首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An inhalational technique for rapid induction of anaesthesia in unsedated cats using sevoflurane and nitrous oxide is described. Using a pliable, tight-fitting, face mask, sevoflurane (7.5-8%) was delivered from an out-of-circuit precision vaporiser connected to a coaxial non-rebreathing system using a fresh gas flow of 1 l oxygen and 2 l nitrous oxide per min. Cats were restrained with gentle but firm pressure applied by scruffing the dorsal cervical skin until the righting reflex was lost and the patient could be positioned in lateral recumbency. Typically, cats could be positioned on their side in a light plane of anaesthesia within 1 min of applying the mask, at which time the sevoflurane concentration was reduced to 5% or less. A similar protocol, using a lower initial concentration of sevoflurane, is recommended for old or debilitated patients. Maintenance of light sevoflurane (2-4%) anaesthesia by mask permitted minor interventions to be performed readily, including blood collection, intravenous chemotherapy, abdominal palpation, radiography and ultrasonography. More painful procedures, such as bone marrow aspiration, required a deeper plane of anaesthesia. Cats were sufficiently deep to be intubated, if this was required, about 3 min after commencing the induction. Recovery from sevoflurane/nitrous oxide anaesthesia was smooth and rapid, with most cats being able to right within 5 min of discontinuing the agents. This protocol for rapid inhalational induction and recovery is particularly suited to feline practice, where rendering an uncooperative patient unconscious greatly facilitates the completion of many minor diagnostic and therapeutic procedures, especially when these must be performed on successive days or when peripheral vascular access is limited. For longer procedures, isoflurane may be substituted for sevoflurane for maintenance of anaesthesia in order to minimise cost.  相似文献   

2.
The effects of sevoflurane or isoflurane on arterial blood gas, arterial oxyhaemoglobin saturation and end-tidal CO2 tension were monitored during induction and maintenance of anaesthesia in 10 premedicated New Zealand White (NZW) rabbits.For induction, the anaesthetic agents were delivered via a face-mask. After induction was completed, an endotracheal tube was introduced for maintenance of anaesthesia for a period of 90 minutes. Changes in heart rate, respiratory rate, arterial blood gas, arterial oxyhaemoglobin saturation, blood pH and end-tidal CO2 tension were recorded. Although sevoflurane and isoflurane produce similar cardiopulmonary effects in premedicated rabbits, sevoflurane provides a smoother and faster induction because of its lower blood/gas partition coefficient. Thus sevoflurane is probably a more suitable agent than isoflurane for mask induction and maintenance. Its lower blood solubility also makes sevoflurane more satisfactory than isoflurane for maintenance of anaesthesia because it allows the anaesthetist to change the depth of anaesthesia more rapidly.  相似文献   

3.
OBJECTIVE: To compare the speed and quality of induction of general anaesthesia using three different inhalant agents and one intravenous agent, in healthy dogs undergoing desexing surgery. MATERIALS AND METHODS: Less excitable dogs were not premedicated; others were premedicated with intramuscular acepromazine and morphine. Anaesthesia induction protocol was randomly assigned, with halothane, isoflurane or sevoflurane delivered by mask, or propofol delivered intravenously. Maximum vaporiser settings were used for inhalant inductions. Induction of anaesthesia was considered complete at the time of endotracheal intubation. Quality of induction was scored by the administering veterinarian. RESULTS: Seventy-one dogs were enrolled. Twenty-four received no premedication and 47 received premedication. Isoflurane inductions were significantly faster than halothane inductions (2.86 +/- 0.25 vs 3.71 +/- 0.22 min; mean +/- SE, P = 0.013). Sevoflurane inductions (3.29 +/- 0.24 min) were not significantly different from either halothane (3.71 +/- 0.22 min, P = 0.202) or isoflurane inductions (2.86 +/- 0.25 min, P = 0.217). Induction with propofol (1.43 +/- 0.13 min) was significantly faster than inhalant induction (P < 0.001 in each case). Premedication decreased the dose requirement and time to induction for dogs induced with propofol, but did not significantly change the time to intubation for inhalant inductions. Dogs administered propofol and/or premedication were significantly more likely to have an excellent quality of induction, but there was no difference between inhalant agents in terms of induction quality. CONCLUSION: Sevoflurane possesses chemical properties that should produce a more rapid induction of anaesthesia in comparison to halothane or isoflurane. However, in clinical practice patient related factors outweigh this improvement.  相似文献   

4.
The effects of halothane, isoflurane and sevoflurane anaesthesia on hepatic function and hepatocellular damage were investigated in dogs, comparing the activity of hepatic enzymes and bilirubin concentration in serum. An experimental study was designed. Twenty-one clinically normal mongrel dogs were divided into three groups and accordingly anaesthetized with halothane (n = 7), isoflurane (n = 7) and sevoflurane (n = 7). The dogs were 1-4 years old, and weighed between 13.5 and 27 kg (18.4 +/- 3.9). Xylazine HCI (1-2 mg/kg) i.m. was used as pre-anaesthetic medication. Anaesthesia was induced with propofol 2 mg/kg i.v. The trachea was intubated and anaesthesia maintained with halothane, isoflurane or sevoflurane in oxygen at concentrations of 1.35, 2 and 3%, respectively. Intermittent positive pressure ventilation (tidal volume, 15 ml/kg; respiration rate, 12-14/min) was started immediately after intubation and the anaesthesia lasted for 60 min. Venous blood samples were collected before pre-medication, 24 and 48 h, and 7 and 14 days after anaesthesia. Serum level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma-glutamyltransferase (GGT), lactate dehydrogenase (LDH GGT) activities and bilirubin concentration were measured. Serum AST, ALT and GGT activities increased after anaesthesia in all groups. In the halothane group, serum AST and ALT activities significantly increased all the time after anaesthesia compared with baseline activities. But in the isoflurane group AST and ALT activities increased only between 2 and 7 days, and in the sevoflurane group 7 days after anaesthesia. GGT activity was increased in the halothane group between 2 and 7 days, and in the isoflurane and sevoflurane groups 7 days after anaesthesia. All dogs recovered from anaesthesia without complications and none developed clinical signs of hepatic damage within 14 days. The results suggest that the use of halothane anaesthesia induces an elevation of serum activities of liver enzymes more frequently than isoflurane or sevoflurane from 2 to 14 days after anaesthesia in dogs. The effects of isoflurane or sevoflurane anaesthesia on the liver in dogs is safer than halothane anaesthesia in dogs.  相似文献   

5.
OBJECTIVE: To determine induction characteristics and the minimum alveolar concentration (MAC) at which consciousness returned (MACawake) in dogs anesthetized with isoflurane or sevoflurane. ANIMALS: 20 sexually intact male Beagles. PROCEDURES: In experiment 1, 20 dogs were randomly assigned to have anesthesia induced and maintained with isoflurane or sevoflurane. The MAC at which each dog awoke in response to auditory stimulation (MACawake-noise) was determined by decreasing the end-tidal concentration by 0.1 volume (vol %) every 15 minutes and delivering a standard audible stimulus at each concentration until the dog awoke. In experiment 2, 12 dogs received the same anesthetic agent they were administered in experiment 1. After duplicate MAC determination, the end-tidal concentration was continually decreased by 10% every 15 minutes until the dog awoke from anesthesia (MACawake). RESULTS: Mean induction time was significantly greater for isoflurane-anesthetized dogs (212 seconds), compared with the sevoflurane-anesthetized dogs (154 seconds). Mean+/-SD MACawake-noise was 1.1+/-0.1 vol % for isoflurane and 2.0+/-0.2 vol % for sevoflurane. Mean MAC was 1.3+/-0.2 vol % for isoflurane and 2.1+/-0.6 vol % for sevoflurane, and mean MACawake was 1.0+/-0.1 vol % for isoflurane and 1.3+/-0.3 vol % for sevoflurane. CONCLUSIONS AND CLINICAL RELEVANCE: Sevoflurane resulted in a more rapid induction than did isoflurane. The MACawake for dogs was higher than values reported for both agents in humans. Care should be taken to ensure that dogs are at an appropriate anesthetic depth to prevent consciousness, particularly when single-agent inhalant anesthesia is used.  相似文献   

6.
OBJECTIVE: To compare the anesthetic index of sevoflurane with that of isoflurane in unpremedicated dogs. DESIGN: Randomized complete-block crossover design. ANIMALS: 8 healthy adult dogs. PROCEDURE: Anesthesia was induced by administering sevoflurane or isoflurane through a face mask. Time to intubation was recorded. After induction of anesthesia, minimal alveolar concentration (MAC) was determined with a tail clamp method while dogs were mechanically ventilated. Apneic concentration was determined while dogs were breathing spontaneously by increasing the anesthetic concentration until dogs became apneic. Anesthetic index was calculated as apneic concentration divided by MAC. RESULTS: Anesthetic index of sevoflurane (mean +/- SEM, 3.45 +/- 0.22) was significantly higher than that of isoflurane (2.61 +/- 0.14). No clinically important differences in heart rate; systolic, mean, and diastolic blood pressures; oxygen saturation; and respiratory rate were detected when dogs were anesthetized with sevoflurane versus isoflurane. There was a significant linear trend toward lower values for end-tidal partial pressure of carbon dioxide during anesthesia with sevoflurane, compared with isoflurane, at increasing equipotent anesthetic doses. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that sevoflurane has a higher anesthetic index in dogs than isoflurane. Sevoflurane and isoflurane caused similar dose-related cardiovascular depression, but although both agents caused dose-related respiratory depression, sevoflurane caused less respiratory depression at higher equipotent anesthetic doses.  相似文献   

7.
Induction and recovery from inhalation anesthesia of Dumeril's monitors (Varanus dumerili) using isoflurane, sevoflurane, and nitrous oxide (N2O) were characterized using a randomized crossover design. Mean times to induction for isoflurane in 100% oxygen (O2), sevoflurane in 100% O2, sevoflurane in 21% O2:79% nitrogen (N2; room air), and sevoflurane in 66% N2O:34% O2 were 13.00 +/- 4.55, 11.20 +/- 3.77, 10.40 +/- 2.50, and 9.40 +/- 2.80 min, respectively, at 26 degrees C (n = 10). Mask induction with sevoflurane was significantly faster than with isoflurane. There was no significant difference between the induction time for sevoflurane in O2 or in room air, but sevoflurane combined with N2O resulted in significantly faster inductions than were obtained with sevoflurane in 100% O2. All treatments resulted in a significantly higher respiratory rate than in undisturbed animals. There were no significant differences in respiratory rate among lizards receiving O2, isoflurane in 100% O2, sevoflurane in room air, and sevoflurane combined with N2O, but animals receiving sevoflurane in O2 had a lower respiratory rate than those receiving pure O2. The sequence of complete muscle relaxation during induction was consistent and not significantly different among the four treatments: front limbs lost tone first, followed by the neck and the hind limbs; then the righting reflex was lost and finally tail tone. There were no significant differences in recovery times between isoflurane and sevoflurane or between sevoflurane in 100% O2 and sevoflurane combined with N2O. Similar recovery times were observed in animals recovering in 100 and 21% O2.  相似文献   

8.
OBJECTIVE: To study whether hemodynamic function in horses, particularly mean arterial blood pressure (MAP), is better maintained with sevoflurane than isoflurane, thus requiring less pharmacological support. STUDY DESIGN: Prospective randomized clinical investigation. Animals Thirty-nine racehorses undergoing arthroscopy in lateral recumbency. METHODS: Horses were assigned to receive either isoflurane (n = 20) or sevoflurane (n = 19) at 0.9-1.0 minimum alveolar concentration (MAC) for maintenance of anesthesia. Besides routine clinical monitoring, cardiac output (CO) was measured by lithium dilution. Hemodynamic support was prescribed as follows: when MAP decreased to <70 mmHg, patients were to receive infusion of 0.1% dobutamine, which was to be discontinued at MAP >85 mmHg or heart rate >60 beats minute(-1). Statistical analysis of results, given as mean +/- SD, included a clustered regression approach. RESULTS: Average inhalant anesthetic time [91 +/- 35 (isoflurane group) versus 97 +/- 26 minutes (sevoflurane group)] and dose (in MAC multiples), volume of crystalloid solution infused, and cardiopulmonary parameters including CO were similar in the two groups, except heart rate was 8% higher in isoflurane than sevoflurane horses (p < 0.05). To maintain MAP >70 mmHg, isoflurane horses received dobutamine over a significantly longer period (55 +/- 26 versus 28 +/- 21% of total anesthetic time, p < 0.01) and at a 51% higher dose than sevoflurane horses (41 +/- 19 versus 27 +/- 23 microg kg(-1) MAC hour(-1); p = 0.058), with 14/20 isoflurane animals and only 9/19 sevoflurane horses being infused with dobutamine at >30 microg kg(-1) MAC hour(-1) (p < 0.05). Dobutamine infusion rates were consistently lower in the sevoflurane as compared to the isoflurane group, with differences reaching significance level during the 0-30 minutes (p < 0.01) and 61-90 minutes periods (p < 0.05). CONCLUSIONS AND CLINICAL RELEVANCE: Horses under sevoflurane anesthesia may require less pharmacological support in the form of dobutamine than isoflurane-anesthetized horses. This could be due to less suppression of vasomotor tone.  相似文献   

9.
OBJECTIVES: To assess attributes of sevoflurane for routine clinical anaesthesia in dogs by comparison with the established volatile anaesthetic isoflurane. METHODS: One hundred and eight dogs requiring anaesthesia for elective surgery or diagnostic procedures were studied. The majority was premedicated with 0.03 mg/kg of acepromazine and 0.01 mg/kg of buprenorphine or 0.3 mg/kg of methadone before induction of anaesthesia with 2 to 4 mg/kg of propofol and 0.5 mg/kg of diazepam. They were randomly assigned to receive either sevoflurane (group S, n=50) or isoflurane (group I, n=58) in oxygen and nitrous oxide for maintenance of anaesthesia. Heart rate, respiratory rate, indirect arterial blood pressure, haemoglobin saturation, vaporiser settings, end-tidal carbon dioxide and anaesthetic concentration and oesophageal temperature were measured. Recovery was timed. Data were analysed using analysis of variance and non-parametric tests. RESULTS: Heart rate (85 to 140/minute), respiratory rate (six to 27/minute) and systolic arterial blood pressure (80 to 150 mmHg) were similar in the two groups. End-tidal carbon dioxide between 30 and 60 minutes (group S 6.4 to 6.6 and group I 5.8 to 5.9 per cent) and vaporiser settings throughout (group S 2.1 to 2.9 and group I 1.5 to 1.5 per cent) were higher in group S. There was no difference in time to head lift (18+/-16 minutes), sternal recumbency (28+/-22 minutes) or standing (48+/-32 minutes). No adverse events occurred. CLINICAL SIGNIFICANCE: Sevoflurane appeared to be a suitable volatile anaesthetic for maintenance of routine clinical anaesthesia in dogs.  相似文献   

10.
OBJECTIVE: To determine the effects of nitrous oxide (N2O) on the speed and quality of mask induction with sevoflurane or isoflurane in dogs. ANIMALS: 7 healthy Beagles. PROCEDURE: Anesthesia was induced with sevoflurane or isoflurane delivered in 100% oxygen or in a 2:1 mixture of N2O and oxygen via a face mask. Each dog received all treatments with at least 1 week between treatments. Initial vaporizer settings were 0.8% for sevoflurane and 0.5% for isoflurane (0.4 times the minimum alveolar concentration [MAC]). Vaporizer settings were increased by 0.4 MAC at 15-second intervals until settings were 4.8% for sevoflurane and 3.0% for isoflurane (2.4 MAC). Times to onset and cessation of involuntary movements, loss of the palpebral reflex, negative response to tail-clamp stimulation, and endotracheal intubation were recorded, and cardiopulmonary variables were measured. RESULTS: Administration of sevoflurane resulted in a more rapid induction, compared with isoflurane. However, N2O had no effect on induction time for either agent. Heart rate, mean arterial blood pressure, cardiac output, and respiratory rate significantly increased and tidal volume significantly decreased from baseline values immediately after onset of induction in all groups. Again, concomitant administration of N2O had no effect on cardiopulmonary variables. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of N2O did not improve the rate or quality of mask induction with sevoflurane or isoflurane. The benefits provided by N2O attributable to concentrating and second gas effects appear minimal in healthy dogs when low solubility inhalation agents such as isoflurane and sevoflurane are used for mask induction.  相似文献   

11.
The purpose of this report was to evaluate the cardiorespiratory effects and efficacy of dexmedetomidine as a premedicant agent in cats undergoing ovariohysterectomy anaesthetized with propofol-sevoflurane. Cats were randomly divided into two groups of eight animals each. Dexmedetomidine (0.01 mg/kg) or 0.9% saline was administered intravenously (D and S, respectively). After 5 min, propofol was administered intravenously and anaesthesia was maintained with sevoflurane. Heart and respiratory rates, arterial blood pressure, oxygen saturation, rectal temperature and the amount of propofol needed for induction were measured. Premedication with dexmedetomidine reduced the requirement of propofol (6.7+/-3.8 mg/kg), but induced bradycardia, compared with the administration of saline (15.1+/-5.1 mg/kg). Recovery quality was significantly better in D but no significant difference in time to return of swallowing reflex was observed between groups (D=2.5+/-0.5 min; S=3.2+/-1.8 min). In conclusion, dexmedetomidine is a safe and effective agent for premedication in cats undergoing propofol-sevoflurane anaesthesia with minimal adverse effects.  相似文献   

12.
The objective of this study was a comparison of the volatile anaesthetics isoflurane and sevoflurane in terms of their clinical effects in gerbils (Meriones unguiculatus) (n=12 each). Induction of anaesthesia was performed in a body chamber with an anaesthetic concentration of 4.0 Vol.% at an oxygen flow of 500 ml/min for isoflurane and 8.0 Vol.% at an oxygen flow of 1000 ml/min for sevoflurane, respectively. Anaesthesia was maintained via nose cone with an anaesthetic concentration of 2.8 to 3.2 Vol.% at an oxygen flow of 200 ml/min for isoflurane and 5.0 to 5.2 Vol.% at an oxygen flow of 400 ml/min for sevoflurane. Those anaesthetic concentrations ensured reflex status conform with surgical tolerance. In spite of its higher blood-gas coefficient induction time was slightly faster for isoflurane. Recovery time was significantly longer in the isoflurane group than it was in the sevoflurane group. Both inhalants caused respiratory depression. Respiratory rate was lower in sevoflurane animals compared to isoflurane. The animals were positioned on a heating pad immediately after induction, thus a decrease of the body temperature could be prevented. Both inhalants can be recommended for usage in gerbils. Sevoflurane showed no clinical benefit compared to isoflurane.  相似文献   

13.
Objective To compare recovery times and quality following maintenance of anaesthesia with sevoflurane or isoflurane after a standard intravenous induction technique in horses undergoing magnetic resonance imaging (MRI). Study design Prospective, randomised, blinded clinical study. Animals One hundred ASA I/II horses undergoing MRI. Materials and methods Pre‐anaesthetic medication with intravenous acepromazine and romifidine was followed by induction of anaesthesia with diazepam and ketamine. The animals were randomised into two groups to receive either sevoflurane or isoflurane in oxygen. Horses were subjectively scored (0–5) for temperament before sedation, for quality of sedation, induction and maintenance and anaesthetic depth on entering the recovery area. Recoveries were videotaped and scored by an observer, unaware of the treatment, using two scoring systems. Times to the first movement, head lift, sternal recumbency and standing were recorded along with the number of attempts to achieve sternal and standing positions. Variables were compared using a Student t‐test or Mann–Whitney U‐test (p < 0.05), while the correlation between subjective recovery score and other relevant variables was tested calculating the Spearman Rank correlation coefficient and linear regression modelling performed when significant. Results Seventy‐seven horses entered the final analysis, 38 received isoflurane and 39 sevoflurane. Body mass, age and duration of anaesthesia were similar for both groups. There were no differences in recovery times, scoring or number of attempts to achieve sternal recumbency and standing between groups. Weak, but significant, correlations were found between the subjective recovery score for the pooled data from both groups and both temperament and time in sternal recumbency. Conclusions No differences in recovery times or quality were detected following isoflurane or sevoflurane anaesthesia after intravenous induction. Clinical relevance Sevoflurane affords no obvious advantage in recovery over isoflurane following a standard intravenous induction technique in horses not undergoing surgery.  相似文献   

14.
The clinical effects of sevoflurane, isoflurane, and halothane anesthesia with or without nitrous oxide, were compared in healthy, premedicated cats breathing spontaneously during 90 minutes of anesthesia. The effect of nitrous oxide in accelerating the induction of and recovery from anesthesia was more evident for halothane than for sevoflurane or isoflurane. The cats recovered more rapidly from sevoflurane-oxygen than from either halothane- or isoflurane-oxygen. Heart rates did not significantly change during anesthesia with any of the anesthetics. Arterial blood pressures during sevoflurane-oxygen anesthesia were somewhat higher than those with either isoflurane- or halothane-oxygen. There were no significant differences in arterial blood pressures among sevoflurane, isoflurane, and halothane anesthesia when combined with nitrous oxide. The respiration rate during sevoflurane-oxygen was similar to that during halothane-oxygen. There were no significant differences in respiration rate among sevoflurane, isoflurane, and halothane anesthesia when combined with nitrous oxide. The degree of hypercapnia and acidosis during sevoflurane anesthesia was similar to that observed during isoflurane anesthesia and less than during halothane anesthesia. The three anesthetic regimens, with or without nitrous oxide, induced a similar degree of hyperglycemia and hemodilution during anesthesia. Serum biochemical examination did not reveal any hepatic or renal injuries after each anesthesia.  相似文献   

15.
OBJECTIVE: To compare haemodynamic and respiratory variables during isoflurane-fentanyl (IF) and propofol-fentanyl (PF) anaesthesia for surgery in injured cats. STUDY DESIGN: Prospective, randomized, controlled clinical study. ANIMALS: Thirty-three client-owned injured cats undergoing orthopaedic surgery. MATERIALS AND METHODS: Pre-anaesthetic medication was intravenous midazolam 1 mg kg(-1), butorphanol 0.4 mg kg(-1) and ketamine 2 mg kg(-1). Anaesthesia was induced with propofol (P) and maintained with either: (a) a continuous rate infusion (CRI) of fentanyl (F) 0.02 mg kg(-1) hour(-1) and isoflurane (initial end-tidal concentration of 1%), (b) a fentanyl CRI (dose as before) and sevoflurane (initial end-tidal concentration of 2%) or (c) a CRI of propofol (12 mg kg(-1) hour(-1)). All three techniques were given to effect until surgical anaesthesia was achieved. Heart rate and rhythm (ECG), mean arterial blood pressure, respiratory rate, tidal volume and end-tidal CO(2) concentration were recorded. Venous blood gas analysis was performed before and after sedation, and at the end of anaesthesia. Blood chemistry and blood cell counts were assessed before, at the end of, and 24 hours after anaesthesia. The variables recorded from cats anaesthetized with IF and PF were compared. RESULTS: Mean end-expiratory isoflurane concentration was 1.19 +/- 0.19%. The propofol infusion rate was 11.4 +/- 0.8 mg kg(-1) hour(-1). No significant differences between the two groups in heart rate were identified; no cardiac dysrhythmias were recorded. Mean arterial blood pressure was significantly lower in IF cats during skin incision (p = 0.01), during surgery without intense surgical stimulation (p < 0.01) and during surgery with intense surgical stimulation (p = 0.01). Nine of 11 cats in the IF group were markedly hypotensive (34-49 mmHg) while seven of 11 cats in group PF were mildly hypotensive (49-59 mmHg). One of 11 cats in group IF and nine of 11 cats in group PF required intermittent positive pressure ventilation (IPPV) to maintain end-tidal CO(2) levels below 6.66 kPa (50 mmHg). CONCLUSION AND CLINICAL RELEVANCE: Despite the necessity to ventilate the lungs of cats in the PF group, arterial blood pressure was better maintained. Propofol-fentanyl anaesthesia is better for surgery in injured cats providing the means to impose IPPV are available.  相似文献   

16.
OBJECTIVE: To compare the sedative, anaesthetic-sparing and arterial blood-gas effects of two medetomidine (MED) doses used as pre-anaesthetic medication in sheep undergoing experimental orthopaedic surgery. STUDY DESIGN: Randomized, prospective, controlled experimental trial. ANIMALS: Twenty-four adult, non-pregnant, female sheep of various breeds, weighing 53.9 +/- 7.3 kg (mean +/- SD). METHODS: All animals underwent experimental tibial osteotomy. Group 0 (n = 8) received 0.9% NaCl, group L (low dose) (n = 8) received 5 microg kg(-1) MED and group H (high dose) (n = 8) received 10 microg kg(-1) MED by intramuscular (IM) injection 30 minutes before induction of anaesthesia with intravenous (IV) propofol 1% and maintenance with isoflurane delivered in oxygen. The propofol doses required for induction and endtidal isoflurane concentrations (F(E')ISO) required to maintain anaesthesia were recorded. Heart and respiratory rates and rectal temperature were determined before and 30 minutes after administration of the test substance. The degree of sedation before induction of anaesthesia was assessed using a numerical rating scale. Arterial blood pressure, heart rate, respiratory rate, FE'ISO, end-tidal CO2 (FE'CO2) and inspired O2 (FIO2) concentration were recorded every 10 minutes during anaesthesia. Arterial blood gas values were determined 10 minutes after induction of anaesthesia and every 30 minutes thereafter. Changes over time and differences between groups were examined by analysis of variance (anova) for repeated measures followed by Bonferroni-adjusted t-tests for effects over time. RESULTS: Both MED doses produced mild sedation. The dose of propofol for induction of anaesthesia decreased in a dose-dependent manner: mean (+/-SE) values for group 0 were 4.7 (+/-0.4) mg kg(-1), for group L, 3.2 (+/-0.4) mg kg(-1) and for group H, 2.3 (+/-0.3) mg kg(-1)). The mean (+/-SE) FE'ISO required to maintain anaesthesia was 30% lower in both MED groups [group L: 0.96 (+/-0.07) %; group H: 1.06 (+/-0.09) %] compared with control group values [(1.54 +/- 0.17) %]. Heart rates were constantly higher in the control group with a tendency towards lower arterial blood pressures when compared with the MED groups. Respiratory rates and PaCO2 were similar in all groups while PaO2 increased during anaesthesia with no significant difference between groups. In group H, one animal developed a transient hypoxaemia: PaO2 was 7.4 kPa (55.7 mmHg) 40 minutes after induction of anaesthesia. Arterial pH values and bicarbonate concentrations were higher in the MED groups at all time points. CONCLUSION AND CLINICAL RELEVANCE: Intramuscular MED doses of 5 and 10 microg kg(-1) reduced the propofol and isoflurane requirements for induction and maintenance of anaesthesia respectively. Cardiovascular variables and blood gas measurements remained stable over the course of anaesthesia but hypoxaemia developed in one of 16 sheep receiving MED.  相似文献   

17.
The aim of the present study was to compare the safety and efficacy of sevoflurane and isoflurane during low flow anaesthesia (fresh gas flow (FGF) 14 ml/kg/min) as well as to compare the consumption of both anaesthetics. Data were gathered from 60 dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs were induced with 0.6 mg/kg (maximum 25 mg) l-methadone and 1 mg/kg (maximum 25 mg) diazepam i.v.. Anaesthesia was maintained with isoflurane (group 1) or sevoflurane (group 2) in a mixture with 50% O2 and 50% N2O as carrier gases, under controlled ventilation. Monitoring included electrocardiogram, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane, sevoflurane). The consumption of isoflurane and sevoflurane as well as the dogs' recovery times were evaluated for both groups. In all groups the inspired oxygen concentrations ranged above the minimum value of 30 Vol% during low flow anaesthesia, with an arterial oxygen saturation above 97%. End tidal concentration of CO2, heart rate and arterial blood pressure were within the physiological ranges and showed no differences between the two groups. Recovery time was significantly shorter after sevoflurane compared to isoflurane anaesthesia, whilst the consumption of sevoflurane was higher than that of isoflurane. Sevoflurane appears to be as clinically safe as isoflurane in low flow anaesthesia. Even considering that sevoflurane is more expensive than isoflurane, the use of the low flow technique decreases the cost of anaesthesia due to the reduced volatile anaesthetic consumption.  相似文献   

18.
OBJECTIVE: To discern the effects of anaesthesia protocols and decreasing core body temperature on time to recovery from general anaesthesia. MATERIALS AND METHODS: Healthy adult dogs undergoing desexing surgery were enrolled. More excitable dogs were premedicated with intramuscular acepromazine and morphine; calmer dogs were not premedicated. Anaesthesia was induced using halothane, isoflurane or sevoflurane delivered by mask, or by intravenous propofol, and maintained in standard fashion using one of the three inhalant agents. Thermostat controlled heat mats were used during surgical preparation and surgery. Oesophageal temperature was recorded throughout surgery. The time from cessation of anaesthetic administration until the dog successfully raised itself to sternal recumbency was considered the time of recovery. RESULTS: Sixty-nine dogs completed the study, 42 males anaesthetised for 60.4 +/- 20.5 min, and 27 females anaesthetised for 85.4 +/- 33.2 min. Oesophageal temperature at the end of surgery was 36.8 +/- 0.80 degrees C. Oesophageal temperature had a significant effect on recovery time, with lower temperatures contributing to slower recoveries. Premedication significantly lengthened recovery times. The choice of induction or maintenance anaesthetic agent had no effect on recovery time. DISCUSSION: Hypothermia is a common complication of general anaesthesia and surgery. Amongst other deleterious effects, it is associated with slower recovery from anaesthesia, likely due to a number of different mechanisms.  相似文献   

19.
To develop an alternative anaesthetic regimen for cats with cardiomyopathy, the cardiopulmonary effects of three different premedication-induction protocols, followed by one hour maintenance with isoflurane in oxygen: air were evaluated in six cats. Group I: acepromazine (10 microg/kg) + buprenorphine (10 microg/kg) IM, etomidate (1-2 mg/kg) IV induction. Group II: midazolam (1 mg/kg) + ketamine (10 mg/kg) IM induction. Group III: medetomidine (1.5 mg/m2 body surface) IM, propofol (1-2 mg/kg) IV induction. Heart rate, arterial blood pressure, arterial blood gases, respiration rate, and temperature were recorded for the duration of the experiment. In group I the sedative effect after premedication was limited. In the other groups the level of sedation was sufficient. In all groups premedication resulted in a reduced blood pressure which decreased further immediately following induction. The reduction in mean arterial pressure (MAP) reached statistical significance in group I (142+/-22 to 81+/-14 mmHg) and group II (153+/-28 to 98+/-20 mmHg) but not in group III (165+/-24 to 134+/-29 mmHg). Despite the decrease in blood pressure, MAP was judged to have remained within an acceptable range in all groups. During maintenance of anaesthesia, heart rate decreased significantly in group III (from 165+/-24 to 125+/-10 b.p.m. at t=80 min). During anaesthesia the PCO2 and PO2 values increased significantly in all groups. On the basis of the results, the combination acepromazine-buprenorphine is preferred because heart rate, MAP, and respiration are acceptable, it has a limited sedative effect but recovery is smooth.  相似文献   

20.
REASONS FOR PERFORMING STUDY: Lidocaine constant rate infusions (CRIs) are common as an intraoperative adjunct to general anaesthesia, but their influence on quality of recovery has not been thoroughly determined. OBJECTIVES: To determine the effects of an intraoperative i.v. CRI of lidocaine on the quality of recovery from isoflurane or sevoflurane anaesthesia in horses undergoing various surgical procedures, using a modified recovery score system. HYPOTHESIS: The administration of intraoperative lidocaine CRI decreases the quality of recovery in horses. METHODS: Lidocaine (2 mg/kg bwt bolus followed by 50 microg/kg bwt/min) or saline was administered for the duration of surgery or until 30 mins before the end of surgery under isoflurane (n = 27) and sevoflurane (n = 27). RESULTS: Horses receiving lidocaine until the end of surgery had a significantly higher degree of ataxia and a tendency towards significance for a lower quality of recovery. There was no correlation between lidocaine plasma concentrations at recovery and the quality of recovery. CONCLUSIONS: Intraoperative CRI of lidocaine affects the degree of ataxia and may decrease the quality of recovery. POTENTIAL RELEVANCE: Discontinuing lidocaine CRI 30 mins before the end of surgery is recommended to reduce ataxia during the recovery period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号