首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of landscape patterns on biotic communities   总被引:4,自引:0,他引:4  
  相似文献   

2.
Temporal change in fragmentation of continental US forests   总被引:1,自引:0,他引:1  
Changes in forest ecosystem function and condition arise from changes in forest fragmentation. Previous studies estimated forest fragmentation for the continental United States (US). In this study, new temporal land-cover data from the National Land Cover Database (NLCD) were used to estimate changes in forest fragmentation at multiple scales for the continental US. Early and late dates for the land-cover change data were ca. 1992 and ca. 2001. Forest density was used as a multi-scale index of fragmentation by measuring the proportion of forest in neighborhoods ranging in size from 2.25 to 5314.41 ha. The multi-scale forest density maps were classified using thresholds of 40% (patch), 60% (dominant), and 90% (interior) to analyze temporal change of fragmentation. The loss of dominant and interior forest showed distinct scale effects, whereas loss of patch forest was much less scale-dependent. Dominant forest loss doubled from the smallest to the largest spatial scale, while interior forest loss increased by approximately 80% from the smallest to the second largest spatial scale, then decreased somewhat. At the largest spatial scale, losses of dominant and interior forest were 5 and 10%, respectively, of their ca. 1992 amounts. In contrast, patch forest loss increased by only 25% from the smallest to largest spatial scale. These results indicate that continental US forests were sensitive to forest loss because of their already fragmented state. Forest loss would have had to occur in an unlikely spatial pattern in order to avoid the proportionately greater impact on dominant and interior forest at larger spatial scales.  相似文献   

3.

Context

Woodland and agricultural expansion are major causes of grassland fragmentation. Fire and rainfall play important roles in maintaining grasslands, however, fire activity has been reduced in fragmented landscapes.

Objectives

Quantify the degree to which basic landscape fragmentation metrics could be used as drivers of woody cover potential.

Methods

Woody plant percent cover was calculated between 2004 and 2008 at?>?2000 sites. At each site, we calculated these fragmentation metrics for grassland cover type (classified by the National Land Cover Database); # patches, landscape proportion, edge density, largest patch index, effective mesh size and patch cohesion index within 3 circular areas (10 km2, 360 km2 and 3600 km2) surrounding the sampling site. A quantile regression was performed to identify which metrics were useful at predicting the 25th, 50th, 75th or 95th quantile of woody cover distribution.

Results

Grassland proportion and edge density were significant predictors of the woody plant potential (75th and 95th quantile). Woody cover potential was positively associated with edge density suggesting that fragmented areas (i.e., areas with high number of edges) maintained higher woody cover, while grassland proportion was negatively associated with woody plant potential.

Conclusion

We propose that in addition to a lack of fire, fragmented landscapes may facilitate further woodland expansion by reducing natural land and restricting grasslands to smaller, less connected patches, which can maintain higher woody cover. Given current trends in woodland expansion, special attention should be given to areas that are found within a fragmented landscape and climatically prone to woodland expansion.
  相似文献   

4.
Land-use change is forcing many animal populations to inhabit forest patches in which different processes can threaten their survival. Some threatening processes are mainly related to forest patch characteristics, but others depend principally on the landscape spatial context. Thus, the impact of both patch and landscape spatial attributes needs to be assessed to have a better understanding of the habitat spatial attributes that constraint the maintenance of populations in fragmented landscapes. Here, we evaluated the relative effect of three patch-scale (i.e., patch size, shape, and isolation) and five landscape-scale metrics (i.e., forest cover, fragmentation, edge density, mean inter-patch isolation distance, and matrix permeability) on population composition and structure of black howler monkeys (Alouatta pigra) in the Lacandona rainforest, Mexico. We measured the landscape-scale metrics at two spatial scales: within 100 and 500 ha landscapes. Our findings revealed that howler monkeys were more strongly affected by local-scale metrics. Smaller and more isolated forest patches showed a lower number of individuals but at higher densities. Population density also tended to be positively associated to matrices with higher proportion of secondary forests and arboreal crops (i.e. with greater permeability), most probably because these matrices can offer supplementary foods. The immature-to-female ratio also increased with matrix permeability, shape complexity, and edge density; habitat characteristics that can increase landscape connectivity and sources availability. The prevention of habitat loss and isolation, and the increment of matrix permeability are therefore needed for the conservation of this endangered Neotropical mammal.  相似文献   

5.
Remotely sensed data and a Geographic Information System were used to compare the effects of clearcutting and road-building on the landscape pattern of the Bighorn National Forest, in north-central Wyoming. Landscape patterns were quantified for each of 12 watersheds on a series of four maps that differed only in the degree of clearcutting and road density. We analyzed several landscape pattern metrics for the landscape as a whole and for the lodgepole pine and spruce/fir cover classes across these maps, and determined the relative effects of clearcutting and road building on the pattern of each watershed. At both the landscape- and cover class-scales, clearcutting and road building resulted in increased fragmentation as represented by a distinct suite of landscape structural changes. Patch core area and mean patch size decreased, and edge density and patch density increased as a result of clearcuts and roads. Clearcuts and roads simplified patch shapes at the landscape scale, but increased the complexity of lodgepole pine patches. Roads appeared to be a more significant agent of change than clearcuts, and roads which were more evenly distributed across a watershed had a greater effect on landscape pattern than did those which were densely clustered. Examining individual watersheds allows for the comparison of fragmentation among watersheds, as well as across the landscape as a whole. Similar studies of landscape structure in other National Forests and on other public lands may help to identify and prevent further fragmentation of these areas.  相似文献   

6.
In human-dominated regions, forest vegetation removal impacts remaining ecosystems but regional-scale biological consequences and resource value changes are not well known. Using forest resource survey data, I examined current bottomland hardwood community types and a range of fragment size classes in the south central United States. Analyses examined resource value indicators, appraised tree-based flood zone and shade tolerance indices, and identified potential regional-scale processes. Findings revealed that the largest fragments had fewer tree species, reduced anthropogenic use evidence, and more older and wetter community types than small fragments. Results also suggested the need for incorporating hydrologic, geomorphic, and understory vegetation parameters in regional forest resource monitoring efforts.Two regional-scale processes are hypothesized: (1) forest fragmentation occurs more frequently in drier habitats and dry zone (inundated 2 months annually), younger seral stage bottomland community types; and (2) forest fragmentation induces establishment of drier habitats or dry zone, younger serai stage community types. Both hypotheses suggest that regional forest fragmentation impacts survival of distinct community types, anthropogenic uses, and multiple resource values.  相似文献   

7.
Although abrupt changes (i.e. thresholds) have been precisely defined in simulated landscapes, such changes in the structure of real landscapes are not well understood. We tested for threshold occurrence in three common deforestation patterns in the Brazilian Amazon: small properties regularly distributed along roads (fishbone), irregularly distributed small properties (independent settlements), and large properties. We analyzed differences between real deforestation patterns, and tested the capacity of simulated landscape with different aggregation degrees to predict threshold occurrence. Three 8×8 km sites (replicates) with more than 90% of forest in 1984 and less than 30% in 1998 were selected/simulated for each deforestation pattern. Thresholds were observed for fishbone and large property patterns, especially when considering the connectivity index, although threshold incidences were more frequently observed in simulated landscapes. The capacity of simulated landscapes to predict the exact threshold point in real landscapes was limited, even when considering highly aggregate simulations. However, the general trend in landscape structural changes was similar in real and simulated landscapes. Thresholds occurred at the beginning of the deforestation for mean patch size and at an intermediate stage, corresponding to the percolation threshold, for connectivity, isolation and fragmentation. Threshold behavior for connectivity index might suggest that the survival of strictly forest species will sharply decrease when the proportion of forest reach values <0.60, indicating that conservation efforts should be done to maintain forest cover above this limit. Significant differences observed among the real deforestation patterns, especially in patch isolation and number of fragments, can have significant consequences for conservation. The independent settlement pattern is, without a doubt, the least favorable of them, resulting in a higher level of fragmentation, whereas the large property and fishbone patterns may be less detrimental if connectivity among the remnant forest patches is preserved.  相似文献   

8.
Forest ecosystems have been widely fragmented by human land use, inducing significant microclimatic and biological changes at the forest edge. If we are to rigorously assess the ecological impacts of habitat fragmentation, there is a need to effectively quantify the amount of edge habitat within a landscape, and to allow this to be modelled for individual species and processes. Edge effect may extend only a few metres or as far as several kilometres, depending on the species or process in question. Therefore, rather than attempting to quantify the amount of edge habitat by using a fixed, case-specific distance to distinguish between edge and core, the area of habitat within continuously-varying distances from the forest edge is of greater utility. We quantified the degree of fragmentation of forests in England, where forests cover 10 % of the land area. We calculated the distance from within the forest patches to the nearest edge (forest vs. non-forest) and other landscape indices, such as mean patch size, edge density and distance to the nearest neighbour. Of the total forest area, 37 % was within 30 m and 74 % within 100 m of the nearest edge. This highlights that, in fragmented landscapes, the habitats close to the edge form a considerable proportion of the total habitat area. We then show how these edge estimates can be combined with ecological response functions, to allow us to generate biologically meaningful estimates of the impacts of fragmentation at a landscape scale.  相似文献   

9.
Forest fragmentation as an economic indicator   总被引:13,自引:0,他引:13  
Despite concern over the ecological consequences of conversion of land from natural cover to anthropogenic uses, there are few studies that show a quantitative relationship between fragmentation and economic factors. For the southside economic region of Virginia, we generated a surface (map) of urbanization pressure by interpolation of population from a ring of cities surrounding the region. The interpolated map showed a geographic gradient of urbanization pressure or demand for land that increased from northwest to southeast. Estimates of forest fragmentation were moderately correlated with the geographic gradient of urbanization pressure. The fragmentation-urbanization relationship was corroborated by examining land-cover change against the urbanization map. The geographic gradient in land-cover change was strongly correlated with the urbanization pressure gradient. The correspondence between geographic gradients in land-cover change and urbanization pressure suggests that forest fragmentation will occur at a greater rate in the eastern portion of the southside economic region in the future.  相似文献   

10.
Natural landscapes are increasingly subjected to anthropogenic pressure and fragmentation resulting in reduced ecological condition. In this study we examined the relationship between ecological condition and the soundscape in fragmented forest remnants of south-east Queensland, Australia. The region is noted for its high biodiversity value and increased pressure associated with habitat fragmentation and urbanisation. Ten sites defined by a distinct open eucalypt forest community dominated by spotted gum (Corymbia citriodora ssp. variegata) were stratified based on patch size and patch connectivity. Each site underwent a series of detailed vegetation condition and landscape assessments, together with bird surveys and acoustic analysis using relative soundscape power. Univariate and multivariate analyses indicated that the measurement of relative soundscape power reflects ecological condition and bird species richness, and is dependent on the extent of landscape fragmentation. We conclude that acoustic monitoring technologies provide a cost effective tool for measuring ecological condition, especially in conjunction with established field observations and recordings.  相似文献   

11.
In order to document the extent of landscape fragmentation for a section of the New Jersey Pine Barrens region, we have used satellite image and spatial analysis to monitor landscape change between 1972 and 1988. Land-cover patterns were quantified by mean, number, and size of patches; and amount of edges between land cover types. During the intervening sixteen year period, fractal dimension, diversity, and contagion generally decreased while dominance, disturbance and edges increased, indicating a trend to a more dissected and disturbed landscape. There was an increase in the number of forest patches and a significant decrease in the average size of forest patches. In contrast, the mean patch size for the non-forest category has increased as a result of a coalescence of patches. The landscape fragmentation is shown by a downward shift in the distribution of forest patches by size class. These changes in landscape pattern have implications for many ecological processes and resources. Management practices need to consider landscape fragmentation in the Pinelands National Reserve in order to preserve the essential character of the Pine Barrens landscape.  相似文献   

12.
Increasing land ownership fragmentation in the United States is causing concerns with respect to its ecological implications for forested landscapes. This is especially relevant given that human influence is one of the most significant driving forces affecting the forest landscape. A method for generating realistic land ownership maps is needed to evaluate the effects of ownership fragmentation on forest landscapes in combination with other natural processes captured in forest process models. Ownership patterns from human activities usually generate landscape boundary shapes different from those arising from natural processes. Spatial characteristics among ownership types – e.g., private, public ownership – may also differ. To address these issues, we developed the Fragmented Land Ownership Spatial Simulator (FLOSS) to generate ownership patterns that reflect the Public Land Survey System (PLSS) shapes and various patch size distributions among different types of ownership (e.g., private, public). To evaluate FLOSS performance, we compared the simulated patterns with various ownership fragmentation levels to the actual ownership patterns in the Missouri Ozarks by using selected landscape indices. FLOSS generated landscapes with spatial characteristics similar to actual landscapes, suggesting that it can simulate different levels of ownership fragmentation. This will allow FLOSS to serve as a feasible tool for evaluating forest management applications by spatially allocating various management scenarios in a realistic way. The potentials and limitations of FLOSS application are discussed.  相似文献   

13.
Patterns of land ownership and forest cover are related in complex and ecologically significant ways. Using a Geographic Information System and regression analysis, we tested for spatial relationships between the structure of land ownership and forest cover across 66 watersheds in the state of Oregon (USA), Coast Range mountains. We found that in these watersheds (1) forest cover diversity increased with land ownership diversity, (2) size of forest patches increased with size of land ownership patches, and (3) connectivity of forest cover increased with connectivity of land ownership. Land ownership structure explained between 29% and 40% of the variability of forest cover structure across these watersheds. Driving this relationship are unique associations among particular ownership classes and various forest cover classes. The USDA Forest Service and the USDI Bureau of Land Management were associated with mature forest cover; private industry was associated with young forest cover; nonindustrial private forest owners were associated with a wide diversity of cover classes. Watersheds with mixed ownership appear to provide greater forest cover diversity, whereas watersheds with concentrated ownership provide less diverse but more connected forest cover. Results suggest that land ownership patterns are strongly correlated with forest cover patterns. Therefore, understanding landscape structure requires consideration of land ownership institutions, dynamics, and patterns.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

14.
We address effects of large-scale forestry on landscape structure and the structure and composition of boreal bird communities in North Sweden. Specifically, we ask: after controlling for the effect of patch size, forest age and tree species composition, is there any residual effect attributable to the reduction in area of old forest? Pairs of landscape blocks (25 by 25 km) were selected to maximize area difference in human-induced disturbance, clear-cut as opposed to semi-natural old forest. Median distance to natural edge (wetlands, open water) from randomly selected points in forest was 250 and 200 m in high and low impact landscapes, respectively, indicating a high degree of ‘natural’ fragmentation of the pristine boreal landscape in the area. By contrast, median distance to clear-cut in uncut forest was 750 and 100 m, respectively. Clear-cuts in high impact landscapes were disproportionally more common in areas with contiguous forest land than in areas with spatially disjunct forest, implicating that forestry increases natural fragmentation of the landscape by subdividing larger forest tracts. Point counts along forestry roads showed that species richness and relative abundance of forest birds were higher in landscapes with low forestry impact. These differences can partly be explained by differences in age composition of forest and composition of tree species. After controlling for patch size, forest age and tree species composition, a significant effect of forestry impact remained for Sibirian species and the Tree pipitAnthus trivialis. Our results thus imply that this group of species and the Tree pipit may be sensitive to forest fragmentation. In contrast to previous Finnish studies, we found relatively small negative effects on relative abundance of species hypothesized to be negatively affected by large-scale clear-cutting forestry. However, our picture of the present does not contradict results from Finnish long-term population studies. Five factors may account for this: 1) clear-cut areas are not permanently transformed into other land use types, 2) planted forests are not completely inhabitable for species preferring older forest, 3) the majority of species in the regional pool are habitat generalists, 4) the region studied is still extensively covered with semi-natural forest, and 5) our study area is relatively close to contiguous boreal forest in Russia, a potential source area for taiga species.  相似文献   

15.
Habitat fragmentation is a major cause for species loss, but its effect on invertebrates with low active dispersal power, like terrestrial gastropods, has rarely been studied. Such species can not cross a hostile habitat matrix, for which the predictions of island theory, such as positive relations between species richness and patch size, should apply. In order to test this prediction, we studied gastropod species diversity by assessing gastropod assemblage characteristics from 35 sites in 19 fragments of deciduous old-growth forests in the Lower Rhine Embayment, Germany. Assemblages differed between larger (≥700 ha) and smaller forests (<400 ha), those of large forests held a higher percentage of forest species. Although α-diversity was similar between the two forest size classes, small forests often comprised matrix species, resulting in a higher β-diversity. Edge effects on the species richness of matrix species were noticeable up to 250 m into the forest. Hierarchical partitioning revealed that distance to disturbances (external edge, internal edges like roads) explained most assemblage variables, whereas forest size and woodland cover within a 1 km radius from the sites explained only a few assemblage variables. Densities of two forest-associated species, Discus rotundatus and Arion fuscus, decreased with forest size. Yet, forest size was positively correlated with richness of typical forest species and densities of Limax cinereoniger. The latter species seems to need forests of >1,000 ha, i.e., well above the size of most fragments. In conclusion, the prediction is valid only for forest species. The response to fragmentation is species specific and seems to depend on habitat specialization and macroclimatic conditions. Jean-Pierre Maelfait: Deceased.  相似文献   

16.
The Amur tiger, a flagship species of the boreal forest ecosystem in Russian Far East and northeastern China, has declined dramatically in population and geographic distribution due to human caused habitat fragmentation and poaching over the past century. The fate of this largest feline species will also be influenced by the worsening impacts of climate change. In this paper we assess the possible effects of climate change (three scenarios from the 2007 IPCC Report) on the Amur tiger by integrating species distribution modeling (SDM) and population viability analysis (PVA). We projected the potential and realized suitable habitat distributions to examine the impacts from anthropogenic factors, and evaluated the changes of suitable habitat and extinction risk for 100 years under climate change. The realized suitable habitat was projected to be more severely fragmented than the potential suitable habitat because of human-related factors. The potential suitable habitat would expand northward under all climate change scenarios considered. However, the tiger population would suffer the largest decline and highest extinction risk in the next 100 years under the worst climate change scenario (A1B) even though the size of potential habitat would be greatest. Under climate change, the tiger population could persist for the next century only if the size and quality of current habitat patches would remain intact. In addition, our study demonstrated that using SDM alone could grossly overestimate the geographic distribution of the Amur tiger, and that coupling SDM and PVA could provide important insights into conservation planning to mitigate the effects of climate change.  相似文献   

17.
Anthropogenic fragmentation of landscapes is known as a major reason for the loss of species in industrialized countries. Landscape fragmentation caused by roads, railway lines, extension of settlement areas, etc., further enhances the dispersion of pollutants and acoustic emissions and affects local climatic conditions, water balance, scenery, and land use. In this study, three new measures of fragmentation are introduced: degree of landscape division (D), splitting index (S), and effective mesh size (m). They characterize the anthropogenic penetration of landscapes from a geometric point of view and are calculated from the distribution function of the remaining patch sizes.First, D, S, and m are defined, their mathematical properties are discussed, and their reactions to the six fragmentation phases of perforation, incision, dissection, dissipation, shrinkage, and attrition are analysed. Then they are compared with five other known fragmentation indices with respect to nine suitability criteria such as intuitive interpretation, low sensivity to very small patches, monotonous reaction to different fragmentation phases, and detection of structural differences. Their ability to distinguish spatial patterns is illustrated by means of two series of model patterns. In particular, the effective mesh size (m), representing an intensive and area-proportionately additive measure, proves to be well suited for comparing the fragmentation of regions with differing total size.  相似文献   

18.
Nutrient export coefficients are estimates of the mass of nitrogen (N) or phosphorus (P) normalized by area and time (e.g., kg/ha/yr). They have been estimated most often for watersheds ranging in size from 102 to 104 hectares, and have been recommended as measurements to inform management decisions. At this scale, watersheds are often nested upstream and downstream components of larger drainage basins, suggesting nutrient export coefficients will change from one subwatershed to the next. Nutrient export can be modeled as risk where lack of monitoring data prevents empirical estimation. We modeled N and P export risk for subwatersheds of larger drainage basins, and examined spatial changes in risk from upstream to downstream watersheds. Spatial (subwatershed) changes in N and P risk were a function of in-stream decay, subwatershed land-cover composition, and subwatershed streamlength. Risk tended to increase in a downstream direction under low rates of in-stream decay, whereas high rates of in-stream decay often reduced risk to zero (0) toward downstream subwatersheds. On average, increases in the modeled rate of in-stream decay reduced risk by 0.44 for N and 0.39 for P. Interactions between in-stream decay, land-cover composition and streamlength produced dramatic changes in risk across subwatersheds in some cases. Comparison of the null cases of no in-stream decay and homogeneously forested subwatersheds with extant conditions indicated that complete forest cover produced greater reductions in nutrient export risk than a high in-stream decay rate, especially for P. High rates of in-stream decay and complete forest cover produced approximately equivalent reductions in N export risk for downstream subwatersheds. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

20.
Temporal change in forest fragmentation at multiple scales   总被引:1,自引:0,他引:1  
Previous studies of temporal changes in fragmentation have focused almost exclusively on patch and edge statistics, which might not detect changes in the spatial scale at which forest occurs in or dominates the landscape. We used temporal land-cover data for the Chesapeake Bay region and the state of New Jersey to compare patch-based and area–density scaling measures of fragmentation for detecting changes in the spatial scale of forest that may result from forest loss. For the patch-based analysis, we examined changes in the cumulative distribution of patch sizes. For area–density scaling, we used moving windows to examine changes in dominant forest. We defined dominant forest as a forest parcel (pixel) surrounded by a neighborhood in which forest occupied the majority of pixels. We used >50% and ≥60% as thresholds to define majority. Moving window sizes ranged from 2.25 to 5,314.41 hectares (ha). Patch size cumulative distributions changed very little over time, providing no indication that forest loss was changing the spatial scale of forest. Area–density scaling showed that dominant forest was sensitive to forest loss, and the sensitivity increased nonlinearly as the spatial scale increased. The ratio of dominant forest loss to forest loss increased nonlinearly from 1.4 to 1.8 at the smallest spatial scale to 8.3 to 11.5 at the largest spatial scale. The nonlinear relationship between dominant forest loss and forest loss in these regions suggests that continued forest loss will cause abrupt transitions in the scale at which forest dominates the landscape. In comparison to the Chesapeake Bay region, dominant forest loss in New Jersey was less sensitive to forest loss, which may be attributable the protected status of the New Jersey Pine Barrens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号