首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Scots pine ( Pinus sylvestris L.) and Norway spruce [ Picea abies (L.) Karst.] seedlings were exposed to high phosphorus (HP) or low phosphorus (LP) availability for one growing season in the open field, and to combined P availability and elevated ozone (O 3 ) concentrations (0, 55, 110 and 210 ppb for Scots pine and 0, 40, 75 and 150 ppb for Norway spruce, respectively) for 28 days in controlled laboratory chambers. Compared with HP, the LP treatment reduced Scots pine current-year (C) shoot and root dry masses and Norway spruce total dry mass, whereas the highest O 3 concentrations increased the magnesium concentration of Scots pine C needles and P concentrations of the C needles of both tree species. Chlorophyll a, a+b and carotenoid concentrations of Scots pine C needles were significantly higher in the LP treatment compared with HP under the highest O 3 concentration (210 ppb). In the mesophyll tissue of C needles of both tree species, LP treatment increased the size of mitochondria and elevated O 3 -induced granulation of chloroplast stroma and disintegration of cytoplasm. Exposure to elevated O 3 concentrations increased swelling of chloroplast thylakoids and reduced the amount of vacuolar tannin in the LP Scots pine C needles. The results suggest disturbances in needle photosynthetic machinery due to acute exposure to the combination of elevated O 3 and low P availability. However, clear additive effects were found only in needle P concentrations < 1 mg g -1 in short-term O 3 exposure.  相似文献   

2.
Four-year-old Norway spruce (Picea abies L. (Karst.)) seedlings were exposed to ambient and elevated (1.5 x ambient in 1997 and 1.6 x ambient in 1998) ozone concentrations [O3] and three nitrogen (N) and two phosphorus (P) availabilities: "optimal" values (control); 70% of the control N and P values (LN and LP); and 150% of the control N value (HN). Treatments were applied in an open-field ozone fumigation facility during the 1997 and 1998 growing seasons. Effects on growth, mineral and pigment concentrations, stomatal conductance and ultrastructure of needles were studied. The HN treatment increased growth significantly, whereas elevated [O3] had a slight or variable impact on growth and biomass allocation in all N treatments. Although there were no significant effects of the LP treatment on plant growth during the second year, there was a reduction in 1-year-old shoot dry mass in the elevated O3 + LP treatment at the end of the experiment. There were no significant treatment effects on mineral concentrations of current-year and 1-year-old needles at the final harvest. In response to the HN treatment, chlorophyll a and b and carotenoid concentrations increased significantly in current-year needles. Chlorophyll a/b ratio decreased in response to elevated [O3] alone, but increased in seedlings in the O(3) + LP treatment. Stomatal conductance of current-year needles decreased with increasing N availability, but increased in response to elevated [O3]. However, the O3-induced increase in stomatal conductance was less in the LN and LP treatments than in the control treatment. In chloroplasts of current-year needles, increased N availability decreased mean starch grain area, but increased the number of plastoglobuli. We conclude that Norway spruce seedlings are relatively tolerant to slightly elevated [O3], and that nitrogen and phosphorus imbalances do not greatly affect the influence of O3 on this species when the exposure lasts for two growing seasons or less.  相似文献   

3.
Zha T  Wang KY  Ryyppö A  Kellomäki S 《Tree physiology》2002,22(17):1241-1248
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed in environment-controlled chambers that for 4 years maintained: (1) ambient conditions (CON); (2) elevated atmospheric carbon dioxide concentration [CO2] (ambient + 350 micromol mol-1; EC); (3) elevated temperature (ambient + 2-3 degrees C; ET); or (4) elevated [CO2] and temperature (EC+ET). Dark respiration rate, specific leaf area (SLA) and the concentrations of starch and soluble sugars in needles were measured in the fourth year. Respiration rates, on both an area and a mass basis, and SLA decreased in EC relative to CON, but increased in ET and EC+ET, regardless of needle age class. Starch and soluble sugar concentrations for a given needle age class increased in EC, but decreased slightly in ET and EC+ET. Respiration rates and SLA were highest in current-year needles in all treatments, whereas starch and soluble sugar concentrations were highest in 1-year-old needles. Relative to that of older needles, respiration of current-year needles was inhibited less by EC, but increased in response to ET and EC+ET. All treatments enhanced the difference in respiration between current-year and older needles relative to that in CON. Age had a greater effect on needle respiration than any of the treatments. There were no differences in carbohydrate concentration or SLA between needle age classes in response to any treatment. Relative to CON, the temperature coefficient (Q10) of respiration increased slightly in EC, regardless of age, but declined significantly in ET and EC+ET, indicating acclimation of respiration to temperature.  相似文献   

4.
Five-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open-top chambers at ambient and elevated (ambient + 400 &mgr;mol mol(-1)) CO(2) concentrations. Net photosynthesis (A), specific leaf area (SLA) and concentrations of nitrogen (N), carbon (C), soluble sugars, starch and chlorophyll were measured in current-year and 1-year-old needles during the second year of CO(2) enrichment. The elevated CO(2) treatment stimulated photosynthetic rates when measured at the growth CO(2) concentration, but decreased photosynthetic capacity compared with the ambient CO(2) treatment. Acclimation to elevated CO(2) involved decreases in carboxylation efficiency and RuBP regeneration capacity. Compared with the ambient CO(2) treatment, elevated CO(2) reduced light-saturated photosynthesis (when measured at 350 &mgr;mol mol(-1) in both treatments) by 18 and 23% (averaged over the growing season) in current-year and 1-year-old needles, respectively. We observed significant interactive effects of CO(2) treatment, needle age and time during the growing season on photosynthesis. Large seasonal variations in photosynthetic parameters were attributed to changes in needle chemistry, needle structure and feedbacks governed by whole-plant growth dynamics. Down-regulation of photosynthesis was probably a result of reduced N concentration on an area basis, although a downward shift in the relationship between photosynthetic parameters and N was also observed.  相似文献   

5.
Effects of elevated CO2 concentration ([CO2]) on carbon assimilation and needle biochemistry of fertilized and unfertilized 25-30-year-old Scots pine (Pinus sylvestris L.) trees were studied in a branch bag experiment set up in a naturally regenerated stand. In each tree, one branch was enclosed in a bag supplied with ambient [CO2] (360 micromol mol(-1)), a second branch was enclosed in a bag supplied with elevated [CO2] (680 micromol(-1)) and a control branch was left unbagged. The CO2 treatments were applied from April 15 to September 15, starting in 1993 for unfertilized trees and in 1994 for fertilized trees, which were treated with N in June 1994. Net photosynthesis, amount and activity of Rubisco, N, starch, C:N ratio and SLA of needles were measured during the growing season of 1995. Light-saturated net photosynthetic rates of 1-year-old and current-year shoots measured at ambient [CO2] were not affected by growth [CO2] or N fertilization. Elevated [CO2] reduced the amount and activity of Rubisco, and the relative proportion of Rubisco to soluble proteins and N in needles of unfertilized trees. Elevated [CO2] also reduced the chlorophyll concentration (fresh weight basis) of needles of unfertilized trees. Soluble protein concentration of needles was not affected by growth [CO2]. Elevated [CO2] decreased the Rubisco:chlorophyll ratio in unfertilized and fertilized trees. Starch concentration was significantly increased at elevated [CO2] only in 1-year-old needles of fertilized trees. Elevated [CO2] reduced needle N concentration on a dry weight or structural basis (dry weight minus starch) in unfertilized trees, resulting in an increase in needle C:N ratio. Fertilization had no effect on soluble protein, chlorophyll, Rubisco or N concentration of needles. The decrease in the relative proportions of Rubisco and N concentration in needles of unfertilized trees at elevated [CO2] indicates reallocation of N resources away from Rubisco to nonphotosynthetic processes in other plant parts. Acclimation occurred in a single branch exposed to high [CO2], despite the large sink of the tree. The responses of 1-year-old and current-year needles to elevation of growth [CO2] were similar.  相似文献   

6.
We examined the effects of three foliar potassium concentrations (high, intermediate and low) on the morphology, ultrastructure and polyamine concentrations of current-year and 1- and 2-year-old needles of 30-year-old Scots pine (Pinus sylvestris L.) trees. Foliar K concentration had only a slight effect on needle morphology. The sclerenchyma cell walls were thinner, the xylem area was larger, and the resin ducts were smaller in needles with a low K concentration than in needles with a high or intermediate K concentration. In addition, the bundle sheath cells were collapsed in needles having a low K concentration. The secondary growth of phloem tissue and the mesophyll area were greater in needles with a high or intermediate K concentration than in needles with a low K concentration, possibly indicating greater production of photoassimilates in these trees. At the ultrastructural level, mesophyll cells with enlarged central vacuoles and small vacuoles containing electron-dense material were common in needles having a low K concentration. Enlargement of the central vacuole coincided with an exponential increase in putrescine concentration in needles with a low K concentration, suggesting that the central vacuole may function as a storage site for putrescine.  相似文献   

7.
We explored environmental and genetic factors affecting seasonal dynamics of starch and soluble nonstructural carbohydrates in needle and twig cohorts and roots of Scots pine (Pinus sylvestris L.) trees of six populations originating between 49 degrees and 60 degrees N, and grown under common garden conditions in western Poland. Trees of each population were sampled once or twice per month over a 3-year period from age 15 to 17 years. Based on similarity in starch concentration patterns in needles, two distinct groups of populations were identified; one comprised northern populations from Sweden and Russia (59-60 degrees N), and another comprised central European populations from Latvia, Poland, Germany and France (49-56 degrees N). Needle starch concentrations of northern populations started to decline in late spring and reached minimum values earlier than those of central populations. For all populations, starch accumulation in spring started when minimum air temperature permanently exceeded 0 degrees C. Starch accumulation peaked before bud break and was highest in 1-year-old needles, averaging 9-13% of dry mass. Soluble carbohydrate concentrations were lowest in spring and summer and highest in autumn and winter. There were no differences among populations in seasonal pattern of soluble carbohydrate concentrations. Averaged across all populations, needle soluble carbohydrate concentrations increased from about 4% of needle dry mass in developing current-year needles, to about 9% in 1- and 2-year-old needles. Root carbohydrate concentration exhibited a bimodal pattern with peaks in spring and autumn. Northern populations had higher concentrations of fine-root starch in spring and autumn than central populations. Late-summer carbohydrate accumulation in roots started only after depletion of starch in needles and woody shoots. We conclude that Scots pine carbohydrate dynamics depend partially on inherited properties that are probably related to phenology of root and shoot growth.  相似文献   

8.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were grown for 50 days in growth chambers in an ambient or twice ambient carbon dioxide concentration ([CO2]) at a day/night temperature of 19/12 degrees C or 23/16 degrees C. Although elevated [CO2] (EC) had only slight effects on the growth parameters measured, elevated temperature (ET) increased above ground dry mass of both species. Among treatments, biomass accumulation of both species was greatest in the combined EC + ET treatment. The EC treatment induced thylakoid swelling and increased numbers of plastoglobuli observed in Scots pine needles. Although EC had little effect on Rubisco protein or N concentration of needles, ET had a large effect on N-containing compounds and enhanced N allocation from 1-year-old needles. Terpenoids were more responsive to EC and ET than total phenolics. Generally, terpene concentrations were reduced by EC and increased by ET. Increased terpenoid concentrations in response to ET might be associated with thermotolerance of photosynthesis. In Norway spruce, EC decreased total phenolic concentrations in needles, probably as a result of increased growth. We conclude that, in seedlings of these boreal species, the effects of elevated [CO2] on the studied parameters were small compared with the effects of elevated temperature.  相似文献   

9.
Two-year-old ponderosa pine seedlings (Pinus ponderosa Laws.) were exposed to episodic O(3) concentrations in open-top chambers for two consecutive growing seasons (June through September of 1990 and 1991). Near the end of the second season of O(3) exposure, gas exchange was measured on needles of surviving flushes at saturating CO(2) and photosynthetic photon flux density (PPFD). Both photosynthetic capacity (A(sat)) and stomatal conductance to water vapor (g(wv)) declined linearly with needle age but differences within a flush were also found. Gas exchange rates of needles from the base of the current-year flush were significantly lower than those of needles from the top of the flush, even though age differences between needles were negligible. Although most measurements were conducted at saturating CO(2), similar patterns of gas exchange were also found at 350 micro mol mol(-1) CO(2), indicating that photosynthesis of needles at the bottom of the flush was more strongly affected by O(3) than that of needles at the top of the flush, even though the potential for O(3) uptake was probably less in needles at the bottom of the flush because of reduced stomatal conductance. Carboxylation efficiency (deltaA/deltaC(i)), the linear slope of the A/C(i) response, was highly correlated with A(sat), varying with needle age, needle position in the flush and O(3) exposure, but the magnitude of the reductions was greater than for A(sat). We conclude that susceptibility to O(3) damage among needles of an individual seedling varies not only with needle age but also with needle position, and that reductions in photosynthetic capacity may not be directly attributable to increased uptake of the pollutant. The data also indicate the need to consider within-flush variation when estimating whole-plant carbon gain and O(3) uptake.  相似文献   

10.
Kolari KK  Sarjala T 《Tree physiology》1995,15(11):747-752
From March to October, acid phosphatase activity and phosphorus (P) concentration were measured in four needle age classes of the upper and lower crowns of fertilized and unfertilized Scots pine (Pinus sylvestris L.) trees. Negative correlations between acid phosphatase activity and P concentration were observed in current-year needles and in needles in the upper part of the crown, whereas there was a positive correlation between enzyme activity and P concentration in older needles and in needles in the lower part of the crown. In May and October, needles of all ages showed increased acid phosphatase activity. The most sensitive response of acid phosphatase activity to phosphate supply and phosphorus status of the whole tree was seen in current-year needles on the first whorl where a 300% increase in acid phosphatase activity was observed in response to a decrease in foliar P concentration of 1.7-1.8 mg P g(DW) (-1).  相似文献   

11.
To study the responses of Scots pine (Pinus sylvestris L.), a commercially important tree species in Europe, to future increases in atmospheric CO2 concentration ([CO2]), we grew saplings for 4 years in the ground in open-top chambers in ambient or ambient + 400 micromol mol(-1) CO2, without supplemental addition of nutrients and water. Carbon (C) budgets were developed for trees in both CO2 treatments based on productivity and biomass data obtained from destructive harvests at the end of the third and fourth years of treatment, and simulations of annual gross photosynthesis (P(tot)) and maintenance respiration by the model MAESTRA. Simulated P(tot) was enhanced by elevated [CO2], despite significant down-regulation of photosynthetic capacity. The subsequent increase in C uptake was allocated primarily to tissues with limited longevity (needles and fine roots), which explains why the measured annual increment in woody biomass did not differ between CO2 treatments. Thus, our results suggest that accelerated stem growth only occurs in the first 2 years in the presence of elevated [CO2] and that forest rotations will not be shortened significantly in response to increasing [CO2]. In elevated [CO2], a higher proportion of available C was allocated below ground, resulting in altered biomass distribution patterns. In trees of equal size, measured ratios of fine root/needle biomass and belowground/aboveground biomass were almost twice as large in the elevated [CO2] treatment. Although there are uncertainties in scaling from saplings to mature canopies, the data indicate that, in nutrient-limited Scots pine forests, elevated [CO2] is unlikely to accelerate tree growth significantly, but is likely to increase C inputs to soil.  相似文献   

12.
Jiang M  Jagels R 《Tree physiology》1999,19(14):909-916
Five-year-old red spruce saplings (Picea rubens Sarg.) were exposed to either (1) acid fog consisting of a mixture of H(2)SO(4) and HNO(3) adjusted to pH 2.5, (2) distilled-water fog at pH 5.6, or (3) no fog (dry control) for 3.5 hours per day, five times a week during the 1996 and 1997 growing seasons. The effect of fog on cell membrane-associated calcium (mCa) of leaf mesophyll cells was investigated with the fluorescence probe chlortetracycline (CTC). In both years, mean mCa concentrations were significantly less in needles exposed to acid fog than in needles exposed to distilled-water fog or in untreated needles. In 1997, acid-fog treatment resulted in 25 and 12% reductions in mCa in current-year needles, and 18 and 15% reductions in 1-year-old needles, compared with untreated needles and needles exposed to distilled-water fog, respectively, indicating that acid deposition induced calcium leaching from the membranes of photosynthetic mesophyll cells. Exposure to distilled-water fog also led to reductions in mCa in young needles, suggesting that water films on needle surfaces can induce losses by diffusion between the needle interior and surface. Consistent with the chamber studies, field data obtained from red spruce trees at two sites in Maine showed that low mCa concentrations in needles were associated with exposure to acid fog.  相似文献   

13.
Pensa M  Jalkanen R 《Tree physiology》2005,25(10):1265-1271
Latitudinal variation in needle longevity of conifers in response to climatic variability is a well-known phenomenon, but its significance has only rarely been studied. Scots pine (Pinus sylvestris L.) stands were investigated in four locations in Lapland (northern Finland and northern Sweden, 67-68 degrees N) and in four locations in Estonia (59 degrees N) to test the hypothesis that plasticity in needle longevity results in similar needle biomass per foliated shoot length across latitudes. The needle-trace method (NTM) revealed the dynamics of needle fascicles attached to stem shoots. Long-term mean needle age was 2 years greater in Lapland than in Estonia. In both regions, mean needle age was strongly and negatively related to yearly needle-fascicle production rate relative to the number of needles on the same shoot axis. Although significantly fewer needle-fascicles were produced annually in trees in Lapland than in Estonia, the overall number of fascicles attached to the stem shoots, needle-fascicle density and individual needle dry mass did not differ between regions. Consequently, needle biomass per foliated shoot length was similar in trees in both regions. Thus, our results support the theory that plasticity in needle longevity helps Scots pine to compensate for reduced needle production so that the same foliar biomass per shoot is retained under a wide range of growth conditions.  相似文献   

14.
While needles represent a proportionally large fraction of whole-plant hydraulic resistance, no studies to date have investigated how source–sink disturbances affect needle xylem structure. In this study, we evaluated structural changes in xylem in current-year needles of Scots pine 227 and 411 days after stem girdling (hereafter referred to as DAG). Maximum and minimum tracheid lumen diameters and therefore also the size of tracheid lumen areas increased in needles 227 DAG compared to control needles. In contrast, tracheid dimensions were similar in needles 411 DAG as in the control needles, but smaller xylem area and lower number of tracheids resulted in the lower theoretical needle hydraulic conductivity of those needles. Several needle xylem parameters were intercorrelated in both control and girdled trees. These observed changes provide a new understanding of the processes that occur following a source–sink disturbance. Considering anatomical parameters such as the number of tracheids, tracheid dimension, or needle xylem area, which are rarely described in physiological studies, could be helpful, for example, in understanding to tree hydraulic systems or for modeling gas exchange. Finally, empirical equations were developed to calculate needle theoretical hydraulic conductivity and the number of tracheids in needles using an easily measurable parameter of needle xylem area.  相似文献   

15.
The patterns of current‐year shoot, needle and terminal bud elongation in seedlings of three Scots pine (Pinus sylvestris L.) and three lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) provenances were compared during the third and fourth growing seasons after planting. Lodgepole pine produced longer shoots and buds than did Scots pine, mainly because lodgepole pine formed more stem units and elongated at a faster rate. Stem unit length and the duration of shoot and bud elongation differed relatively little between species and provenances. Lammas or polycyclic growth occurred in some lodgepole pine provenances, but not in any Scots pine provenance, and was associated with enhanced shoot elongation. Needle elongation commenced earlier, proceeded at a faster rate, and was greater in lodgepole pine than in Scots pine, but ceased about the same time in all species and provenances. The heat sum required to attain 50% of final length was lower for shoots and needles in lodgepole pine than in Scots pine, and for shoots in northern provenances than in southern ones. Mitotic activity in the apical meristem of the terminal bud, which occurred less than one week after the seedlings were free from snow, started and ceased about the same time in each species, but was higher in lodgepole pine than in Scots pine early in the shoot elongation period.  相似文献   

16.
Photosynthetic performance and root respiration were measured for seedlings of Scots pine and Norway spruce under constant conditions in an open gas exchange system in the laboratory. Measurements were carried out after root exposure to ‐20, ‐5 and 0°C and subsequent longtime storage in darkness at +1 or +4°C. Stomatal conductance in relation to net photosynthetic rates was also investigated after the same treatment of seedlings. Root respiration was low for seedlings whose root system had been exposed to ‐20°C, Scots pine showing lower rates than Norway spruce. This was probably an indication of root damage. At least for one provenance of Scots pine, respiration rates were higher for seedlings stored at +1 than at +4°C. Photosynthetic performance was also lowest for seedlings whose roots had been exposed to +20°C compared to higher temperatures, the difference being more clear‐cut for Norway spruce than for Scots pine. Storage at +1 gave slightly higher photosynthetic rates than at +4°C. There was a close relation between stomatal conductance measured on individual needles and photosynthetic performance measured on the whole seedling.  相似文献   

17.
To trace any possible effects of air pollution stress and injuries on trees around a city centre, needles of Scots pine (Pinus Syivestris L.) and Norway spruce (Picea abies (L.) Karst.) from sites of different distances and directions from Stockholm were analysed. Comparisons were made between needles of different ages, a half to three and a half years old (C ‐ C + 3) for pine up to six and a half years old (C ‐ C + 6) for spruce. Epicuticular waxes, studied by scanning electron microscopy (SEM), showed age‐dependent but site‐independent changes. Different age‐patterns were found in the pine and spruce needles but no dust coverings or lesions were detected, irrespective of the sites. A proportionally increasing peroxidase activity (EC 1.11.1.7) with increasing needle‐age up to the third year was observed in both species. No certain indication of site‐effects, expressed by an unproportional increase of the enzyme activity with increasing needle‐age could be found. Chlorophyll a and b, phaeophytin a and b and carotenoid analyses on the corresponding materials only indicated disturbances in trees from some scattered sampling plots. Thus, neither could the pigment analyses reveal any signs of a general pollution stress in pine and spruce trees from the area in question.  相似文献   

18.
Two varieties of ponderosa pine (Pinus ponderosa Dougl. var. scopulorum (Rocky Mountain variety) and P. ponderosa var. ponderosa (Sierran variety)) seedlings were subjected to elevated atmospheric CO(2) for two and a half years. The CO(2) concentrations were ambient, ambient + 75 microl l(-1), ambient + 150 microl l(-1) and ambient + 300 microl l(-1), or approximately 350, 425, 500 and 650 microl l(-1) CO(2). After one and a half years of exposure to elevated CO(2) and until the end of the study, seedlings of both varieties showed symptoms of stress including mottling, mid-needle abscission and early senescence. In both varieties, exposure to CO(2) concentrations greater than ambient + 75 microl l(-1) resulted in lower chlorophyll a, chlorophyll b and carotenoid concentrations. At elevated CO(2) concentrations, the concentrations of pigments in needles of the Sierran variety were lower than those in the Rocky Mountain variety. Also, at elevated CO(2) concentrations, the pigment concentrations in the 1-year-old needles of both P. ponderosa varieties were lower than those in current-season needles.  相似文献   

19.
Both drought and root pruning (RP) increased the number of cones induced when black spruce (Picea mariana (Mill.) B.S.P.) grafts were injected with gibberellins A(4/7) (GA), but their effects on predawn shoot water potential and current-year needle development differed. Drought decreased predawn shoot water potential (Psi(pd)), but only during the period when irrigation was withheld, and it had no effect on the growth or gas exchange properties of current-year needles. Conversely, root pruning had little effect on Psi(pd), but it resulted in trees with smaller current-year needles that had lower nitrogen and chlorophyll concentrations and reduced rates of gas exchange up to the later stages of shoot elongation compared with needles of control trees. These findings are discussed in relation to potential effects on the development of induced cones in the following growth cycle.  相似文献   

20.
Few studies have examined the effects of elevated CO2 concentration ([CO2]) on the physiology of intact forest canopies, despite the need to understand how leaf-level responses can be aggregated to assess effects on whole-canopy functioning. We examined the long-term effects of elevated [CO2] (ambient + 200 ppm CO2) on two age classes of needles in the upper and lower canopy of Pinus taeda L. during the second through sixth year of exposure to elevated [CO2] in free-air (free-air CO2 enrichment (FACE)) in North Carolina, USA. Strong photosynthetic enhancement in response to elevated [CO2] (e.g., +60% across age classes and canopy locations) was observed across the years. This stimulation was 33% greater for current-year needles than for 1-year-old needles in the fifth and sixth years of treatment. Although photosynthetic stimulation in response to elevated [CO2] was maintained through the sixth year of exposure, we found evidence of concurrent down-regulation of Rubisco and electron transport capacity in the upper-canopy sunlit leaves. The lower canopy showed no evidence of down-regulation. The upper canopy down-regulated carboxylation capacity (Vcmax) and electron transport capacity (Jmax) by about 17-20% in 1-year-old needles; however, this response was significant across sampling years only for Jmax in 1-year-old needles (P < 0.02). A reduction in leaf photosynthetic capacity in aging conifer needles at the canopy top could have important consequences for canopy carbon balance and global carbon sinks because 1-year-old sunlit needles contribute a major proportion of the annual carbon balance of these conifers. Our finding of a significant interaction between canopy position and CO2 treatment on the biochemical capacity for CO2 assimilation suggests that it is important to take canopy position and needle aging into account because morphologically and physiologically distinct leaves could respond differently to elevated [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号