首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于不同方法的汉中盆地稻麦轮作土壤供氮能力评价   总被引:1,自引:0,他引:1  
【目的】比较多种指标评价汉中盆地稻麦轮作土壤供氮能力的可靠性,为当地土壤氮素管理提供参考。【方法】以采集于汉中盆地及周边丘陵区的12个农田耕层土壤为供试土样,以盆栽黑麦草地上部累积吸氮量为参比,以土壤理化性质指标以及矿质氮法、KCl冷凝回流法、酸性高锰酸钾法3种化学方法和淹水培养法、通气培养法2种生物培养方法测定土壤氮素矿化量作为土壤供氮能力指标。【结果】土壤类型是影响土壤供氮能力的重要因素;土壤全氮或有机质可以反映土壤潜在供氮能力;土壤质地、pH、有效磷、CEC、碳酸钙、颗粒组成(砂粒、粉粒、黏粒)均不能反映稻麦轮作土壤供氮能力。矿质氮法测定氮素值与作物吸氮量相关系数为0.963(P<0.01),但由于起始矿质氮不能反映有机氮矿化量,故矿质氮法只能反映当前供氮能力,不宜作为土壤供氮能力评价指标;KCl冷凝回流法测得的总矿质氮量与作物吸氮量相关系数为0.912(P<0.01),而KCl冷凝回流法测得的可矿化氮量与作物吸氮量相关系数为-0.766(P<0.01),由于KCl冷凝回流法浸取土壤可矿化氮过程中会造成铵态氮的挥发,导致在反映土壤潜在供氮能力和总供氮能力上可能不...  相似文献   

2.
石灰性土壤供氮能力几种生物测定方法的评价研究   总被引:2,自引:2,他引:2  
 【目的】目前测定土壤供氮能力的生物方法较多,但基于土壤氮素形态的复杂性、土壤和微生物的高度变异以及生态条件的差异,不同土壤及不同测定方法结果之间仍然存在一定差异,对石灰性土壤采用哪些生物培养方法较好,目前仍无明确结论。【方法】以采自于黄土高原差异较大的25个农田耕层石灰性土壤为供试土样,以淋洗和未淋洗土壤起始NO3--N小麦和玉米两季盆栽试验作物吸氮量为参比,对可反映土壤供氮能力的淹水培养法、通气培养2周法、通气培养4周法、干湿交替通气培养2周法、间歇淋洗长期通气培养法、短期淋洗通气培养法、微生物量碳和微生物量氮等8种生物方法进行了比较研究,其中干湿交替通气培养法和通气培养4周法,是我们对通气培养2周的修订方法。【结果】在不包含起始矿质氮条件下,以上8种生物培养方法与淋洗土壤起始NO3--N盆栽试验作物吸氮量的相关系数依次为0.530,0.700,0.777,0.768,0.764,0.650,0.555和0.465(r0.05=0.369,r0.01=0.505),其中间歇淋洗长期通气培养法确定的氮素矿化势与作物吸氮量的相关系数为0.790;在包括起始矿质氮后(起始矿质氮+矿化氮),以上8种生物方法与未淋洗土壤起始NO3--N盆栽试验作物吸氮量相关系数依次为0.351,0.963,0.962,0.959,0.825, 0.963,0.289和0.095(r0.05=0.369,r0.01=0.505),其中氮素矿化势与作物吸氮量的相关系数为0.812。【结论】在排除起始矿质氮,特别是硝态氮的影响后,在反映旱地石灰性土壤可矿化氮量上,以氮素矿化势最佳;其次为通气培养4周、干湿交替通气培养2周和间歇淋洗长期通气培养法。包括起始矿质氮后,即在反映土壤供氮能力方面,各种通气培养法与未淋洗土壤起始NO3--N作物吸氮量相关性均大幅度提高,其中通气培养2周、通气培养4周、干湿交替通气培养2周和短期淋洗通气培养法相关系数均在0.950以上。而淹水培养法和微生物量碳、氮在表征石灰性土壤供氮能力上均比其它通气培养法逊色。综合考虑各方法在反映土壤可矿化氮和土壤供氮能力上的优劣,以及考虑到间歇淋洗长期通气培养法和以此获得氮素矿化势需培养时间较长,不适于作为实验室常规分析和快速测定土壤供氮能力的方法。根据本研究结果,可将干湿交替通气培养2周作为旱地石灰性土壤供氮指标,该方法不仅更加符合旱地土壤实际水分变化特征,而且既可反映土壤可矿化氮,也可用于评价土壤供氮能力。  相似文献   

3.
原状土通气培养法测定黄土高原土壤供氮能力的研究   总被引:4,自引:1,他引:3  
 【目的】评价原状土通气培养法在反映黄土高原土壤供氮能力方面的效果。【方法】以采自于黄土高原差异较大的11个农田耕层土壤为供试土样,以包括和不包括土壤起始NO3--N原状土盆栽黑麦草累积吸氮量为参比,进行室内原状土通气培养法测定土壤供氮能力的研究。【结果】以包括土壤起始NO3--N盆栽试验植物吸氮量为参比,通气培养前CaCl2所淋洗起始NO3--N和起始矿质氮与5期黑麦草地上部氮素累积量密切相关,相关系数分别为0.856和0.862,达1%显著水平;与此相反,通气培养30周所矿化氮素、土壤起始矿质氮+通气培养30周矿化氮素、氮素矿化势(N0)及N0+起始矿质氮与5期黑麦草地上部氮素累积量间无显著相关关系,相关系数分别仅为0.410、0.553、0.492和0.419。以不包括土壤起始NO3--N盆栽试验植物吸氮量为参比,通气培养前CaCl2淋洗起始NO3--N和起始矿质氮与五期黑麦草地上部氮素累积量间的相关性尽管有所降低,但相关性仍达5%显著水平,相关系数分别为0.613和0.607;而通气培养30周矿化氮素、土壤起始矿质氮+通气培养30周矿化氮素、N0及N0+起始矿质氮与五期黑麦草地上部吸氮量的相关系数却明显提高,相关系数分别为0.718,0.782,0.688和0.640,均达5%或1%显著水平。【结论】土壤起始NO3--N可作为石灰性土壤当前供氮指标,但该指标难以反映土壤潜在供氮能力;要判断原状土实验室通气培养法是否能可靠评价土壤潜在供氮能力,应以不包括土壤起始NO3--N盆栽试验植物吸氮量作为参比,否则由于受盆栽试验土壤起始NO3--N干扰,用植物吸氮量难以对原状土通气培养法的可靠性作出判断。  相似文献   

4.
可溶性有机氮在评价土壤供氮能力中的作用与效果   总被引:9,自引:0,他引:9  
 【目的】淹水培养法提取态可溶性有机氮在评价土壤供氮能力方面具有重要意义。【方法】通过研究黄土高原物理化学性质差异较大的10种农田土样起始可溶性有机氮(SON)、矿质氮(Nmin)及间歇浸提长期淹水培养期间可溶性有机氮、铵态氮累积量、易矿化和难矿化氮素矿化势(分别ND和NR表示)及其与作物吸氮量的关系,分析SON在评价土壤供氮能力中的作用与效果。【结果】供试土样起始SON平均为23.9 mg•kg-1,是起始可溶性总氮的28.8%、全氮的2.4%。淹水培养提取态可溶性氮(TSN)中,SON所占比例更高,几乎与铵态氮相当。经过217 d淹水培养,浸提出的SON平均为118.1 mg•kg-1,占TSN累积量的46.4%。ND与全氮关系密切:在不包括与包括SON时,二者的相关系数分别为0.92(P<0.01)和0.88(P<0.01)。不同土壤ND和易矿化氮矿化速率(KD)差别很大,干湿砂质新成土和黄土正常新成土的ND小于土垫旱耕人为土。考虑SON后KD值减小,而难矿化氮矿化速率(KR)增加。【结论】淹水培养期间铵态氮累积量是评价可矿化氮的较好指标,不仅适宜于第一季作物,而且也适用于连续两季作物;SON累积量不能单独作为反映可矿化氮的指标,但用ND反映土壤可矿化氮潜势时,包括SON后更加准确;TSN在一定程度上能够反映土壤可矿化氮。铵态氮和TSN累积量及ND在反映两季作物土壤可矿化氮时效果更好,包括SON后TSN及ND在评价土壤供氮持久性时更具意义。  相似文献   

5.
旱地土壤氮素、有机质状况及与作物吸氮量的关系   总被引:6,自引:0,他引:6  
在具有典型半干旱气候特征的陕西永寿选取6种不同肥力水平的田块,分层采集0~100cm土样,测定各土层可矿化氮、全氮及有机质含量,研究其与作物吸氮量之间的关系,结果表明,各土层可矿化氮、全氮及有机质之间存在着良好的相关性,可矿化氮与作物吸氮量之间的相关程度高于与全氮、有机质间的相关性,可矿化氮加上土壤起始矿质氮后,相关系数更高,0~45cm土层的可矿化氮、全氮、有机质与作物吸氮量的相关性高于45cm以下的土层,且以30~45cm土层的为最好;以土壤全氮或有机质作为评价土壤供氮能力的指标,效果不如可矿化氮。  相似文献   

6.
以淹水密闭培养法和田间定点取样测定研究了2种条件下的土壤氮素矿化过程,用红黄泥5个土样进行淹水密闭培养,矿化氮素完全符合有效积温幂函数式,但n值不能反映该类土壤氮矿化特征。且矿化氮量与土壤供氮量相关性差,红黄泥种植水稻早晚2季土壤供氮量都较接近4.7kg/亩,供氮率2.5%左右,同时,土壤供氮量与高于15℃气积温及移栽后的天数有极显著的直线关系。为预测土壤供氮量提供了可能性。  相似文献   

7.
采用室内淹水培养的方法,研究了添加等碳量的水稻秸秆生物炭、腐熟水稻秸秆和普通水稻秸秆及不同淹水培养时间(淹水培养30 d、60 d、90 d和180 d)对滨海盐渍型水稻土供氮能力的影响,为制定合理的秸秆还田措施提供科学参考。结果表明,各处理均可以提高土壤有机碳含量和碳氮比(C/N),添加生物炭的土壤有机碳和C/N显著高于其他处理(P<0.05)。各处理对土壤氮素矿化有显著影响,其中,添加生物炭处理明显提高了土壤氮素矿化量。各处理土壤供氮能力均随培养时间的延长呈现先增加后降低的趋势,培养90 d时土壤氮素矿化量最高。添加生物炭可以促进滨海盐渍型水稻土氮素的矿化,增强土壤供氮能力。  相似文献   

8.
根据土壤氮素矿化势和氮素矿化累积计算了不同时期土壤氮素矿化量。结果表明,两种方法计算出来的矿化氮量均与作物吸氮量有良好相关,而前者效果更优。作物吸收的氮素大约等于土壤矿化氮的2/5,等于土壤中起始NO_3~--N和作物生长期间矿化氮之和的2/3。这一结果为定量预测作物不同生长时期土壤供氮和确定氮肥适宜用量、施用时期提供了有用依据。  相似文献   

9.
以2种作物,12个质地、有机质、全氮及碳氮比不同的土壤进行的盆栽和培养试验表明,利用土壤氮素矿化势计算得出作物生长期间的矿化氮量与作物吸收氮量有密切关系,且两者间有稳定比值。根据土壤氮素矿化势计算作物生长期间可利用的氮素有较为合理的依据,值得重视。用KCl煮沸法所浸取的氮素与短期培养所矿化的氮素是高度正相关,且回归系数接近1,说明二者在表示土壤供氮能力方面有同样价值。  相似文献   

10.
研究表明,作物吸收的氮素总量能客观地反映土壤的供氮能力,是评价化学浸取氮的唯一准则。作物含氮百分数只有在生育期长时才有较大变动,反映出土壤供氮水平的差别。对于生育期短,吸氮不多的作物,干物质与吸氮量有一致关系,可用来衡量浸取法的适合程度;而对于生育期长、吸氮多的作物,则有较大偏差。以两种方式表示的浸取氮与作物吸收氮间的相关系数基本一致。作物吸氮量与两种方式表示的全氮间的相关系数无显著区别;而以每盆毫克数表示的有机质与作物吸取的氮素有密切稳定的相关。  相似文献   

11.
闫德智 《安徽农业科学》2011,39(14):8391-8394
[目的]研究了太湖地区3种类型土壤黄泥土、乌沙土和乌栅土的供氮能力,以期为太湖地区的氮肥合理施用提供依据。[方法]采用好气培养法、淹水密闭培养法、化学提取法。[结果]好气条件下,黄泥土的氮矿化量最高,其次为乌栅土,乌沙土最低,乌栅土2060 cm土层土壤供氮量占060 cm土层的40%左右。淹水条件下,土壤的氮矿化量依次为乌栅土〉黄泥土〉乌沙土,乌栅土全层土壤供氮量主要来自020 cm土层。黄泥土和乌沙土的无氮区水稻产量和水稻吸氮量在0.05水平显著高于乌栅土。3种土壤酸解氮、碱解氮和热氯化钾提取氮的大小顺序依次为乌栅土〉黄泥土〉乌沙土,各化学提取法指标都随土层的加深而降低。[结论]各项化学提取法指标能够在一定程度上反映土壤氮素矿化的难易程度。  相似文献   

12.
1987~1988年采用淹水密闭培养一间歇淋洗方法研究了湖南省的水稻土土属——红黄泥的土壤氮矿化特性。结果表明:采用淹水密闭培养一间歇淋洗法得到的土壤矿化氮量与相同有效积温条件下的田间土壤矿化氮量基本一致。采用该法进行稻田土壤氮矿化的研究是可行的。淋洗液以0.02NKCl100ml+无氮营养液25ml为好。湖南省红黄泥土壤氮矿化过程可用双曲线方程,一级反应动力学方程和有效积温经验式模拟。三种方程均达0.01显著水准。红黄泥土壤氮矿化势No为56~104ppm N。氮矿化速率常数k为0.24~0.28。不同土壤氮矿化量的差异主要由No不同引起,与k关系不大。在影响土壤矿化氮量的几种主要理化性状中。碱解氮对矿化氮量的贡献最大。  相似文献   

13.
对几种目前较为常用的土壤有效氮测试法进行优选和改进,提出适用于旱地土壤的 NaHCO_3分级指数法。用连续矿化-栽培春小麦微钵试验进行相关研究的结果表明,0.05 mol·L~(-1)NaHCO_3-硝态氮(N_(NO_3))和-有机氮(N_(org))的二组分测定值与5期作物总吸氮量间的二元回归相关系数达0.883(n=19)。综合评价,该法优于其他所试各法,可作为评估旱地土壤供氮水平的快速常规方法,能正确地反映土壤有效氮的强度和容量因子。  相似文献   

14.
【目的】研究温度升高对青藏高原和黄土高原土壤有机氮矿化的影响。【方法】采取青藏高原和黄土高原主要农田耕层(0~20 cm)土壤,采用Stanford和Smith提出的间歇淋洗通气培养法,分别在15,25,35和45℃条件下恒温培养210 d,测定培养期间的有机氮矿化量。【结果】青藏高原土壤有机氮净矿化速率为0.16~1.48mg/(kg.d),黄土高原土壤有机氮净矿化速率为0.12~1.02 mg/(kg.d);在15~35℃的温度条件下,青藏高原和黄土高原土壤铵态氮净矿化累积量对温度变化的响应相对较弱,而在45℃时,青藏高原土壤铵态氮净矿化累积量显著增加,并显著高于黄土高原土壤;在15,25和35℃时,青藏高原土壤硝态氮净矿化累积量明显高于黄土高原土壤,而在45℃时,黄土高原土壤硝态氮净矿化累积量较高。青藏高原土壤矿质氮净矿化累积量在各温度条件下均明显高于黄土高原土壤,且在15℃时供试土壤矿质氮矿化累积量最少,在35℃时供试土壤矿质氮矿化累积量最多。【结论】青藏高原土壤有机氮矿化对温度升高的响应较黄土高原土壤更为敏感。  相似文献   

15.
旱地土壤氮有效度的分级指标   总被引:1,自引:0,他引:1  
对几种目前较为常用的土壤有效氮测试法进行优选和改进,提出适用于旱地土壤的NaHCO3分级指数法。用连续矿化-栽培春小麦微钵试验进行相关研究的结果表明,0.05mo1.L^-1NaHCO3-硝态氮(NNO3)和-有机氮(Norg)的二组分测定与5期作物总吸氮量间的二元回归相关系数达0.883^***(n=19)。综合评价,该法优于其他所试各法,可作为评估旱地土壤供氮水平的快速常规方法,能正确地反映土  相似文献   

16.
用全氮、有机质、pH、碳氮比及质地不同的12种土壤进行了大麦、燕麦和黑麦等3种作物的盆栽试验,并以KCl煮沸法测定了其可矿化的氮素,以估计土壤潜在的有效氮素。试验表明,KCl浓度及浸取时间长短对NO_3~--N浸出量无明显影响,用1 mol/L KCl煮沸浸取1h之后,NH_4~--N亦增加不多。1 mol/L KCl煮沸1h所释放的氮素与3种作物吸氮量密切相关,证明了这种水解方法能较好地预报盆栽试验条件下不同土壤释放作物可利用氮素的相对能力。一旦包括土壤特性,温、湿度在内的氮素释放模式形成之后,KCl煮沸法有可能用来很好地预报大田条件下作物生长期间转变成有效态氮素的数量。  相似文献   

17.
KCl煮沸法浸取石灰性土壤可矿化氮存在的问题及改进   总被引:1,自引:0,他引:1  
用KCl煮沸法浸取石灰性土壤中的可矿化氮时,会造成氨态氮的挥发,浸取出的NH4^+-N反而比不煮沸时为低,为了解决这一问题,进行了不同的保温静置、水浴加热等处理,浸取出来的铵态氮均未显著增加,采取酸化KCl溶液后再进行煮沸,显著地提高了NH4^ -N的浸出量,且浸出结果与作物吸氮量有密切的相关性。  相似文献   

18.
【目的】选择描述黄土高原石灰性土壤氮素矿化过程的合适模型,明确可溶性有机氮(soluble organic nitrogen,SON)对矿化模型拟合效果的影响。【方法】采用长期间隙淋洗淹水培养方法,研究了10种黄土高原主要农业土壤在包括和不包括浸提液中有机氮的情况下氮素矿化过程,在此基础上选择①有效积温式;②一级反应式(One-pool模型);③两部分一级反应式(Two-pool模型);④带常数项一级反应式(Special模型)对这两种情况下的氮素矿化曲线进行拟合。【结果】发现4种模型在拟合包括SON的氮素矿化曲线时效果更好。从模型均方根误差、估计标准误差、参数误差以及与作物吸氮量的相关分析等比较发现,One-pool模型拟合效果最差,Two-pool模型和Special模型优于有效积温模型,而Special模型参数精度及与作物吸氮量的相关性更高。【结论】综合比较认为Special模型能较好反映石灰性土壤在淹水条件下的氮素矿化过程。  相似文献   

19.
稻-麦轮作体系中有机氮与无机氮的去向研究   总被引:7,自引:0,他引:7  
【目的】在中国多熟制农作生态系统条件下,农田中氮素的低有效度是阻碍作物高产和导致环境问题的重要因素。本项研究旨在跟踪稻麦轮作体系中化学氮肥与有机作物残茬(专指作物地上部秸秆)的氮素去向,为农田氮素的可持续管理提供理论依据。【方法】采用随机区组设计的田间多重复小区内设置15N同位素示踪微区的连续跟踪试验的方法。【结果】在施用化学氮肥的基础上无论作物残茬是取出还是还田,肥料对作物吸氮的贡献率为17.17%(16.55%—17.79%),而施用作物残茬的相应值为12.01%,即作物吸氮有82.83%或87.99%来源于土壤氮库。化学氮肥和作物残茬的作物氮素回收显示截然不同的模式:作物对化肥氮的回收呈现一次性特征,即施肥后第1季的氮回收量占到总回收氮量的92.04%,与之相应单施作物残茬区的第1季作物15N回收率为总回收率的38.03%。表明化肥氮绝大部分在第1季为作物回收,作物残茬氮则有较长的后效;第1季结束时,化学氮肥区和作物残茬区的土壤15N残留率分别为33.46%(两种残茬管理方式的平均值)和85.64%。残茬氮的土壤残留远远高于化肥氮的残留率;在第6季(化学氮肥区)或第5季(作物残茬区)结束时,化肥区与残茬区的作物+土壤的总15N回收率有显著差异(分别为64.38%和79.11%),而在施用化学氮肥的基础上加入或不加作物残茬对肥料氮的作物+土壤回收率则影响很小。【结论】化学肥料氮与作物残茬氮相比,前者对作物吸氮而言更为快速有效。而与之相反,作物残茬氮则对提高土壤供氮能力有更多贡献,因为作物残茬氮进入土壤有机质库的量高于化肥氮。为此,在农业生产中应实行化学氮肥与有机氮源的合理配合使用。  相似文献   

20.
采集了30组水田改种蔬菜、苗木、果树和茶树的成对表层土壤样品,采用氯化钾提取土壤初始矿质氮和利用好气培养方法测定可矿化氮,研究了水田改为蔬菜地、苗木地、果园和茶园后土壤氮素供应能力的变化。结果表明,水田改种旱作后,土壤初始矿质氮在蔬菜地呈现显著增加,在苗木地呈现明显下降,在果园略有下降,在茶园中变化不大。水田改为蔬菜地、苗木地、果园和茶园后,土壤可矿化氮呈普遍下降;土壤中可利用总氮(初始矿质氮和可矿化氮之和)也呈现显著下降。分析认为,水田土壤的供氮潜力一般大于相邻旱地土壤,改旱后土壤供氮能力的下降主要与土壤总氮下降有关,土壤酸化对其也有一定的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号