species very close to it appears to be the ancestral species of E. ventricosum.  相似文献   

15.
A fertile amphidiploid × Brassicoraphanus (RRCC, 2n = 36) between Raphanus sativus cv. HQ-04 (2n = 18, RR) and Brassica alboglabra Bailey (2n = 18, CC) was synthesized and successive selections for seed fertility were made from F4 to F10. F10 plants exhibited good fertility with 14.9 seeds per siliqua and 32.3 g seeds per plant. Cytological observation revealed that frequent secondary pairing occurred among 3 chromosome pairs in pollen mother cells of plants (F4) with lower fertility, but not of plants with high fertility (F10). GISH analysis indicated that these F10 plants included the expected 18 chromosomes from R. sativus and B. alboglabra, respectively, but they lost approximately 27.6% R. sativus and 35.6% B. alboglabra AFLP (amplified fragment length polymorphism) bands. The crossability of the Raphanobrassica with R. sativus and 5 Brassica species (13 cultivars) were investigated. Seeds or F1 seedlings were easy to be produced from crosses × Brassicoraphanus × R. sativus, and B. napus, B. juncea and B. carinata × Brassicoraphanus. Fewer seeds or seedlings were obtained from crosses × Brassicoraphanus × B. napus, B. juncea and B. carinata. However, few seeds were harvested in the reciprocals of × Brassicoraphanus with B. rapa and B. oleracea. The possible cause of fertility improvements and the potential of the present × Brassicoraphanus for breeding were discussed.  相似文献   

16.
Calaverita an endangered Mexican orchid is one of the most elegant and showy orchids of the genus Laelia and essential symbol within the local traditional celebrations of the Day of the Dead, in the region of Chilapa-Guerrero. We investigated morphological variation in flowers of la calaverita (Laelia anceps Lind. subsp. dawsonii (J. Anderson) Rolfe f. chilapensis Soto-Arenas, Orchidaceae) using the labellum of the specimens cultivated in traditional home gardens in the region of Chilapa, Guerrero, Mexico. The use of morphometric traits of the labellum is useful in appraising infra-subspecific morphological variation within the chilapensis form. Floral morphological variation exists among the specimens examined. These specimens, found exclusively in traditional home gardens, were grouped into four morphotypes: NAT, Topiltepec, Xulchuchío, and Terrero. The study of variation of la calaverita revealed the existence of four local morphotypes that originated from a long and complex process of selection of traits which responds to traditional preferences and knowledge about specific biotic and agroecological conditions. The cultural and aesthetic influence of traditional homegarden owners in the Chilapa region acts directly on selection, use and conservation of the morphological traits of la calaverita.  相似文献   

17.
Neglected and underutilized species often play a vital role in securing food and livestock feed, income generation and energy needs of rural populations. In spite of their great potential little attention has been given to these species. This increases the possibility of genetic erosion which would further restrict the survival strategies of people in rural areas. Ziziphus spina-christi is a plant species that has edible fruits and a number of other beneficial applications that include the use of leaves as fodder, branches for fencing, wood as fuel, for construction and furniture making, and the utilization of different parts e.g. Fruits, leaves, roots and bark in folk medicine. Moreover, the plant is adapted to dry and hot climates which make it suitable for cultivation in an environment characterized by increasing degradation of land and water resources. Lack of research in Z. spina-christi hinders its successful improvement and promotion. Therefore, studies are needed to fully exploit this species. This article aims at summarizing information on different aspects of Z. spina-christi to stimulate interest in this crop which is of importance in Sudan and other countries of the semi-arid tropics.
Amina Sirag SaiedEmail:
  相似文献   

18.
The incidence of Legionella and Acanthamoeba spp. was correlated to microbial indicator analysis and physico-chemical characteristics of rainwater harvested from catchment areas constructed from galvanized zinc, Chromadek®, and asbestos, respectively. Quantitative PCR (qPCR) analysis indicated that no significant difference (p?>?0.05) in copy numbers of Legionella spp. and Acanthamoeba spp. was recorded in tank water samples collected from the respective roofing materials. However, significant positive Spearman (ρ) correlations were recorded between the occurrences of Legionella spp. gene copies vs. nitrites and nitrates (p?=?0.05) in all tank water samples. Significant positive correlations were also established between Acanthamoeba spp. vs. barium (p?=?0.03), magnesium (p?=?0.02), sodium (p?=?0.02), silicon (p?=?0.05), arsenic (p?=?0.03), and phosphate (p?=?0.01), respectively. Additionally, while no significant correlations were observed between Legionella spp. vs. the indicator bacteria (p?>?0.05), positive correlations were observed between Acanthamoeba spp. vs. total coliforms (p?=?0.01) and Acanthamoeba spp. vs. Escherichia coli (p?=?0.02), respectively. Results obtained in the current study thus indicate that the incidence of Acanthamoeba and Legionella spp. in harvested rainwater was not influenced by the roofing material utilized. Moreover, it is essential that the microbial quality of rainwater be assessed before this water source is implemented for potable and domestic uses as untreated harvested rainwater may lead to legionellosis and amoebae infections.  相似文献   

19.
Analysis of the genetic structure of Indonesian Oryza sativa and O. rufipogon using neighbour-joining trees based on single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers revealed that O. sativa in Indonesia is separated from O. rufipogon. Accessions of O. sativa in this study were differentiated into two major groups, indica and tropical japonica, excluding some varieties. SSR and SNP markers revealed the high value of differentiation (F ST) and genetic distance (D) between indica and tropical japonica and we discovered four loci by SNP markers and one locus by SSR markers that play a role in differentiation between indica and tropical japonica. Interestingly, genetic diversity (H) in O. rufipogon was lower than that in O. sativa, however H in O. rufipogon was the highest and H in tropical japonica was the lowest when O. sativa was divided into two groups. Inbreeding coefficient (Fst) showed evidences that gene flow (Nm) between species and within species might be one of the mechanisms related to the diversification and differentiation of Indonesian rice germplasm by asymmetric pattern between species and within O. sativa as revealed by SSR and SNP markers. In addition, we found evidences on stabilizing selection in Indonesian rice germplasm and they might be the reasons why Indonesian rice germplasm did not differentiate due to source location of landrace. However, we found a weak relation between SSR and SNP markers probably due to highly polymorphic in SSR and the different properties of both markers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号