首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
【目的】建立华北暖温带华北落叶松与白桦针阔混交林树高与胸径关系的非线性混合效应模型,为研究针阔混交林中不同树种相互作用及其生长发育规律提供科学依据。【方法】以河北省塞罕坝机械林场的华北落叶松与白桦针阔混交林为研究对象,基于83块30 m×30 m的标准地调查数据,首先选取5个具有生物学意义的非线性树高与胸径关系基础模型进行拟合,确定最优基础模型;其次通过相关分析确定影响树高生长的主要因子;最后基于最优基础模型和主要因子建立包含哑变量的华北落叶松与白桦针阔混交林树高与胸径关系预测模型。【结果】在5个候选非线性树高与胸径关系模型中,Richard模型具有最好的拟合结果,其模型确定系数(R2=0.918 6)最大,均方根误差(RMSE=2.405 8)及绝对误差(Bias=0.194 5)最小;通过相关分析确定海拔和林分断面积与树高生长均在P 0.01水平上呈现显著性;基于基础模型构建了包含哑变量及主要影响因子的不同树种树高与胸径关系混合效应模型,当随机效应参数作用在林分断面积上时,模型预测精度较高。【结论】基于主要影响因子和包含哑变量的非线性混合效应树高与胸径关系预测模型,能够有效解决混交林中树种及主要因子对树高与胸径关系的影响,提高了预测模型的适用性及预测精度,为混交林森林质量精准提升提供科学依据。  相似文献   

2.
【目的】通过建立含立地类型哑变量的湖南省金洞林场闽楠人工林单木树高曲线模型,为湖南省金洞林场闽楠人工林的目标树经营和生长预估提供理论依据。【方法】以湖南省金洞林场为研究区域,基于18块闽楠人工林固定样地2019年调查数据,选取了11个具有代表性的树高曲线模型对闽楠人工林树高-胸径关系进行了拟合,从中筛选出了拟合效果最好的模型作为构建哑变量模型的基础模型;通过对18块固定样地进行立地因子调查,采用数量化方法Ⅰ,以各林分的平均木优势高为因变量,立地因子为自变量,对立地因子进行评价,得到影响显著的立地因子,并通过划分等级和聚类分析来划分立地类型;将立地类型做为哑变量添加到基础模型参数及不同组合中,构建基于立地类型哑变量的金洞林场闽楠人工林单木树高曲线模型。【结果】在11个基础模型中,拟合的树高曲线最优基础模型为Weibull方程,其决定系数为0.780 4最大,平均绝对误差(MAE)为1.770 9,均方根误差(RMSE)为2.701 3最小。以Weibull方程作为基础模型,在构建的含立地类型的哑变量模型中,将哑变量添加在参数c上效果最优,决定系数为0.834 9,平均绝对误差(MAE)为1.529 5,均方根误差(RMSE)为2.131 6。对比于基础模型,决定系数提升了6.98%,平均绝对误差(MAE)降低了13.6%,均方根误差(RMSE)降低了26.7%。【结论】含立地类型哑变量的金洞林场闽楠人工林单木树高曲线模型拟合效果优于基础模型,并且具有更高的适用性,能反映不同立地类型下的树高、胸径生长差异,可以为湖南省金洞林场闽楠人工林的目标树经营和生长预估提供理论依据。  相似文献   

3.
基于非线性分位数回归的落叶松树干削度方程   总被引:2,自引:0,他引:2  
【目的】采用非线性分位数回归法构建落叶松树干削度方程,比较分析不同分位数(τ=0. 1、0. 2、0. 3、0. 4、0. 5、0. 6、0. 7、0. 8、0. 9)及其组合分位数的拟合及检验结果,以提高模型预测精度。【方法】基于大兴安岭落叶松干形数据,采用Koenker和Bassett提出的分位数回归法,利用SAS软件的NLP拟合基于各分位数的Max-Burkhart分段削度方程,选取确定系数(R2)、平均误差(MAB)、均方根误差(RMSE)、相对误差(MPB)和预估精度(P%)对削度方程进行对比分析。【结果】1) Max-Burkhart分段削度方程在9个不同分位点(τ=0. 1、0. 2、0. 3、0. 4、0. 5、0. 6、0. 7、0. 8、0. 9)均能收敛,说明分位数回归可以提供许多不同分位数的估计结果,进而可预测任意分位点处干形的变化趋势; 2)基本模型和分位点处(τ=0. 4、0. 5、0. 6)的分位数模型拟合结果相近,分位数组合(3、5、7、9)可提高模型拟合效果,其中基于3个分位数组合(τ=0. 3、0. 5、0. 7)、5个分位数组合(τ=0. 3、0. 4、0. 5、0. 6、0. 7)、7个分位数组合(τ=0. 1、0. 2、0. 4、0. 5、0. 6、0. 8、0. 9)、9个分位数组合(τ=0. 1、0. 2、0. 3、0. 4、0. 5、0. 6、0. 7、0. 8、0. 9)在分位数组合相同时分别表现最优; 3)模型检验表明,大多数分位数回归组合的检验统计量都优于基本模型和各分位数模型,相对于基本模型,5个分位数组合(τ=0. 3、0. 4、0. 5、0. 6、0. 7)模型的MPB、MAB、RMSE分别降低13. 9%、13. 9%、13%。【结论】分位数回归能够提高模型预测精度,基于5个分位数组合的Max-Burkhart分段削度方程在拟合及检验统计量等方面表现较好,适合于大兴安岭落叶松树干削度预测。  相似文献   

4.
【目的】在多树种多层次针阔混交林中,基于贝叶斯混合效应模型法构建树高与胸径关系的混合效应模型,以提高预测模型参数稳定性,为揭示混交林多树种生长规律、资源分配差异及森林质量精准提升提供科学依据。【方法】以河北省塞罕坝机械林场华北落叶松和白桦针阔混交林为研究对象,基于112块标准地(30 m×30 m)调查数据,选取6个包含不同林分因子的理论方程作为构建混交林不同树种树高与胸径关系的基础模型,选择出拟合精度较高的模型,分别采用两水平非线性混合效应模型法和贝叶斯混合效应模型法构建立包含哑变量的多树种树高与胸径关系模型。【结果】包含林分优势高和林分断面积组合变量的Richards方程拟合效果最好,模型确定系数(R~2)、均方根误差(RMSE)和绝对误差(Bias)分别为0849 5、2378 6和0365 4;贝叶斯混合效应模型法拟合精度略高于传统非线性混合效应模型法:基于传统非线性混合效应模型法的华北落叶松树高与胸径关系模型的RMSE和Bias分别为0930 4和0103 4,白桦树高与胸径关系模型的RMSE和Bias分别为0982 7和0112 6;基于贝叶斯混合效应模型法的华北落叶松树高与胸径关系模型的RMSE和Bias分别为0910 5和0096 8,白桦树高与胸径关系模型的RMSE和Bias分别为0963 3和0100 2。【结论】基于贝叶斯混合效应模型法构建的非线性混合效应模型,充分考虑混交林多树种树高与胸径关系模型参数的不确定性,模型预测效果更具可靠性和稳定性。  相似文献   

5.
基于非线性混合模型的针阔混交林树高与胸径关系   总被引:4,自引:0,他引:4  
[目的]建立多树种、多层次混交林的树高-胸径生长关系非线性混合效应模型,为研究混交林多树种生长规律提供参考依据。[方法]以河北省塞罕坝国家森林公园华北落叶松-白桦针阔混交林为研究对象,基于87块标准地(20 m×30 m)的4 953株华北落叶松和3 608株白桦单木数据,选取13个具有代表性且具有生物学意义的树高-胸径模型进行拟合,从中筛选出拟合优度较高的模型作为构建混合效应模型的基础模型,并在混合效应模型中加入哑变量以解决样地内不同树种带来的差异。[结果]1)在13个树高-胸径候选模型中,模型13的确定系数最大(R2=0.915 7),绝对误差(Bias=1.200 6)、均方根误差(RMSE=0.129 1)最小,其拟合效果较好。2)以模型13为基础模型建立华北落叶松-白桦混交林树高-胸径关系混合效应模型,华北落叶松混合模型确定系数(R2)为0.926 4,AIC值为319.7,均方根误差(RMSE)值1.070 8,绝对误差(Bias)为0.084 1;白桦混合模型确定系数(R2)为0.918 7,AIC值为297.6,均方根误差(RMSE)为1.102 2,绝对误差(Bias)为0.070 5,表明模型拟合效果较好。3)利用所构建的混合效应模型,以2 cm为一个径阶对华北落叶松和白桦树高进行预测,其树高预测结果与测量值分布一致,表明包含树种哑变量混合效应模型中的参数充分反映出相同径级树高的变异趋势,提高了混交林树高-胸径模型预估精度。[结论]包含哑变量的混合效应生长模型可解决混交林中样地间及样地内树种对树高-胸径生长关系的影响,提高模型精度及适用性,为该地区提高针阔混交林经营水平及经营效果提供科学支撑。  相似文献   

6.
《林业科学》2021,57(5)
【目的】构建树冠最大外部轮廓非线性混合效应模型和非线性分位数回归模型,为准确预测树冠生长发育规律及预估生产力提供科学依据。【方法】以河北省塞罕坝机械林场华北落叶松人工林为研究对象,基于58株解析木数据和1 789个枝条解析数据,利用幂函数、修正Kozak方程、修正Weibull方程选取基础模型,构建华北落叶松人工林树冠外部轮廓非线性混合效应模型和非线性分位数回归模型。【结果】在幂函数、修正Kozak方程和修正Weibull方程中,幂函数拟合树冠外部轮廓效果较好,作为树冠外部轮廓基础模型;林分年龄(Age)、冠长(CL)、胸径(DBH)、树高(HT)、冠高比(CHR)、高径比(HDR)对树冠外部轮廓影响较大。在混合效应模型中,两水平混合效应模型优于单水平混合效应模型,可明显提高模型拟合精度,HDR相关的参数a6考虑样地效应,相对着枝深度(RDINC)、CHR相关的参数a4、a5考虑样木效应,模型确定系数(R2)为0.873,均方根误差(RMSE)为0.319 m,平均相对误差(MRE)为6.642 m。在分位数回归模型中,当分位数q=0.90时模型曲线最接近树冠最大外部轮廓,R2为0.672。【结论】混合效应模型拟合精度较高,可准确描述树冠最大枝条的平均趋势。分位数回归模型可确定树冠最外部轮廓,在预测条件均值之外的研究中发挥重要作用。  相似文献   

7.
广东主要乡土阔叶树种单木生长模型构建   总被引:2,自引:0,他引:2  
以广东主要乡土阔叶树种樟树(Cinnamomum camphora)、木荷(Schima superba)和枫香(Liquidambar formosana)不同径阶各90株伐倒木为研究对象,以年龄为自变量分起源进行建模,并对其生长规律进行研究。结果表明:(1)在现有立地水平下,广东省樟树、木荷、枫香人工起源的胸径自然生长极值依次为47.8、56.6和50.3 cm,天然起源的胸径自然生长极值依次为44.8、52.6和43.4 cm;人工起源的树高自然生长极值依次为17.0、21.5和20.3 m,天然起源的树高自然生长极值依次为13.3、20.1和18.1 m;人工起源的材积自然生长极值依次为1.437、2.161和3.308 m3,天然起源的材积自然生长极值依次为1.177、1.572和1.366 m3;人工起源的胸径、树高和材积自然生长极值均比天然的要高。(2)拟合出樟树人工林胸径、树高和材积的最优生长模型分别为Schumacher、Gompertz和Schumacher模型,樟树天然林胸径、树高和材积的最优生长模型分别为Gompertz、Richards和Logistic模型;木荷人工林胸径、树高和材积的最优生长模型分别为Schumacher、Richards和Logistic模型;木荷天然林胸径、树高和材积的最优生长模型分别为Gompertz、Schumacher和Logistic模型;枫香人工林胸径、树高和材积的最优生长模型分别为Gompertz、Logistic和Schumacher模型;枫香天然林胸径、树高和材积的最优生长模型均为Logistic模型。(3)模型检验采用樟树、木荷、枫香的胸径、树高和材积最优模型的理论值与实际值进行线性拟合,模型拟合效果都非常显著;胸径的R~2值在0.669 6~0.874 5之间,树高的R~2值在0.580 5~0.873 7之间,材积的R~2值在0.614 8~0.734 7之间。  相似文献   

8.
以湖南省攸县黄丰桥林场Worldview-2影像和地面样地调查数据为基础,采用Mean shift算法对影像进行多尺度分割,提取杉木人工林林木冠幅信息,共提取有效林木冠幅227个,并对提取的冠幅边界信息进行平滑处理。分析调查数据中实测冠幅与影像提取冠幅之间的相关性,结合实测胸径、树高与冠幅的关系,应用曲线估计、非线性联立方程组以及基于哑变量的非线性联立方程组分别建立树高和胸径的最优估算模型,并进行了精度评价。结果表明:将树高与胸径作为哑变量,并进行数量化分级建立的影像冠幅与胸径、树高的非线性误差变量联立方程组模型的拟合效果要优于其他2种方法,树高和胸径模型决定系数R2H和R2D分别为0.899和0.913。模型的适用性检验表明,模型的变动系数、平均百分标准误差均在10%以内,具有较强的稳健性。  相似文献   

9.
【目的】对湖南省现有的杉木二元立木材积模型进行误差分析,建立新杉木二元立木材积模型,为湖南省杉木材积的精准预测提供理论依据。【方法】以湖南省杉木人工林为研究对象,采用配对t检验的方法对原二元立木材积模型进行检验。以山本材积式为基础模型构建固定参数模型、可变参数模型,以区域作为随机变量、哑变量构建混合效应模型和哑变量模型,对拟合结果进行对比分析。【结果】1)对原二元立木材积模型进行配对t检验,结果表明湖南现有的杉木材积模型与实际材积计算值存在显著差异;2)固定参数模型和可变参数模型的确定系数R2都在0.95以上。对检验数据进行检验,模型的总相对偏差(TRB)和平均系统偏差(MSB)均在±3%范围内,利用分径阶的方法进行检验,其固定参数模型在10、22和24 cm径阶的总相对偏差与平均系统偏差均超出±3%范围,其在24 cm径阶的总相对偏差与平均系统偏差均超出±7%,而可变参数模型在各径阶的偏差较小;3)混合效应模型与哑变量模型的确定系数均在0.95以上,从整体上看,哑变量模型的总相对偏差和平均系统偏差趋于0,而混合效应模型在10、12和24 cm径阶的总相对偏差均超出±3%范围。【结论】...  相似文献   

10.
【目的】毛竹立地质量评价是揭示毛竹生长与其立地因子间的关系的重要方法,对其进行研究是科学培育毛竹林的基础。【方法】对福建省永安市毛竹林的胸径、竹高进行了大样本调查分析,采用引入哑变量分级的方法,建立了毛竹的竹高-胸径曲线模型;探讨了毛竹胸径与其立地的气候因子、地形地貌因子及土壤因子间的关系,构建了回归模型。【结果】1)拟合毛竹竹高-胸径曲线的最优模型为逻辑斯蒂模型,引入哑变量分级的方法可以显著提高模型精度。引入哑变量分级的方法与未分级的方法相比,分级后模型的决定系数由0.548提高到0.901。依据模型实验区毛竹林可以分为5个立地等级。2)主成分分析表明,实验区影响毛竹生长的最重要气候因子为1月均温和出笋期降水量。3)对福建省毛竹胸径起影响的地形地貌因子重要性排序为:土层厚度坡位。可以用线性模型拟合胸径-地形地貌因子线性模型:D=0.119×(Pos)+0.803×(Thc)+8.136(R~2=0.554)。4)在土壤因子中,重要性排序为:全氮有机质碱解氮。【结论】采用引入哑变量分级的方法可显著提高毛竹立地质量评价的精度,1月均温、出笋期降水、土层厚度、坡位、坡度、全氮、有机质、碱解氮是与毛竹生长相关的主要气候和立地因子。研究结果为毛竹立地质量评价及生产潜力预估模型的构建提供了新的方法。  相似文献   

11.
湖南栎类天然混交林优势木树高曲线哑变量模型研究   总被引:2,自引:0,他引:2  
《林业资源管理》2017,(4):22-29
使用13种具有代表性的树高-胸径模型对湖南栎类天然混交林优势木树高-胸径关系进行了拟合,从中筛选出拟合度较高的模型作为基础模型,以进一步构建含林分类型、立地类型哑变量的天然混交林优势木树高曲线模型。研究结果表明:平均优势木模型要优于最高优势木模型,利用哑变量模型拟合的效果要明显优于基础模型;n林分类型哑变量和立地类型哑变量平均优势木模型结构相同,都是H=1.3+(sun from n to i=1)a_i×Z_i×D_g/(D_g+1)+b×D_g,其确定系数分别为0.711 9和0.977 5,立地类型哑变量模型要优于林分类型哑变量模型。利用哑变量模型可提高模型精度及适用性,有助于建立区域性通用生物数学模型,并为全国栎类天然混交林立地质量评价的研究提供科学支撑和参考依据。  相似文献   

12.
沿坝地区华北落叶松胸径-树高生长模型的研究   总被引:1,自引:0,他引:1  
旨在研究沿坝地区华北落叶松胸径-树高的生长状况,以北沟林场不同林龄的华北落叶松纯林为研究对象,采用实地测量和解析的方法获取华北落叶松的胸径、树高实测数据,利用SPSS分别对不同模型进行拟合.经各项指标检验,初步筛选拟合精度较好的曲线模型H=1.929D0.734(R2=0.939)和H=1.462+1.025D-0.012D2(R2=0.927)。将检验样木代回两个模型回归检验,进行树高的残差分析,其散点分布均匀,证明了两个模型的可靠性。运用各项误差分析指标判断,最终确定华北落叶松在本地域最佳胸径-树高模型为:H=1.929D0.734。模型的建立为树高的测量提供了捷径,有利于森林资源的清查工作。  相似文献   

13.
【目的】建立含哑变量的林分蓄积量估测模型,分析哑变量在香格里拉高山松林分蓄积量模型中的意义与作用。【方法】以香格里拉为研究区,基于2008—2009年3幅TM遥感影像与2008年抽样控制样地数据,对香格里拉高山松林分神经网络模型与考虑龄组构造的哑变量神经网络模型两种类型建立蓄积量遥感估测模型,并进行精度评价。对比模型的估测值与实测值,计算模型残差,检验各龄组残差均值与0之间的差异性;同时对模型的预测值结果进行组间均值的差异性检验,以此作为确定龄组分类形式构建哑变量的标准与依据。【结果】2个模型的独立样本检验结果表明,引入哑变量的神经网络估测模型比神经网络模型拟合效果要好,其决定系数要高于神经网络模型,决定系数从0.516提高到0.783。模型预估精度从神经网络模型的66.3%提高至哑变量模型的74.8%,估算误差优于神经网络模型。【结论】根据模型的残差差异性结果得出,哑变量模型可以在一定程度上解决在估测幼龄林、中龄林蓄积量低值高估的问题;可见引入哑变量估测森林蓄积量的方法是相对有效的。  相似文献   

14.
浙江省毛竹竹秆生物量模型   总被引:1,自引:0,他引:1  
【目的】通过样地实测获取毛竹竹秆生物量数据,研建基于不同变量的生物量模型并作比较分析,确定适宜的预测变量及模型,以精准估计毛竹竹秆生物量,为浙江省毛竹林立地质量评价和高效培育提供依据。【方法】从浙江省东、南、西、北、中不同区域选择10个县市采伐216株样竹,并进行样竹测量。引入胸径(D)、竹龄(A)和胸高竹节长(L)变量,利用全部样本信息,基于3个不同异速生长方程拟合竹秆生物量模型。采用似然估计法判定误差结构,确定模型拟合方法。通过3个模型的拟合优度及预估精度的比较分析,确定适用于浙江省的毛竹竹秆生物量模型。【结果】竹秆含水率逐年下降,Ⅴ度竹的平均含水率较Ⅰ度竹低24%;竹秆生物量占地上部分生物量比重逐年增加,且Ⅴ度竹占比超过80%;利用似然估计法分析确定生物量模型误差结构为乘积型,应采用对数转换的线性回归进行模型拟合;经检验,基于胸径的一元模型(M_1)W=0.104 6D~(2. 257 8)确定系数(R_a~2)仅为0.774 2,而基于胸径-竹龄的二元模型(M_2)W=0.052 0D~(2. 205 2) A~(0. 445 7)和胸径-竹龄-胸高竹节长的三元模型(M_3)W=0.026 5D~(2. 143 9) A~(0. 449 5) L~(0. 262 9)确定系数均达到0.89,且模型M_3的估计值标准差(SEE)和平均系统误差(MSE)均为最小;3个对数回归模型在不同径阶范围的预估精度均较高,预估偏差接近于0,其中模型M_3在不同径阶的预估效果均为最佳。【结论】由于模型校正后预估精度有所下降,故本研究在进行对数模型反对数转换时不作校正。二元和三元模型比一元模型具有更高的拟合优度和预估精度,确定基于胸径-竹龄-胸高竹节长的模型M_3为最佳模型,即W=0.026 5D~(2. 143 9) A~(0. 449 5) L~(0. 262 9)。  相似文献   

15.
以北京市最重要的阔叶树种杨树(Populus)为研究对象,利用1 678株样木的材积测量数据,通过采用哑变量模型和误差变量联立方程组方法,建立了毛白杨(P.tomentosa)、速生杨(P.×euramericana)和加拿大杨(P.×canadensis)3个树种(组)的相容性二元立木材积方程、胸径和地径一元立木材积方程、树高胸径回归模型及地径胸径回归模型,并分析了不同树种之间的差异。结果表明:二元立木材积方程的平均预估误差均在2%以内,胸径一元材积方程和地径一元材积方程的平均预估误差也大都在3%以内,达到了立木材积表的编制精度要求。所建模型可为北京市杨树林的蓄积量估计提供准确的计量依据。  相似文献   

16.
【目的】以人工落叶松为例,探索基于无人机激光雷达(Unmanned aerial vehicle LiDAR, UAVLiDAR)点云的单木探测提取树高的误差对胸径反演的影响并校准,实现单木参数(胸径、树高)的准确度量,为大尺度高效便捷估测单木参数提供新的思路。【方法】以东北林业大学帽儿山实验林场13块4个龄组(幼龄林、中龄林、近熟林和成熟林)的落叶松人工林样地UAV-LiDAR数据及野外调查数据为数据源,基于UAVLiDAR点云的单木探测提取的树高,分别以普通最小二乘法(Ordinary least squares, OLS)和3种误差变量回归(标准主轴(Standard major axis, SMA)、远程主轴(Ranged major axis, RMA)和极大似然估计(Maximum likelihood estimate, MLE))构建胸径-树高模型,研究探测误差对各龄组人工落叶松胸径反演的影响并校准。【结果】利用UAV-LiDAR点云的单木探测提取4个龄组树高的相对均方根误差(rRMSE),误差范围为3.41%~5.14%;在胸径-树高模型预测方面,3种误差变量回归均优...  相似文献   

17.
为实现杉木林蓄积量调查与估测的精准量化,基于林业数表编制作业获取的标准立地245株杉木树高、冠幅、胸径和带皮材积等林业资源调查数据,采用非线性估计法建立11种一元立木材积模型,通过求解模型参数并进行优异比较,渐进拟合出最优的胸径-树高-冠幅三元材积模型。结果表明:1)无论树高、胸径还是冠幅,11种单因子变量估测立木材积的曲线模型均以幂函数的检验参数最优。2)基于模型确定系数判定拟合模型优劣呈现三元>二元>一元。其中,包含树高、胸径和冠幅三元非线性最优材积模型确定系数0.988,总相对误差0.087%,总系统误差0.57%,模型预估精度99.40%。3)胸径-树高-冠幅三元材积模型充分集成了林分结构参数信息,其高精度低误差特点对林业数表编制、森林蓄积量监测具有重要参考价值。  相似文献   

18.
七姊妹山自然保护区黄杉年龄胸径树高的相关性研究   总被引:4,自引:2,他引:2  
为深入探究林木的生长规律、更好地保护珍稀树种,对七姊妹山黄杉群落进行了调查。选用7种常见的回归模型对黄杉的胸径-年龄、树高-年龄、树高-胸径之间关系进行分析。结果显示:黄杉的胸径、树高与树龄成正相关,树高与胸径也成正相关,三次曲线模型可以很好地表达黄杉胸径-年龄和树高-年龄关系,表达式为:y=-0.0001x3+0.011x2+0.179x+4.44及z=0.00007x3-0.015x2+1.105x-10.81;幂函数z=1.778y0.659是描述黄杉树高-胸径关系的最优模型,并对其可靠性进行了检验,结果显示:实测值和预测值无显著差异(P0.05),表明所选的最优方程可以用来估算黄杉年龄、胸径和树高的值。本文可为该区域黄杉生长规律和预测林木蓄积量研究提供理论支撑。  相似文献   

19.
西南桦人工林单株生物量的回归模型   总被引:2,自引:0,他引:2  
通过对林分进行每木调查,以D-H曲线进行平均木选择,分径阶伐倒平均木获得生物量数据。以幂指数模型为基础对西南桦人工林的单株生物量模型进行了模拟,以胸径(D)、树高(H)、1/2树高处直径(D1/2)、胸径平方乘树高(D2H)等作自变量,所选择的树干、树枝、树叶、树根的回归模型分别为:Wt=0.563D2.631、Wb=0.0003D3.6499、Wl=0.0022D2.6063、Wr=1.4×10-7H5.9972。以胸径(D)、树高(H)、1/2树高处直径(D1/2)、胸径平方乘树高(D2H)等作自变量的回归模型均可作为全树生物量预测模型。  相似文献   

20.
分别以新疆天山的西部昭苏林场、东部哈密林场和中部板房沟林场的各10棵云杉标准解析木的树高、年龄和胸径数据为研究基础,选用6种常见胸径-树高、胸径-年龄和年龄-树高生长曲线建立回归方程。结果表明,(1)在各林场中,6条曲线回归模型均达到极显著性水平(P0.01),各方程可达到对该区域胸径、树高和年龄的预测;(2)昭苏林场、哈密林场和板房沟林场树高-胸径的最优曲线方程为幂函数模型,关系式分别为D=0.708 4H~(1.271 3)、D=1.017H~(1.18)、D=0.686 6H~(1.316 7);(3)昭苏林场、哈密林场和板房沟林场树高-年龄的最优曲线方程为三次曲线模型,其回归方程分别为A=0.012 7H~3-0.682 9H~2+14.361H-49.333,A=0.028 2H~3-1.015 7H~2+15.263H-21.557,A=-0.029 2D~3+1.644 8D~2-25.589D+163.26;(4)昭苏林场、哈密林场和板房沟林场年龄-胸径的最优曲线方程为三次曲线模型,关系式分别为A=-0.000 8D~3+0.11D~2-3.050 4D+70.078,A=-0.001 9D~3+0.189 1D~2-2.296 2D+47.431,A=-0.003D~3+0.307 6D~2-7.922 7D+104.37。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号