首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly selective enzyme-linked immunosorbent assay (ELISA) has been developed for the quantitative detection of the Cry1Ac protein expressed in transgenic cotton. Two Cry1Ac-specific monoclonal antibodies (MAb), Kbt and 158E6, were developed and selected to form a sandwich format ELISA. The MAb Kbt was used as a capture antibody, and 158E6 was conjugated with horseradish peroxidase and served as a detection antibody. The assay was optimized and validated with different cotton matrices. Tissues were extracted with phosphate-buffered saline containing 0.05% Tween 20 and 1% polyvinylpyrrolidone. The extract was then treated with trypsin to truncate full-length Cry1Ac into the core toxin for quantitation. The resulting assay has good accuracy and precision with a validated limit of quantitation ranging from 0.1 to 0.375 mug/g dry weight of cotton tissues. This assay is highly specific for Cry1Ac protein and has no cross-reactivity with the nontarget proteins tested such as Cry1Ab and Cry1F.  相似文献   

2.
Immunoblotting assays using commercial antibodies were established to investigate the unexpected persistence of the immunoactive Cry1Ab protein in the bovine gastrointestinal tract (GIT) previously suggested by enzyme-linked immunosorbent assay (ELISA). Samples of two different feeding experiments in cattle were analyzed with both ELISA and immunoblotting methods. Whereas results obtained by ELISA suggested that the concentration of the Cry1Ab protein increased during the GIT passage, the immunoblotting assays revealed a significant degradation of the protein in the bovine GIT. Samples showing a positive signal in the ELISA consisted of fragmented Cry1Ab protein of approximately 17 and 34 kDa size. Two independent sets of gastrointestinal samples revealed the apparent discrepancy between the results obtained by ELISA and immunoblotting, suggesting that the antibody used in the ELISA reacts with fragmented yet immunoactive epitopes of the Cry1Ab protein. It was concluded that Cry1Ab protein is degraded during digestion in cattle. To avoid misinterpretation, samples tested positive for Cry1Ab protein by ELISA should be reassessed by another technique.  相似文献   

3.
Cry34Ab1 and Cry35Ab1 proteins, identified from Bacillus thuringiensis strain PS149B1, act together to control corn rootworms. Transgenic corn lines coexpressing the two proteins were developed to protect corn against rootworm damage. Large quantities of the two proteins were needed to conduct studies required for assessing the safety of this transgenic corn crop. Because it was technically infeasible to obtain sufficient quantities of high purity Cry34Ab1 and Cry35Ab1 proteins from the transgenic corn plants, the proteins were produced using a recombinant Pseudomonas fluorescens (Pf) production system. The two proteins from both the transgenic corn and the Pf were purified and characterized. The proteins from each host had the expected molecular mass and were immunoreactive to specific antibodies in enzyme-linked immunosorbent assay and Western blot analysis. Data from N-terminal sequencing, tryptic peptide mass fingerprinting, internal peptide sequencing, and biological activity provided direct evidence that the Cry34Ab1 and Cry35Ab1 proteins produced in Pf and transgenic corn were, respectively, comparable or equivalent molecules. In addition, neither protein had detectable glycosylation regardless of the host.  相似文献   

4.
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.  相似文献   

5.
An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.  相似文献   

6.
The objective of the study was to track the fate of recombinant Cry1Ab protein in a liquid manure field trial when feeding GM maize MON810 to dairy cows. A validated ELISA was applied for quantification of Cry1Ab in the agricultural chain from GM maize plants, feed, liquid manure and soil to crops grown on manured fields. Starting with 23.7 μg of Cry1Ab g(-1) dry weight GM maize material, a rapid decline of Cry1Ab levels was observed as 2.6% and 0.9% of Cry1Ab from the GM plant were detected in feed and liquid manure, respectively. Half of this residual Cry1Ab persisted during slurry storage for 25 weeks. After application to experimental fields, final degradation of Cry1Ab to below detectable levels in soil was reported. Cry1Ab exhibited a higher rate of degradation compared to total protein in the agricultural processes. Immunoblotting revealed a degradation of the 65 kDa Cry1Ab into immunoreactive fragments of lower size in all analyzed materials.  相似文献   

7.
Biogas plants fuelled with renewable sources of energy are a sustainable means for power generation. In areas with high infestation levels with the European corn borer, Ostrinia nubilalis (Hbn.), it is likely that transgenic Bt-maize will be fed into agricultural biogas plants. The fate of the entomotoxic protein Cry1Ab from MON810 maize was therefore investigated in silage and biogas production-related materials in the utilization chains of two farm-scale biogas plants. The Cry1Ab content in silage exhibited no clear-cut pattern of decrease over the experimental time of 4 months. Mean content for silage was 1878 +/- 713 ng Cry1Ab g(-1). After fermentation in the biogas plants, the Cry1Ab content declined to trace amounts of around 3.5 ng g(-1) in the effluents. The limit of detection of the employed ELISA test corresponded to 0.75 ng Cry1Ab g(-1) sample material. Assays with larvae of O. nubilalis showed no bioactivity of the reactor effluents. The utilization of this residual material as fertilizer in agriculture is therefore deemed to be ecotoxicologically harmless.  相似文献   

8.
The fate of the insecticidal Cry1Ab protein from crop residues (leaves and roots) of the transgenic maize variety MON810 was studied in the presence and absence of two earthworm species (Lumbricus terrestris, Aporrectodea caliginosa; separate incubations) in soil microcosms. The recombinant Cry1Ab protein was quantified using a highly sensitive ELISA. Control microcosms received corresponding non-transgenic plant material. All earthworms survived in the microcosms over a period of 5 weeks, irrespective of whether they received MON810 or non-transgenic plant material. Weight loss was observed for both earthworm species, independent of the plant material or transgenic modification. A strong decline of immunoreactive Cry1Ab in plant residues (mean initial concentration approx. 5000 ng g−1) of MON810 was observed in all treatments, but in microcosms with earthworms this decline was significantly higher with less than 10% of the initial Cry1Ab concentration remaining after 5 weeks. Cry1Ab concentrations in casts were only 0.1% of those found in remaining plant material of the respective microcosms. No immunoreactive Cry1Ab proteins were found in earthworm tissues (threshold of detection: 0.58 ng g−1 fresh weight). No further decline was found for Cry1Ab concentrations in casts of A. caliginosa during a subsequent period of 3 months of incubation in bulk soil (<0.1 ng g−1) after removal of the earthworms from the microcosms, while in casts of L. terrestris the concentration decreased from 0.4 to below 0.1 ng g−1. In conclusion, this study demonstrates that earthworms enhance the decline of immunoreactive Cry1Ab proteins from maize residues.  相似文献   

9.
Among allergenic foods, soybean is known as a food causing adverse reactions in allergenic patients. To clarify the validity of labeling, the specific and sensitive detection method for the analysis of the soybean protein would be necessary. The p34 protein, originally characterized to be p34 as an oil-body associated protein in soybean, has been identified as one of the major allergenic proteins and named Gly m Bd 30K. A novel sandwich enzyme-linked immunosorbent assay (ELISA) for the detection and quantification of the soybean protein in processed foods was developed using polyclonal antibodies raised against p34 as a soybean marker protein and the specific extraction buffer for extract. The developed sandwich ELISA method was highly specific for the soybean protein. The limit of detection (LOD) and the limit of quantification (LOQ) of the developed ELISA were 0.47 ng/mL (equivalent to 0.19 microg/g in foods) and 0.94 ng/mL (equivalent to 0.38 microg/g in foods), respectively. The recovery ranged from 87.7 to 98.7%, whereas the intra- and interassay coefficients of variation were less than 4.2 and 7.5%, respectively. This study showed that the developed ELISA method is a specific, precise, and reliable tool for the quantitative analysis of the soybean protein in processed foods.  相似文献   

10.
As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM insect resistant cottons quantification. All of these results indicated that our established conventional and TaqMan real-time PCR assays were applicable to detect the three insect resistant cottons qualitatively and quantitatively.  相似文献   

11.
We have developed a new immunoassay method to detect genetically modified (GM) maize and rape containing phosphinothricin-N-acetyltransferase (PAT). PAT encoded by Bialaphos resistance gene (bar) was highly expressed in soluble form in Escherichia coli BL21(DE3) and purified to homogeneity by Ni2+ affinity chromatography. A simple and efficient extraction and purification procedure of PAT from GM maize and rape was developed by means of the immunoaffinity column (IAC) as a cleanup tool. Purified polyclonal antibodies against PAT was produced and coupled covalently to CNBr-activated Sepharose 4B. Both the binding conditions and elution protocols were optimized. The IAC was successfully employed to isolate and purify the PAT from the various tissues of GM maize (Bt11 and Bt176) and rapes (MS1/RF1 and MS8/RF3). Enzyme linked immunosorbent assay (ELISA) procedures were established further on to measure the PAT protein. GM maize cannot be differentiated from non-GM maize by ELISA. But IAC-ELISA allowed 0.5% GMOs to be detected in MS1/RF1 and MS8/RF3 and 10% GMOs to be detected in Bt11 and Bt176, which makes this method an acceptable method to access PAT protein in GM rapes and maize.  相似文献   

12.
A procedure for the production of conjugates of soybean peroxidase (SbP) oxidized by sodium periodate and anti-mouse IgG antibody (Ab) was optimized. A sandwich chemiluminescent enzyme-linked immunosorbent assay (ELISA) for determination of mouse IgG using SbP and specific Ab was developed, and SbP-catalyzed oxidation of luminol was carried out in the absence of any enhancer. Comparison of conjugates produced by labeling Ab by soybean and horseradish peroxidases in the chemiluminescent ELISA showed that in the case of SbP a rate of emission decay formed through luminol oxidation was significantly lower. Application of the soya enzyme allowed the development of the immunoassay with improved sensitivity and a wider linear range.  相似文献   

13.
Using a highly specific antibody against aflatoxin M1, a radioimmunoassay (RIA) and an enzyme-linked immunosorbent assay (ELISA) were developed for the quantitation of M1 in milk. RIA was sensitive in the range of 5-50 ng per assay but was subject to interference by whole milk. Extraction and cleanup were therefore necessary for the detection of M1 in milk at 0.5 ng/mL. An ELISA procedure was developed by using an aflatoxin M1-carboxymethyl-horseradish peroxidase conjugate as the ligand. Competitive assays revealed that this system was relatively more sensitive for M1 than for B1, and had a much lower degree of cross-reactivity for aflatoxins B2, G1, G2, B2a, and aflatoxicol. As low as 0.25 ng M1/mL in artificially contaminated milk (raw, whole, skim) could be detected by ELISA in 3 h without extraction or cleanup. Because of its simplicity, sensitivity, and specificity, ELISA is the preferred method for monitoring aflatoxin M1 in milk.  相似文献   

14.
Despite the existence of an AOAC official method based on an enzyme-linked immunosorbent assay (ELISA) for the determination of additions of soybean proteins in meat products, its use for quantitative assessment is limited. Accordingly, a simple and inexpensive method has been developed and validated in this work. The method involves defatting the meat samples with acetone, solubilization of soybean proteins in a 30 mM Tris-HCl buffer (pH 8) containing 0.5% (v/v) 2-mercaptoethanol, and the identification of two peaks from soybean proteins in the chromatogram obtained by perfusion reversed-phase chromatography and UV detection. Determination of soybean proteins by the proposed method did not suffer from matrix interferences, with a good linear correlation up to a concentration of 12.50 mg/mL soybean proteins being observed. The proposed method was proven to be specific, precise, accurate, robust, and sensitive, making possible the detection and the quantitation of additions of 0.07% (w/w) and 0.25% (w/w), respectively, of soybean proteins in meat products (related to 1 g of initial product). The method has been applied to the determination of the soybean protein content in commercial heat-processed meat products, obtaining results that were statistically similar to those obtained by the official ELISA method but with a higher reliability and simplicity and a lower cost and analysis time.  相似文献   

15.
Degradation of Cry1Ab protein from Bt transgenic rice was examined under both aerobic and flooded conditions in five paddy soils and in aqueous solutions. The hydrolysis rate of Cry1Ab protein in aqueous solutions was correlated inversely with the solution pH in the range of 4.0 to 8.0, and positively with the initial concentration of Cry1Ab protein. Rapid degradation of Cry1Ab protein occurred in paddy soils under aerobic conditions, with half-lives ranging from 19.6 to 41.3 d. The degradation was mostly biotic and not related to any specific soil property. Degradation of the Cry1Ab protein was significantly prolonged under flooded conditions compared with aerobic conditions, with half-lives extended to 45.9 to 141 d. These results suggest that the toxin protein, when introduced into a paddy field upon harvest, will probably undergo rapid removal after the field is drained and exposed to aerobic conditions.  相似文献   

16.
This study was designed to develop a novel sandwich enzyme-linked immunosorbent assay (ELISA) for the detection and quantification of coconut milk proteins in processed foods. The developed sandwich ELISA was able to detect coconut milk proteins from various coconut milk products and did not show any cross-reactivity with 41 of 42 kinds of popularly used food ingredients, thus reflecting great specificity for coconut milk proteins. In addition, the established ELISA is highly sensitive and allowed the detection of 0.31 μg/g of coconut milk protein in complex food matrices. This proposed assay could serve as a useful tool for the detection of the presence of hidden coconut milk proteins in processed foods.  相似文献   

17.
The analysis of salbutamol in swine serum is the more practical basis for large scale surveillance programs in Taiwan. Objectives of the study were to develop a new assay and to compare with a commercially available kit in field test screens. A simple and reliable enzyme-linked immunosorbent assay (ELISA) to monitor the presence of beta-agonist, salbutamol, in 1,358 field samples of swine serum that were collected from local meat markets was described. The method proved to be suitable and sensitive for the detection of beta-agonist residues caused by growth promoting dosage. The limit of detection of the developed ELISA directly performed on diluted serum was 0.25 ng/mL. The application and the results of two ELISA kits (homemade and commercially available) for the screening of salbutamol were presented. For further confirmation, all samples that showed to be ELISA positive for salbutamol residues were analyzed by GC-MS. Adopting 1 ng/mL salbutamol as a cutoff value, the commercial beta-agonist ELISA had a sensitivity of 89.2% and a specificity of 86.7% versus GC-MS at a cutoff of 1 ng/mL. The homemade salbutamol ELISA had a sensitivity of 81.1% and a specificity of 98.6% and gave a low proportion of false-positive rate results. The reliability of the developed kit in terms of the percentage of false-positive rate results is evaluated. In conclusion, a sensitive, specific salbutamol ELISA has been developed that could serve as a rapid screening assay, and the detection of positive samples at the place of sampling can result in more effective control of the illegal use of beta-agonists.  相似文献   

18.
An indirect enzyme-linked immunosorbent assay (ELISA) by inhibition was developed for quantifying lysozyme in hen egg white (HEW), a protein of value in not only the food and pharmaceutical industries but also for poultry research. Various experimental conditions (coating, antibodies dilutions, samples dilutions, preparations, blocking agents, and incubation times) were assayed to optimize this assay to the quantification of HEW in egg white samples. HEW samples were diluted 1:3000 to avoid matrix effects, possibly resulting from lysozyme interaction with other egg white proteins. Assay linearity for lysozyme ranged from 0.38 to 4.8 mug/mL, with intra- and interassay variations of 6.8% and 7.6%, respectively, and the lower detection limit was 0.264 mug/mL. We found that lysozyme concentrations in albumen from eggs laid by a hen cohort ranged from 2.2 to 4.5 mg/mL, thus underlining interhen variability. Overall, these data present an ELISA assay that is simple, quick, sensitive, accurate, and has been specifically designed to determine lysozyme concentrations in egg white samples.  相似文献   

19.
Contamination of food products with pepsin resistant allergens is generally believed to be a serious threat to patients with severe food allergy. A sandwich type enzyme-linked immunosorbent assay (ELISA) was developed to measure pepsin resistant hazelnut protein in food products. Capturing and detecting rabbit antibodies were raised against pepsin-digested hazelnut and untreated hazelnut protein, respectively. The assay showed a detection limit of 0.7 ng/mL hazelnut protein or <1 microg hazelnut in 1 g food matrix and a maximum of 0.034% cross-reactivity (peanut). Chocolate samples spiked with 0.5-100 microg hazelnut/g chocolate showed a mean recovery of 97.3%. In 9/12 food products labeled "may contain nuts", hazelnut was detected between 1.2 and 417 microg hazelnut/g food. It can be concluded that the application of antibodies directed to pepsin-digested food extracts in ELISA can facilitate specific detection of stable proteins that have the highest potential of inducing severe food anaphylaxis.  相似文献   

20.
The ubiquitous muscle protein tropomyosin has been identified as the major shrimp allergen and is suggested to be a cross-reacting allergen. Previously, only a few methods for the detection of tropomyosin in food have been published. A quantitative sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of tropomyosin from crustaceans in foods has been developed and validated. A polyclonal rabbit antitropomyosin capture antibody and the biotinylated conjugate of the same antibody for detection were the basis for the ELISA, which was specific for crustaceans. The ELISA was able to quantitate tropomyosin in various food matrixes, had a detection limit of 1 microg/g, and cross-reacted to some extent with cockroach. Recoveries ranged from 63 to 120%, and the intra and interassay coefficients of variation were <6 and <14%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号