首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We report the characterization of defects in individual metallic single-walled carbon nanotubes by transport measurements and scanned gate microscopy. A sizable fraction of metallic nanotubes grown by chemical vapor deposition exhibits strongly gate voltage-dependent resistance at room temperature. Scanned gate measurements reveal that this behavior originates from resonant electron scattering by defects in the nanotube as the Fermi level is varied by the gate voltage. The reflection coefficient at the peak of a scattering resonance was determined to be about 0.5 at room temperature. An intratube quantum dot device formed by two defects is demonstrated by low-temperature transport measurements.  相似文献   

2.
Single-molecule fluorescence spectroscopy was used to determine the electronic properties of individual single-walled carbon nanotubes. Carbon nanotube structure was determined simultaneously from Raman spectroscopy. Fluorescence spectra from individual nanotubes with identical structures have different emission energies and linewidths that likely arise from defects or the local environment. Unlike most other molecules studied to date, the fluorescence intensity or spectrum from a single nanotube unexpectedly did not fluctuate.  相似文献   

3.
The properties of nanoconfined and interfacial water in the proximity of hydrophobic surfaces play a pivotal role in a variety of important phenomena such as protein folding. Water inside single-walled carbon nanotubes (SWNTs) can provide an ideal system for investigating such nanoconfined interfacial water on hydrophobic surfaces, provided that the nanotubes can be opened without introducing excess defects. Here, we report a hydrophobic-hydrophilic transition upon cooling from 22 degrees C to 8 degrees C via the observation of water adsorption isotherms in SWNTs measured by nuclear magnetic resonance. A considerable slowdown in molecular reorientation of such adsorbed water was also detected. The observed transition demonstrates that the structure of interfacial water could depend sensitively on temperature, which could lead to intriguing temperature dependences involving interfacial water on hydrophobic surfaces.  相似文献   

4.
Intramolecular junctions in single-walled carbon nanotubes are potentially ideal structures for building robust, molecular-scale electronics but have only been studied theoretically at the atomic level. Scanning tunneling microscopy was used to determine the atomic structure and electronic properties of such junctions in single-walled nanotube samples. Metal-semiconductor junctions are found to exhibit an electronically sharp interface without localized junction states, whereas a more diffuse interface and low-energy states are found in metal-metal junctions. Tight-binding calculations for models based on observed atomic structures show good agreement with spectroscopy and provide insight into the topological defects forming intramolecular junctions. These studies have important implications for applications of present materials and provide a means for assessing efforts designed to tailor intramolecular junctions for nanoelectronics.  相似文献   

5.
采用第一性原理的密度泛函理论计算方法,研究了2种不同分布的双原子空位缺陷(平行于管轴和斜交于管轴)对金属型(12,0)碳纳米管量子电子特性的影响。研究结果表明,平行于管轴的五边形-八边形-五边形(5-8-5)缺陷的转变能是最小的,是最稳定的缺陷结构分布;平行于管轴的5-8-5缺陷和斜交于管轴5-8-5缺陷都在价带部分引入了出现2个电子背散射中心,这对电子输运非常不利;斜交于管轴5-8-5缺陷比平行于管轴5-8-5缺陷对电导的抑制作用更大,这是由于斜交于管轴5-8-5缺陷破环了碳纳米管的轴向对称性。  相似文献   

6.
Several instances of multiple imaging of cosmologically distant sources by intervening galaxies and galaxy clusters have been discovered over the past decade. These "gravitational lenses" have distinctive optical properties. Pointlike sources such as quasars generally produce two or four images when lensed, whereas extended sources such as galaxies produce spectacular arcs and rings. The salient features of most of the observations can be reproduced with the use of simple elliptical lens models that approximate the lenses made by ellipsoidal mass distributions such as are common in the universe. In addition to illustrating simple optics in operation on a cosmological scale, multiple images and arcs provide useful probes of the lensing galaxies and clusters. Also, gravitational lenses can make magnified images of cosmologically distant sources and may eventually furnish important cosmographic data such as the Hubble constant.  相似文献   

7.
Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region.  相似文献   

8.
Previous high-resolution electron microscopy (HREM) observations of the carbon nanotubes have led to a "Russian doll" structural model that is based on hollow concentric cylinders capped at both ends. The structures of the carbon nanotubes and particles were characterized here by bulk physical and chemical property measurements. The individual nanostructure is as compressible as graphite in the c axis, and such nanostructures can be intercalated with potassium and rubidium, leading to a saturation composition of "MC(8)." These results are counter to expectations that are based on a Russian doll structure. HREM after intercalation with potassium and deintercalation indicates that individual nanoparticles are a "paper-mache" of smaller graphite layers. Direct current magnetization and electron spin resonance measurements indicate that the electronic properties of the nanostructures are distinctly different from those of graphite. Although the nanostructures have distinct morphologies and electronic properties, they are highly defective and have a local structure similar to turbostratic graphite.  相似文献   

9.
Zhang G  Qi P  Wang X  Lu Y  Li X  Tu R  Bangsaruntip S  Mann D  Zhang L  Dai H 《Science (New York, N.Y.)》2006,314(5801):974-977
Metallic and semiconducting carbon nanotubes generally coexist in as-grown materials. We present a gas-phase plasma hydrocarbonation reaction to selectively etch and gasify metallic nanotubes, retaining the semiconducting nanotubes in near-pristine form. With this process, 100% of purely semiconducting nanotubes were obtained and connected in parallel for high-current transistors. The diameter- and metallicity-dependent "dry" chemical etching approach is scalable and compatible with existing semiconductor processing for future integrated circuits.  相似文献   

10.
The coalescence of single-walled nanotubes is studied in situ under electron irradiation at high temperature in a transmission electron microscope. The merging process is investigated at the atomic level, using tight-binding molecular dynamics and Monte Carlo simulations. Vacancies induce coalescence via a zipper-like mechanism, imposing a continuous reorganization of atoms on individual tube lattices along adjacent tubes. Other topological defects induce the polymerization of tubes. Coalescence seems to be restricted to tubes with the same chirality, explaining the low frequency of occurrence of this event.  相似文献   

11.
Ice crystals in the form of right hexagonal prisms have faces that form 90 degrees prisms. Light rays were traced through these prism faces by computer calculation, and the light patterns that would be produced in the sky for a particular distribution of crystal orientations were simulated. Crystals with random orientations produce a 46 degrees halo. Hexagonal plate crystals with nearly horizontal end faces produce circumzenithal and circumhorizontal arcs. Hexagonal column crystals with horizontal axes produce supralateral and infralateral arcs. Plate crystals spinning about a horizontal axis that is a face diagonal of the crystal produce a series of arcs touching the 46 degrees halo. Each of these effects was simulated for several elevations of the sun.  相似文献   

12.
Capillarity and wetting of carbon nanotubes   总被引:1,自引:0,他引:1  
The wetting and capillarity of carbon nanotubes were studied in detail here. Nanotubes are not "super-straws," although they can be wet and filled by substances having low surface tension, such as sulfur, selenium, and cesium, with an upper limit to this tension less than 200 millinewtons per meter. This limit implies that typical pure metals will not be drawn into the inner cavity of nanotubes through capillarity, whereas water and organic solvents will. These results have important implications for the further use of carbon nanotubes in experiments on a nanometer scale.  相似文献   

13.
Viscoelasticity describes the ability of a material to possess both elasticity and viscosity. Viscoelastic materials, such as rubbers, possess a limited operational temperature range (for example, for silicone rubber it is -55° to 300°C), above which the material breaks down and below which the material undergoes a glass transition and hardens. We created a viscoelastic material composed from a random network of long interconnected carbon nanotubes that exhibited an operational temperature range from -196° to 1000°C. The storage and loss moduli, frequency stability, reversible deformation level, and fatigue resistance were invariant from -140° to 600°C. We interpret that the thermal stability stems from energy dissipation through the zipping and unzipping of carbon nanotubes at contacts.  相似文献   

14.
We report results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere. We obtained dramatic new information, both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 megahertz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are out-lined briefly.  相似文献   

15.
Static and dynamic mechanical deflections were electrically induced in cantilevered, multiwalled carbon nanotubes in a transmission electron microscope. The nanotubes were resonantly excited at the fundamental frequency and higher harmonics as revealed by their deflected contours, which correspond closely to those determined for cantilevered elastic beams. The elastic bending modulus as a function of diameter was found to decrease sharply (from about 1 to 0.1 terapascals) with increasing diameter (from 8 to 40 nanometers), which indicates a crossover from a uniform elastic mode to an elastic mode that involves wavelike distortions in the nanotube. The quality factors of the resonances are on the order of 500. The methods developed here have been applied to a nanobalance for nanoscopic particles and also to a Kelvin probe based on nanotubes.  相似文献   

16.
Metallic single-walled carbon nanotubes have been proposed to be good one-dimensional conductors. However, the finite curvature of the graphene sheet that forms the nanotubes and the broken symmetry due to the local environment may modify their electronic properties. We used low-temperature atomically resolved scanning tunneling microscopy to investigate zigzag and armchair nanotubes, both thought to be metallic. "Metallic" zigzag nanotubes were found to have energy gaps with magnitudes that depend inversely on the square of the tube radius, whereas isolated armchair tubes do not have energy gaps. Additionally, armchair nanotubes packed in bundles have pseudogaps, which exhibit an inverse dependence on tube radius. These observed energy gaps suggest that most "metallic" single-walled nanotubes are not true metals, and they have implications for our understanding of the electronic properties and potential applications of carbon nanotubes.  相似文献   

17.
Single-walled carbon nanotubes (SWCNTs) have been shown to exhibit excellent electrical properties, such as ballistic transport over several hundred nanometers at room temperature. Field-effect transistors (FETs) made from individual tubes show dc performance specifications rivaling those of state-of-the-art silicon devices. An important next step is the fabrication of integrated circuits on SWCNTs to study the high-frequency ac capabilities of SWCNTs. We built a five-stage ring oscillator that comprises, in total, 12 FETs side by side along the length of an individual carbon nanotube. A complementary metal-oxide semiconductor-type architecture was achieved by adjusting the gate work functions of the individual p-type and n-type FETs used.  相似文献   

18.
Controlled chemical modifications of single-walled carbon nanotubes (SWCNTs) that tune their useful properties have been sought for multiple applications. We found that beneficial optical changes in SWCNTs resulted from introducing low concentrations of oxygen atoms. Stable covalently oxygen-doped nanotubes were prepared by exposure to ozone and then light. Treated samples showed distinct, structure-specific near-infrared fluorescence at wavelengths 10 to 15% longer than displayed by pristine semiconducting SWCNTs. Dopant sites harvest light energy absorbed in undoped nanotube regions by trapping mobile excitons. The oxygen-doped SWCNTs are much easier to detect and image than pristine SWCNTs because they give stronger near-infrared emission and do not absorb at the shifted emission wavelength.  相似文献   

19.
Individual carbon nanotubes are like minute bits of string, and many trillions of these invisible strings must be assembled to make useful macroscopic articles. We demonstrated such assembly at rates above 7 meters per minute by cooperatively rotating carbon nanotubes in vertically oriented nanotube arrays (forests) and made 5-centimeter-wide, meter-long transparent sheets. These self-supporting nanotube sheets are initially formed as a highly anisotropic electronically conducting aerogel that can be densified into strong sheets that are as thin as 50 nanometers. The measured gravimetric strength of orthogonally oriented sheet arrays exceeds that of sheets of high-strength steel. These nanotube sheets have been used in laboratory demonstrations for the microwave bonding of plastics and for making transparent, highly elastomeric electrodes; planar sources of polarized broad-band radiation; conducting appliqués; and flexible organic light-emitting diodes.  相似文献   

20.
本试验为解决草莓常温储存易腐烂、营养物质损失严重的缺陷,以丰香草莓为原料,以果实失重率和维生素C含量为指标,研究了室温(20℃)条件下,不同处理时间、放电距离、发生电压、气体流速的常压低温等离子体处理后草莓的保鲜效果.试验结果表明:常压低温等离子体放电时间为60s,处理距离为10mm,处理电压为140V,气体流速为1L/h时,草莓的保鲜效果最好,果实失重率明显低于对照组,而草莓维生素C含量显著高于对照组,保鲜期(常温)较传统常温保鲜期提升了1倍.该研究提供了一种草莓保鲜新方式,试验结果对于实际应用有一定的参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号