首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to assess the genetics of fall cold hardiness in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco), shoot cuttings were collected in October from saplings (9-year-old trees) of open-pollinated families in two progeny tests in each of two breeding zones in Washington, one in the Coast range (80 families) and one on the west slope of the Cascade Mountains (89 families). Samples from over 5500 trees were subjected to artificial freezing and visually evaluated for needle, stem and bud tissue injury. The extent to which cold injury is genetically related to tree height and shoot phenology (timing of bud burst and bud set) was also evaluated.

Significant family variation was found for all cold hardiness traits; however, individual heritability estimates were relatively low (ranging from 0.09 to 0.22). Significant family-by-test site interaction was detected for needle injury in the Cascade breeding zone, but not in the coastal zone. Genetic correlations (rA) among needle, stem and bud tissues for cold damage were weak (0.16 ≤ rA ≤ 0.58) indicating that genes controlling fall hardening are somewhat different for different tissues. Timing of bud burst and bud set were only weakly correlated with cold injury (rA ≤ 0.49). Thus, bud phenology is a poor predictor of fall cold hardiness in this species. There was no consistent relationship between tree height and cold injury in the coastal zone. In the Cascade zone, taller trees appeared to be more susceptible to cold injury, but the association was weak (mean rA = 0.38, range 0.20 – 0.72).  相似文献   


2.
Stand susceptibility to defoliation by spruce budworm, Choristoneura fumiferana (Clem.), was examined in the Fort Nelson area of the Prince George Forest Region of British Columbia. In a retrospective study, defoliation maps of the study area were overlaid onto British Columbia Ministry of Forests cover type maps using a geographic information system. Analysis of the combined data identified forest characteristics associated with increased susceptibility to defoliation by spruce budworm. These were stands where the leading species was white spruce (Picea glauca (Moench) Voss), or where spruce was associated with aspen (Populus tremuloides Michx. and P. balsamifera L.) in mixed stands. Susceptibility to defoliation also was related to site quality, level of crown closure and stand age. Spruce stands on medium quality sites (site index 15 to 25 m, at reference breast height age 50 years) were more susceptible than stands on both poor- and high-quality sites. When spruce was mixed with aspen, stands on higher quality sites were more susceptible to budworm attack than poor sites. Open stands, where crown closure was <50%, were more susceptible to attack by spruce budworm than closed canopy stands. Older stands (120–199 years) were more susceptible to budworm attack than younger stands (40–110 years). In defoliated plots monitored for 6 years, tree mortality and top-kill reached a maximum of 30.4 and 47.2%, respectively. The losses varied with level of defoliation and were reduced by applications of the biological pesticide Bacillus thuringiensis.  相似文献   

3.
SEABY  D. A.; MOWAT  D. J. 《Forestry》1993,66(4):371-379
Following a severe attack by Elatobium abietinum (Walker) in1979–80, annual observations were made for 5 years on320 pole-size Sitka spruce in a nitrogen and phosphate experimentlaid out on oligotrophic blanket bog. Leader length was reduced by 25.5 per cent in 1980–81compared with the 3 previous years. This reduction was highlycorrelated with defoliation, being 39.4 per cent for trees thatlost all 1977–79 needles and 8.4 per cent in trees thatlost no needles. There were strong interactions with fertilizertreatment. Defoliated trees continued to grow less well duringthe 5 years of observations and were more likely to go intogrowth check. Early flushing trees suffered significantly less growth reductionfollowing defoliation. The same trees consistently broke budearly over 4 years of observations. Early bud burst was notcorrelated with height, girth or defoliation. No reattack by aphids was observed in the experiment until 1985–86and in this minor infestation the trees previously colonizedwere found to be significantly more likely to be recolonized. A novel measuring-rod for tree height is described.  相似文献   

4.
Ecophysiological models predicting timing of bud burst were tested with data gathered from 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing in northern Sweden in whole-tree chambers under climatic conditions predicted to prevail in 2100. Norway spruce trees, with heights between 5 and 7 m, were enclosed in individual chambers that provided a factorial combination of ambient (365 micromol mol-1) or elevated (700 micromol mol-1) atmospheric CO2 concentration, [CO2], and ambient or elevated air temperature. Temperature elevation above ambient ranged from +2.8 degrees C in summer to +5.6 degrees C in winter. Compared with control trees, elevated air temperature hastened bud burst by 2 to 3 weeks, whereas elevated [CO2] had no effect on the timing of bud burst. A simple model based on the assumption that bud rest completion takes place on a fixed calendar day predicted timing of bud burst more accurately than two more complicated models in which bud rest completion is caused by accumulated chilling. Together with some recent studies, the results suggest that, in adult trees, some additional environmental cues besides chilling are required for bud rest completion. Although it appears that these additional factors will protect trees under predicted climatic warming conditions, increased risk of frost damage associated with earlier bud burst cannot be ruled out. Inconsistent and partially anomalous results obtained in the model fitting show that, in addition to phenological data gathered under field conditions, more specific data from growth chamber and greenhouse experiments are needed for further development and testing of the models.  相似文献   

5.
Phenology can have a profound effect on growth and climatic adaptability of northern tree species. Although the large interannual variations in dates of bud burst and growth termination have been widely discussed, little is known about the genotypic and spatial variations in phenology and how these sources of variation are related to temporal variation. We measured bud burst of eight white birch (Betula pendula Roth) clones in two field experiments daily over 6 years, and determined the termination of growth for the same clones over 2 years. We also measured yearly height growth. We found considerable genetic variation in phenological characteristics among the birch clones. There was large interannual variation in the date of bud burst and especially in the termination of growth, indicating that, in addition to genetic effects, environmental factors have a strong influence on both bud burst and growth termination. Height growth was correlated with timing of growth termination, length of growth period and bud burst, but the relationships were weak and varied among years. We accurately predicted the date of bud burst from the temperature accumulation after January 1, and base temperatures between +2 and -1 degrees C. There was large clonal variation in the duration of bud burst. Interannual variation in bud burst may have important consequences for insect herbivory of birches.  相似文献   

6.
Western spruce budworm, Choristoneura occidentalis Freeman, larvae on small Douglas-fir (Pseudotsuga menziesii var. glauca [Beissn.] Franco) and western larch (Larix occidentalis Nutt.) trees were protected from ant and bird predation during fourth instar to pupation. Significantly greater budworm densities were found on protected trees than on the controls at the end of the experiment, and significantly greater feeding injury was associated with increased budworm densities on fir. It is concluded that ants and birds remove budworm larvae feeding on small conifer trees and reduce injury up to 50%.  相似文献   

7.
8.
The ecological effects of planting exotic Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] in Central Europe are still poorly understood. The aim of this study was to answer the question of whether Douglas-fir affects tree specific arthropod communities in different mature forest types (Douglas-fir, spruce and beech dominated) in Southern Germany. Therefore, arthropod communities of stem and tree crown strata of Douglas-fir and spruce (Picea abies L.) were sampled in the years 1999–2001 using arboreal photo-eclectors and flight interception traps. Statistical analysis was conducted for all species and focused on conifer specialists at three levels: (1) species diversity, (2) guild structure and (3) community structure. Within the stem stratum, species diversity was significantly higher on spruce than on Douglas-fir independent of year and stand composition. This could not be explained by a single feeding guild, rather by species changing strata during the vegetation period. In contrast, species diversity in tree crowns was approximately the same for both conifer species. However, communities in Douglas-fir crowns were conspicuously different from those in spruce crowns, especially in the Douglas-fir dominated stand type. While zoophagous insects exhibited higher activity on Douglas-fir in 2000, xylophagous beetles were more abundant on spruce in 2001. In European beech stands with widely spaced Douglas-fir trees, the site specific and broad-leaved tree related fauna might be maintained. In addition, Douglas-fir with its resource of Adelges cooleyi and crowns that overtop the broad-leaved tree canopy, offer additional resources for several aphidophagous and thermophile species.  相似文献   

9.
We examined effects of elevated CO(2) and temperature on cold hardiness and bud burst of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Two-year-old seedlings were grown for 2.5 years in semi-closed, sunlit chambers at either ambient or elevated (ambient + ~ 4 degrees C) air temperature in the presence of an ambient or elevated (ambient + ~ 200 ppm) CO(2) concentration. The elevated temperature treatment delayed needle cold hardening in the autumn and slowed dehardening in the spring. At maximum hardiness, trees in the elevated temperature treatment were less hardy by about 7 degrees C than trees in the ambient temperature treatment. In general, trees exposed to elevated CO(2) were slightly less hardy during hardening and dehardening than trees exposed to ambient CO(2). For trees in the elevated temperature treatments, date to 30% burst of branch terminal buds was advanced by about 6 and 15 days in the presence of elevated CO(2) and ambient CO(2), respectively. After bud burst started, however, the rate of increase in % bud burst was slower in the elevated temperature treatments than in the ambient temperature treatments. Time of bud burst was more synchronous and bud burst was completed within a shorter period in trees at ambient temperature (with and without elevated CO(2)) than in trees at elevated temperature. Exposure to elevated temperature reduced final % bud burst of both leader and branch terminal buds and reduced growth of the leader shoot. We conclude that climatic warming will influence the physiological processes of dormancy and cold hardiness development in Douglas-fir growing in the relatively mild temperate region of western Oregon, reducing bud burst and shoot growth.  相似文献   

10.
A random sample of Douglas-fir, Pseudotsuga menziesii var. glauca (Beissn.) Franco, and grand fir, Abies grandis (Dougl.), in Idaho in the United States, treated with Orthene Medicaps (acephate) in 1979 was treated again in 1980. One year after the second treatment in 1980, twice-treated (treated in 1979 and 1980) and once-treated (treated only in 1979) grand fir had significantly fewer western spruce budworm larvae per 100 buds than did control trees, and twice-treated grand fir had significantly fewer larvae than did once-treated. Defoliation of new shoots on twice-treated and once-treated grand fir was significantly less than that on control trees; defoliation did not differ significantly between twice-treated and once-treated trees for either species. Residues of acephate and methamidophos, its metabolite, monitored in midcrown foliage were detected 1 year after treatment.  相似文献   

11.
Effects of elevated temperature and atmospheric CO2 concentration ([CO2]) on spring phenology of mature field-grown Norway spruce (Picea abies (L.) Karst.) trees were followed for three years. Twelve whole-tree chambers (WTC) were installed around individual trees and used to expose the trees to a predicted future climate. The predicted climate scenario for the site, in the year 2100, was 700 micromol mol-1 [CO2], and an air temperature 3 degrees C higher in summer and 5 degrees C higher in winter, compared with current conditions. Four WTC treatments were imposed using combinations of ambient and elevated [CO2] and temperature. Control trees outside the WTCs were also studied. Bud development and shoot extension were monitored from early spring until the termination of elongation growth. Elevated air temperature hastened both bud development and the initiation and termination of shoot growth by two to three weeks in each study year. Elevated [CO2] had no significant effect on bud development patterns or the length of the shoot growth period. There was a good correlation between temperature sum (day degrees>or=0 degrees C) and shoot elongation, but a precise timing of bud burst could not be derived by using an accumulation of temperature sums.  相似文献   

12.
Tree-ring analysis was applied to assess the impacts of the fungal disease Swiss needle cast on the radial growth of mature Douglas-fir (Pseudotsuga menziesii) forests in the western Oregon Coast Range. Although considered endemic to the Pacific Northwest, Swiss needle cast has significantly lowered productivity in Douglas-fir forests only in the past 20–30 years. To date, studies on Swiss needle cast impacts have almost exclusively involved young (<30 years) plantation trees. To better describe the history of Swiss needle cast and its impacts on older (>80 years) trees, we extracted tree cores from dominant and codominant Douglas-fir and western hemlock (Tsuga heterophylla) in three even-aged stands in western Oregon. In the least affected stand growth rates of both species did not significantly differ, while at the most severely diseased site Douglas-fir radial growth was reduced by as much as 85%. Growth reductions likely associated with Swiss needle cast were dated to as early as 1950, though the most severe impacts occurred after 1984. An index of Swiss needle cast severity significantly (p < 0.01) related to instrumental records of air temperatures such that warm conditions from March through August were associated with reduced radial growth at the most severely affected site. Overall, this study demonstrates that even mature forests of natural origin are susceptible to severe growth reductions by Swiss needle cast, that warmer spring and summer temperatures are associated with Swiss needle cast impacts, and that the disease appears to be increasing in severity.  相似文献   

13.
Four sources of 23-year-old black spruce (Picea mariana (Mill.) B.S.P.) from a provenance test at the Petawawa National Forestry Institute (46 degrees N, 77 degrees 30' W) were assessed for height growth, shoot phenology and seasonal gas exchange. The provenances were designated 7000 (Yukon, 63 degrees 34' N, 135 degrees 55' W), 6979 (Alberta 52 degrees 22' N, 115 degrees 15' W), 6908 (Ontario, 48 degrees 59' N, 80 degrees 38' W) and 6901 (Ontario, 45 degrees 10' N, 77 degrees 10' W). Trees of southern provenances (6901 and 6908) were considerably taller, and broke bud and ceased growth later than trees of northern provenances (6979 and 7000). In early spring, trees of northern provenances had higher net photosynthetic rates (P(n)) than trees of southern provenances (6908 and 6901). During midsummer, trees of Provenance 7000 generally had the highest P(n) as a result of low rates of shoot dark respiration (R(d)). Trees of northern provenances displayed an earlier autumn decline in P(n) than trees of southern provenances. Provenance differences in growth, shoot phenology and physiology agreed well with results from a greenhouse study of seedlings from the same provenances. We conclude that the poor growth performance of trees of northern provenances in Ontario was associated with: (1) a short period of shoot growth, (2) a high rate of dry matter partitioning to roots, (3) low rates of late-season P(n) in response to decreasing photoperiod, and possibly, (4) a high rate of root R(d).  相似文献   

14.
The effect of the removal of cork was studied in 11-years old cork oak trees (Quercus suber L.), growing in favorable conditions, in relation to phenology and radial growth during two years. Longevity of leaves was 14–15 months (1996, 1998) and 10 months (1997). Bud burst started in mid-February and leaf flushing in April, extending until June. Neither a distinct two-period flushing nor an autumn bud burst or leaf flushing were observed. Radial growth started in mid-April and continued until the end of November, with the maximum growth in June and July. In trees with the removal of cork, leaf abscission occurred a little earlier and new branches had on average 23% fewer new leaves. The radial growth of the trees and its general seasonal pattern were not affected by cork removal in the year of removal or in the year after. The only observation was a shift of the maximum radial growth rate from June to July for the trees where cork had been removed.  相似文献   

15.

Tree mortality and growth losses following insect defoliation are poorly documented in Scandinavia. In 1990-1991, Diprion pini (L.) caused extensive defoliation to Scots pine in Lauhanvuori national park and surrounding areas in south-western Finland. Most trees lost all their foliage in 1990. In 1991, the outbreak area was sprayed with diflubenzuron (Dimilin®), except in the national park, where trees were severely defoliated again. No further defoliation occurred in 1992. In spring 1993, sprayed trees had ca 30% foliage, whereas unsprayed trees on average carried less than 10% of full foliage. The latter trees were susceptible to attack by Tomicus piniperda (L.), whereas the former largely escaped beetle attack. Beetle attacks peaked in 1993, and depletion of suitable host trees probably terminated the beetle outbreak in the area. Two years of severe defoliation resulted in substantial tree mortality and growth losses. In spring 1997, these unsprayed stands had suffered a ca. 50% loss in basal area which was mainly because of mortality, and about half of the dead trees had been attacked by T. piniperda. Surviving trees had ca 50% of full foliage, and radial growth had still not recovered. Basal area growth was reduced by 40-70%, depending on the amount of foliage left after the second year of defoliation. In contrast, tree mortality and beetle attack in the sprayed stands were negligible, and these trees had recovered full foliage and radial growth by spring 1997. Thus, one year of total defoliation resulted in an estimated loss in basal area growth of approximately 30% during ca. 5 yrs. In conclusion, the spraying operation was economically justified, as it prevented substantial tree mortality and reduced growth losses.  相似文献   

16.
The phloem-feeding aphid Essigella californica represents a potential threat to the productivity of Pinus radiata plantations in south-eastern Australia. Five- and nine-year-old field trials were used to characterize the effects of artificial and natural aphid-induced (E. californica) defoliation, respectively, on shoot photosynthesis and growth. Photosynthetic capacity (A(max)) was significantly greater following a 25% (D25) (13.8 μmol m(-2) s(-1)) and a 50% (D50) (15.9 μmol m(-2) s(-1)) single-event upper-crown artificial defoliation, 3 weeks after defoliation than in undefoliated control trees (12.9 μmol m(-2) s(-1)). This response was consistently observed for up to 11 weeks after the defoliation event; by Week 16, there was no difference in A(max) between control and defoliated trees. In the D50 treatment, this increased A(max) was not sufficient to fully compensate for the foliage loss as evidenced by the reduced diameter increment (by 15%) in defoliated trees 36 weeks after defoliation. In contrast, diameter increment of trees in the D25 treatment was unaffected by defoliation. The A(max) of trees experiencing upper-crown defoliation by natural and repeated E. californica infestations varied, depending on host genotype. Despite clear differences in defoliation levels between resistant and susceptible genotypes (17 vs. 35% of tree crown defoliated, respectively), growth of susceptible genotypes was not significantly different from that of resistant genotypes. The observed increases in A(max) in the lower crown of the canopy following attack suggested that susceptible genotypes were able to partly compensate for the loss of foliage by compensatory photosynthesis. The capacity of P. radiata to regulate photosynthesis in response to natural aphid-induced defoliation provides evidence that the impact of E. californica attack on stem growth will be less than expected, at least for up to 35% defoliation.  相似文献   

17.
The study was made to assess the relationship between visually estimated defoliation class and a number of other variables depicting the vitality of Norway spruce (n=50). Variables characterizing crown size and condition were determined on the standing trees. Electrical impedance (an indication of the physiological status of a tree) was measured in the inner bark tissue of the living trees. Shoot growth and needle variables were determined from the detached sample branches. Negative correlations were found between defoliation class and the growth parameters (5‐year height, radial and volume growth of the trunk). Positive correlations were observed between the needle loss class and the abundance of branch damage, secondary shoots and impedance values. 18 variables (defoliation excluded) describing tree size and vitality were summarized in a factor analysis incorporating 5 factors. These were interpreted as 1) vitality, 2) foliage discoloration, 3) tree size, 4) needle number and 5) needle size factors. The tree‐specific score values for the first factor were interpreted as “vitality indices”;. The rank correlation between these score values and defoliation degree was 0.835. This result suggests that the defoliation class and vitality parameters contributing to the first factor give a consistent estimate of the tree condition.  相似文献   

18.
We studied the defense reactions of 33-year-old susceptible and resistant clones of Norway spruce (Picea abies (L.) Karst.) to the major root-rot fungus Heterobasidion annosum (Fr.) Bref. and determined if tissue cultures can be used as a model system for studying defense responses of mature trees at the molecular level. Quantitative PCR analysis of genomic DNA obtained from samples taken at different times along the lesion length in living bark indicated that the fungus was present in higher amounts and extended further into the host tissue in the susceptible clone than in the resistant clone. In protein extracts from the same lesion samples, there were differences in temporal and spatial changes in host chitinase isoform profiles between the resistant and susceptible clones. Host chitinase isoforms with pI values approximately 4.8, 4.4 and 3.7 increased more during the first 7 days after wounding and inoculation and extended further along the lesion length in the resistant clone than in the susceptible clone. These results suggest that the time from wounding and infection to induction of defense-related expression is shorter in the resistant clone indicating a more efficient host defense response than in the susceptible clone. Tissue cultures from the same clones were not resistant to H. annosum and showed no difference in the timing of the increase in chitinase isoforms in response to the pathogen. However, tissue cultures from both clones showed an increase in chitinase isoforms within 6 to 24 h past inoculation, indicating that increased chitinase expression in response to the pathogen is part of a general defense response common to both mature clones and tissue cultures.  相似文献   

19.
Bud flushing is very important for the survival and growth of trees, a phenomenon matched each year with the annual course of temperature and the timing of bud flushing in the spring. Essentially it represents a serious ecological and evolutionary tradeoff between survival and growth. The most suitable timing of bud burst permits trees to begin growth sufficiently early to take advantage of favorable spring conditions, but late enough to decrease the risks of tissue damage from late frost. In the present study bud burst spring phenology of poplar (Populus tremula and P. tremuloides) from eight different provenances, originating from Europe and the USA, was observed during March and April, 2009. The experimental plot was located at Solling, Germany (51°44′0″ N, 9°36′0″ E). A six stage subjective scoring system of bud burst phenology was used to identify the phenological stages of the seedlings, where each plant was observed twice a week. The aim of the study was to predict phenotypic variation in poplar, originating from regions between 42° and 60° N latitude, growing in similar environments. Timing of bud flushing of poplar was recorded. It was found that seedlings of provenance 3, which originated from 42.35° N latitude, started and completed flushing significantly earlier than those of other provenances, while seedlings of provenance 5, originating from 54.29° N latitude, started flushing very late and only a few plants reached top scoring at the end of the experimental period. Analysis of variance showed statistically highly significant differences (p < 0.05) in bud flushing among the provenances. The correlation between scoring and flushing periods was very strong within provenances although the flushing pattern differed among provenances (origin of the planted seedlings). Bud flushing showed a negative correlation with the origin of the planted seedlings. Given the field experience gained with this experiment, it is recommended that seedlings from provenances 5 and 8 could be used for future plantations where late frost may be a problem for the young shoots of seedlings.  相似文献   

20.
The traumatic wound response of families of white spruce, Picea glauca (Moench) Voss, resistant or susceptible to the white pine weevil, Pissodes strobi (Peck), were compared after simulated weevil damage. Leaders from 331 trees were wounded just below the apical bud in the spring, coinciding with the natural time of weevil oviposition. A portable 1-mm diameter drill was used to drill 24 holes per leader. Leaders were removed in the fall and examined for evidence of traumatic resin canal formation. Drilled trees had a traumatic wound response 8 times greater than that of undrilled trees; however, undrilled trees also formed some resin canals in response to unknown causes. In the drilled trees, the traumatic wound response extended into the lower part of the leader, where it could possibly affect older larvae. Trees from resistant families responded with greater intensity than trees from susceptible families, by producing multiple rings of traumatic resin canals. Trees from resistant families also responded more rapidly than trees from susceptible families based on number of cells to the first ring of traumatic resin canals. Trees from some resistant families exhibited no traumatic resin canal formation, showing considerable within-family variation and suggesting that other resistance mechanisms might be important. In the year after drilling, there was a reduction in tree diameter growth and trees suffered a reduction in constitutive resin canals in the bark, which suggests some energetic cost of traumatic resin production. There was no indication that the extent of constitutive defenses, as measured by density of cortical resin canals before wounding, was related to the ability to produce traumatic resin canals. Screening trees based on their capacity to produce traumatic resin canals may be useful in selecting genotypes resistant to white pine weevil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号