首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study investigated the impact of long‐term soil management on the metal retention capacity of soil. We examined the sorption behaviour of Cu, Cd and Zn in soils and in the various particle‐size fractions of these soils, which had been amended with farmyard manure, mineral fertilizers or were fallow for 38 years in a long‐term field experiment. The soils investigated contained different amounts and origins of organic matter and differed in soil pH, but the mineral phase showed less response to the different soil managements. Batch adsorption and desorption experiments as well as a sequential fractionation schema, which defines seven geochemical fractions, were used to investigate the retention properties of soil. Sequential extraction was conducted with original as well as with metal‐spiked soils. Results showed that amounts of Cu, Cd and Zn retained differed by a factor of more than 3 among the treatments in the long‐term field experiment, when a massive concentration of metal was added to soil. An increased sorption on smaller particle size fractions occurred (clay ≫ silt > fine sand ≥ coarse sand) due to the larger surface area as well as the greater carbon content in the smaller fractions. Soil sorption behaviour in another long‐term field experiment was estimated based on the present particle‐sorption data. Differences in the sorption behaviour were related to differences in soil mineralogy and amounts of Fe‐ and Mn‐oxides. Fractionation of the original and the metal‐spiked soil underlined the contribution of organic matter to sorption capacity (sequence: Cu ≫ Cd > Zn). Different organic matter contents and a different soil pH considerably changed the amounts of metals in the defined geochemical fractions. Freshly added Cu, Cd and Zn ions were found mainly in more mobile fractions. In contrast, metals in non‐spiked soils appeared in less‐mobile fractions reflecting their long‐term sorption behaviour.  相似文献   

2.
Marginal coastal soils are dependent on appropriate land management to prevent soil erosion, as a result of low soil stability combined with exposure to strong winds. An example of such an area is the machair, a fixed dune system utilized for agriculture in the northwest of Scotland, UK. The separate and combined effects of synthetic NPK fertilizer and a traditional soil conditioner (kelp, a seaweed) on soil structure formation, stabilization and biological parameters were studied on a cropped field on the machair. Soil physical properties examined included water retention at 10 kPa matric suction, water stable aggregates (WSA) >1 mm, aggregate stability, and biological properties including ester-linked fatty acid (ELFA) analysis and β-glucosidase activity for microbial biomass and activity, respectively. Significant treatment effects were few and inconsistent between sampling times, but included kelp and/or NPK fertilizer reducing aggregation, water retention, microbial biomass and activity relative to the unamended control treatment. Furthermore, seasonal variation, which could be attributed to changes in soil water content, was stronger than variation in response to fertilizer treatments. Principal components analysis of the ELFA data showed that ploughing promoted fungal biomass relative to bacteria, and confirmed both the absence of consistent synthetic and organic fertilizer effects and the sensitivity of microbial biomass to season. Overall, the study demonstrated the resilience of a calcareous sandy soil to amendment with fertilizer.  相似文献   

3.
Column experiments were conducted over 45 d to determine the degree of P mobility. The sandy loam soil was spiked with 200 mg P kg–1 and 5% organic residues. The treatments included: control without any water‐soluble P and plant residues, potato, wheat, water‐soluble P fertilizer, wheat + water‐soluble P, and potato + water‐soluble P. Each column was leached with distilled water, and leachates were collected and analyzed for P, K+, Ca2+, Mg2+, along with pH and EC. Sequential extraction was performed on soil samples at the end of leaching column experiments. The relatively high initial concentration of P in the leachates decreased to more stable values after 15 d which can be attributed to the colloid‐bound P. The P concentrations in the leachates fluctuated between 8 and 220 mg L–1 in the water‐soluble–P fertilizer treatment, between 0.80 and 230 mg L–1 in the potato + water‐soluble‐P treatment, and between 0.90 and 214 mg L–1 in the wheat + water‐soluble P treatment. Leaching loss of P mainly occurred in the 15 d of leaching, accounting for 94%, 88%, and 65% of total P leached in wheat + water‐soluble‐P, potato + water‐soluble‐P, and water‐soluble‐P treatments, respectively. Maximum amount of P leached was found from an exponential kind model and was in the range 0.45 mg kg–1 to 125.4 mg kg–1 in control and potato + water‐soluble‐P treatments, respectively. Sequential extraction results showed that in control and amended soils the major proportion of P was associated with Ca. The leachate samples in all treatments were saturated with respect to hydroxyapatite, β‐tricalcium phosphate, and octacalcium phosphate up to 20 d of leaching, whereas they were undersaturated with respect to Mg‐P minerals through the entire leaching experiment.  相似文献   

4.
ABSTRACT

Recently, the use of biochars for stabilization of soil heavy metals has been expanded due to their adsorption characteristics, low cost and carbon storage potential. A factorial experiment was performed to investigate the effects of two plant residue biochars (licorice root pulp and rice husk biochar each applied at 2.5% (w/w)) produced at two temperatures (350 and 550 °C), and three Ni application rates (0, 150 and 300 mg Ni kg?1) on bioavailability and chemical fractions of Ni in a calcareous soil after spinach cultivation. Application of all the biochars significantly reduced Ni bioavailability factor (5–15%) and spinach Ni concentration (54–77%) in Ni-treated soil. The biochars produced at 550 °C were more effective at reducing Ni mobility and Ni uptake by spinach than those produced at 350 °C, attributed to higher CaCO3 and lower acidic functional group content, which resulted in greater enhancement of soil pH. When comparing the biochars produced at the same temperature, the rice husk biochars were the most effective in reducing Ni bioavailability, likely due to their lower acidic functional group content and higher nano-silica content which resulted in higher soil pH values and potentially promoted the formation of Ni-silicates and hydroxides.

Abbreviations : Ni: Nickel; RHB: rice husk biochar; LRB: licorice root pulp biochar; WsEx: water soluble and exchangeable; CARB: carbonate form; RES: residual; MnOx; manganese oxides bound; AFeOx; amorphous iron oxides bound; CFeOx: crystalline iron oxides bound; OM: organic bound.  相似文献   

5.
Dissolved organic nitrogen (DON) is increasingly recognized as a pivotal pool in the soil nitrogen (N) cycle. Numerous devices and sampling procedures have been used to estimate its size, varying from in situ collection of soil solution to extraction of dried soil with salt solutions. Extractable organic N (EON) not only consists of DON but contains also compounds released from soil biomass and desorbed organic matter. There is no consensus whether DON or EON primarily regulates N mineralisation in soil, and their contribution to N mineralisation has not been quantified simultaneously. We evaluated three sampling procedures on their ability to determine the dynamic of dissolved organic N pools. The three procedures were the determination of DON in 1) soil solution collected by centrifugation, and the determination of EON in 2) a 0.01 M CaCl2 extract of field moist or 3) dried soil. We added unlabeled leek and 15N-labeled ryegrass residues to a loamy sandy soil to create a temporarily increase in DON and EON, to stimulate microbial activity, and to test whether the source and dynamics of the three pools differ. We also tested whether the flow of N through DON or EON was associated with the production of inorganic N using 15N isotope tracing. Sampling procedures significantly affected the amount, but not the dynamics and origin of the three organic N pools. DON and EON (determined on field-moist and dried soils) showed all a significant increase upon crop amendment and returned to their background concentrations within 10 to 30 days. The fraction of DON and EON originating from the crop residue slightly decreased over 138 days and was not different for DON and EON. Field moist extraction of a loamy sandy soil with 0.01 M CaCl2 gave a reliable estimate of the concentration of in situ dissolved organic N. In contrast, extraction of dried soil significantly increased EON compared to DON. The agreement in dynamics, 15N enrichment and C-to-N ratio’s indicate that dissolved and extracted organic N have a similar role in N mineralisation. Our results also suggest that they make a minor contribution to N mineralisation; changes in the turnover rate of EON were not associated with changes in the net N mineralisation rate.  相似文献   

6.
This study was conducted to evaluate the redistribution of the heavy metals Cd, Cu, Pb, Ni, and Zn among different soil fractions by N fertilizers. In a lab experiment, soil columns were leached with distilled water, KNO3, NaNO3, NH4NO3, or Ca(NO3)2 · 4H2O. After leaching, soil samples were sequentially extracted for exchangeable (EXCH), carbonate (CARB), organic‐matter (OM), Mn oxide (MNO), Fe oxide (FEO), and residual (RES) fractions. Distilled water significantly increased the concentrations of Cd and Ni in EXCH fraction, while concentration of Cu and Zn did not change significantly. Application of KNO3, NaNO3, NH4NO3, or Ca(NO3)2 · 4H2O significantly increased the concentrations of Cd and Zn in EXCH fraction, while concentration of Pb and Ni was decreased. Application of all fertilizers caused an increase of Cu in the OM fraction. Moreover, leaching with these solutions significantly increased Cd [except in Ca(NO3)2 · 4H2O], Cu, and Zn concentrations in the CARB fraction, while Pb and Ni concentrations were decreased. With application of all leaching solutions, Zn in the EXCH, CARB, FEO, and MNO fractions was significantly increased, while Zn in the OM fraction did not change. The mobility index indicated that Ca(NO3)2 · 4H2O increased the mobility of Cd, Cu, and Zn in the soil, whereas NaNO3 decreased the mobility of Pb and Ni in the soil. The mobility index of Pb decreased by all leaching solutions. Thus, these results suggest that applying N fertilizers may change heavy‐metal fractions in contaminated calcareous soil and possibly enhance metal mobility and that N‐fertilization management therefore may need modification.  相似文献   

7.
Journal of Soils and Sediments - The difference in copper (Cu) availability between soils can be a result of different distribution of Cu forms in various size fractions of aggregates. This study...  相似文献   

8.
Chen  Yanlong  Shi  Jianglan  Tian  Xiaohong  Jia  Zhou  Wang  Shaoxia  Chen  Juan  Zhu  Wenling 《Journal of Soils and Sediments》2019,19(2):774-784
Purpose

Crop straw return into arable land is a common method of disposing of excess straw in China and can improve soil dissolved organic matter (DOM) that is known to modify soil zinc (Zn) extractability and mobility.

Materials and methods

We conducted a soil box (internal dimensions, 160?×?140?×?80 mm3) experiment to evaluate the response of Zn extractability and transfer by diffusion to DOM after maize straw amendment (St, 0 and 15 g kg?1) in calcareous soil treated with ZnSO4·7H2O (Zn, 0 and 20 mg kg?1). Soil treated with St0Zn0 (control), St15Zn0, St0Zn20, or St15Zn20 was isolated in the 10-mm center of the box, and untreated soil was placed in compartments at either side.

Results and discussion

Results revealed that addition of St0Zn20 or St15Zn20 increased the concentration of Zn extracted with diethylenetriaminepentaacetic acid (DTPA-extractable Zn) in the central layer compared with control or addition of St15Zn0. Over the course of 45 days, transfer of DTPA-extractable Zn into the adjacent untreated soil was detected at 15–20 mm in soil with St15Zn20 but at 10–15 mm with St0Zn20 and only 0–5 mm with St15Zn0. Additionally, a higher amount of DTPA-extractable Zn transfer into the adjacent untreated soil also occurred in St15Zn20. This increased DTPA-extractable Zn transfer may be associated with the formation of Zn-fulvic acid complexes with the provision of DOM derived from straw.

Conclusions

Soluble Zn combined with straw return may be a promising strategy for improving both Zn mobility and extractability in calcareous soil.

  相似文献   

9.
A pot experiment was conducted to investigate the role of magnesium (Mg) in plant utilization of 32phoshorus (P)‐labelled P in a calcareous soil (Typic Hapluquent). Results with two successive harvests of ryegrass shoots indicated that Mg had no obvious influence on plant uptake of the P applied. In a separate incubation study with the same soil, labelled P along with different levels of Mg was introduced to the soil at two time intervals and soil inorganic P was fractionated. The isotope data of P in various fractions indicated that Mg at the test levels had no obvious influence on P transformation either. It is suggested from the experiments that Mg is unlikely to be able to promote plant utilization of fertilizer P in calcareous soils.  相似文献   

10.
Zhou  Zhidong  Yan  Taotao  Zhu  Qian  Bu  Xiaoli  Chen  Bin  Xue  Jianhui  Wu  Yongbo 《Journal of Soils and Sediments》2019,19(1):356-365
Journal of Soils and Sediments - Biochar as a promising soil amendment is poorly explored on the coarse and infertile karst soils in the ecological restoration region. The aim of this study is to...  相似文献   

11.
土壤锌、铁、铜、锰形态的分布及其与植物有效性的关系   总被引:6,自引:0,他引:6  
The distribution of various fractions of Zn,Fe,Cu and Mn in 15 types of soils in China and its relationship with plant availability were studied.Fractions of various elements were found to have some similar characterstic distribution regularities in various types of soils,but various soil types differed to varying degrees in the distribution of each fraction.Soil physico-chemical properties,such as pH,CEC and the contents of OM,CaCO3,free Fe,free Mn and P2O5,were significantly correlated with the distribution of elemental fractions,and a significant correlation also existed between the distribution and plant availability of elemental fractions.Various fractions of each element were divided into two groups based on their plant availability.The correlation between the distribution of combination fractions and plat availability indicated a significantly or an extremely significantly positive correlation for Group I but a significantly or an extremely significantly negative correlation for Group II.Therefore,the fractions in Goup I were primary pools of available nutrients,while those in Group II could hardly provide available nutrients for plants.Decreasing the transformation of corresponding elements into fractions of Group II and increasing the storage capacity of various fractions of Group I were an important direction for regulation and controlling of soil nutrients.However,some Particular soils with too high contents of Zn,Fe,Cu and Mn should be regulated and controlled adversely.  相似文献   

12.
13.
A long-term (21-year) field experiment was performed to study the responses of soil inorganic P fractions and P availability to annual fertilizer P application in a calcareous soil on the Loess Plateau of China. Soil Olsen-P contents increased by 3.7, 5.2, 11.2 and 20.6 mg P kg-1 after 21-year annual fertilizer P application at 20, 39, 59, and 79 kg P ha-1, respectively. Long-term fertilizer P addition also increased soil total P and inorganic P (Pi) contents significantly. The contents of inorganic P fractions were in the order of Ca10-P > Ca8-P > Fe-P > Al-P > occluded P > Ca2-P in the soil receiving annual fertilizer P application. Fertilizer P application increased Ca8-P, Al-P and Ca2-P contents as well as their percentages relative to Pi. Pi application increased Fe-P and occluded P contents but nor their percentages. Soil Ca10-P content remained unchanged after fertilizer P application while its percentage relative to Pi declined with increasing fertilizer P rate. All Pi fractions but Ca10-P were correlated with Olsen-P significantly. 90% of variations in Olsen-P could be explained by Pi fractions, and the direct contribution of Ca8-P was predominant. Long-term annual superphosphate application would facilitate the accumulation of soil Ca8-P, and thus improve soil P availability.  相似文献   

14.
In this study of the behavior of coumaric acid added to soil, the disappearance of the acid was found to be due to adsorption plus microbial degradation, and was influenced by the concentration and contact time. Adsorption experiments set up with soils varying widely in their chemical and physical properties, showed that the Freundlich isotherm fits the data quite well and that among the different soil factors, only the pH was closely and negatively correlated with coumaric acid adsorption. Approximately at pH > 7 no adsorption occurred, perhaps due to the repulsion between the negatively charged soil colloids and the dissociated acidic groups of coumaric acid. Adsorption experiments carried out with different adsorbents showed that the hydroxy-Fe compound was the most effective in retaining coumaric acid, followed by humic acid, illite, kaolinite and vermiculite, in this order.  相似文献   

15.
Poultry manure (PM) contains a large proportion of phosphorus (P) in mineral-associated forms that may not be readily available for plant uptake. In addition, PM application influences both chemical and biotic processes, and can affect the lability of native soil P. To investigate the effects of PM on soil P availability, we grew ryegrass (Lolium perenne) in greenhouse pots amended with poultry manure. Biomass was harvested at 4, 8, and 16 weeks following PM application, with soil separated into rhizosphere and bulk fractions. Soil was sequentially extracted by H2O, 0.5 M NaHCO3, 0.1 M NaOH, and 1 M HCl, and inorganic P (Pi) and enzymatically hydrolyzable organic P (Poe) were quantitated. Root P concentrations were 37% higher and total P uptake 59% higher with PM application than Control. At week 16, there was 30% more labile-Pi (H2O- plus NaHCO3-Pi) in the rhizosphere with PM than in Control. Phosphodiesterase activity increased with PM application. Furthermore, acid phosphomonoesterase, alkaline phosphomonoesterase, and phosphodiesterase activities were all higher in the rhizosphere than in bulk soil at week 16 with PM, indicating that increased labile-Pi was due primarily to stimulation of soil phosphatases to mineralize NaOH-Poe. Soil pH increased with PM application and plant growth, and may have promoted P availability by decreasing sorption of Al- and Fe-associated inorganic and organic phosphates. These results demonstrate that whereas PM application may initially increase NaOH and HCl-Pi, these fractions can be readily changed into labile-P and do not necessarily accumulate as stable or recalcitrant P in soil.  相似文献   

16.
为研究水溶性磷肥在石灰性土壤中的转化,采用室内土壤培养的方法,在土壤中分别添加过磷酸钙0、6.25、12.5、25、50和100 mg/kg干土(即P0、P6.25、P12.5、P25、P50和P100处理),保持土壤湿度为田间持水量的70%~80%,在25℃恒温培养箱中培养120 d。培养期间在第1、3、7、15、30、60和120 d连续采样,测定土壤Olsen-P、CaCl2-P和各无机磷组分的含量。结果表明,在石灰性土壤中施用过磷酸钙能显著增加土壤Olsen-P和CaCl2-P含量,在一定的培养时间内,过磷酸钙转化为土壤Olsen-P和CaCl2-P的比例不随施肥量的变化而变化。随着培养时间的延长,土壤有效磷含量逐渐下降,尤其是培养前期(前7 d)土壤有效磷含量显著下降,之后下降速率减缓。施入土壤中的过磷酸钙主要转化为Ca2-P和Ca8-P(两者之和约占90%),其次是Al-P和Fe-P(两者之和约占10%),在短期内O-P和Ca10-P相对较为稳定。随着培养时间延长,Ca2-P逐渐向Ca8-P转化,在培养的前30 d转化速率较快,之后速率减缓。随着磷肥施用量的增加,Ca2-P转化为Ca8-P所需的时间逐渐延长。Olsen-P和CaCl2-P含量均与土壤无机磷组分中的Ca2-P、Ca8-P和Al-P含量呈显著正相关,通过逐步回归分析表明,其中Ca2-P是土壤Olsen-P和CaCl2-P的主要来源。  相似文献   

17.
ABSTRACT

Utilizing the proper techniques of plant residue composting can play a significant role in reducing the adverse environmental impacts of chemical fertilizers. Herein the effects of commercial poultry manure (CPM) and composted pistachio residues (CPR) on nutrient availability and saffron daughter corms behavior in a calcareous soil were evaluated as a greenhouse experiment based on completely randomized design arranged in factorial with three replicates. In this study, CPM rates (0, 3, 6, and 9 t ha?1) and CPR levels (0, 20, 40, and 60 t ha?1) were assigned as the first and the second experimental factors, respectively. From the results, CPM or CPR application caused a significant increase in small (≤5 g), mid (5.1–10 g) and large-sized (10.1–15 g) daughter corms number. The highest N (P) concentration in small, mid and large-sized daughter corms was recorded when 9 t ha?1 CPM was applied along with 60 t ha?1 CPR. Soil organic carbon content increased with increasing CPM or CPR levels. The same trend was also observed for soil available N, P, K, and electrical conductivity. By contrast, CPM or CPR levels caused a significant reduction in soil pH. According to the results, pistachio compost can be considered as an eco-friendly alternative to chemical fertilizers to improve soil fertility in saffron farms.  相似文献   

18.
The application of sewage sludge on farmland is practised in many countries since sludge is rich in macro- and micro- nutrients. However, increasing use of sewage sludge on farmland has raised concerns about the potential transport of heavy metals into food chains and groundwater. This study determined for a calcareous soil the effects of sludge application on soil physical properties and transport of zinc (Zn), copper (Cu), and lead (Pb). Secondary anaerobic digested sewage sludge was applied at rates of 0, 25, 50, and 100 t/ha (on a dried weight basis) for four consecutive years and mixed in the top 20-cm of soil. Corn (Zea mays L.) was planted as a spring crop, followed by wheat (Triticum aestivum) as a winter crop. Sludge application increased the dissolved organic matter content and modified the soil structure, increased the soil infiltration rate, saturated hydraulic conductivity, and aggregate stability, and decreased the bulk density. Sludge application greatly increased DTPA (diethylenetriamine pentaacetic acid)-extractable soil metal concentrations to 50 cm depth and significantly to 1 m. In the plots that received four application of 100 t/ha sewage sludge, the mean concentrations of Zn, Cu, and Pb in subsoil increased by 1600, 7, and 4.5 times, respectively, compared with the control. The results indicate that a combination of enhanced soil physical properties, heavy and inefficient irrigation and high organic matter content with heavy metals cause significant metal mobility. High sludge applications pose risks of groundwater and food chain contamination and rates are best restricted to those reflecting the nutrient demand of crops (20 t/ha every 4 to 5 yr or an average of 4 to 5 t/ha/yr).  相似文献   

19.
Limited information is available on the effect of preceding crop on phytoavailability of zinc (Zn) in soil. This pot experiment examined the effect of four preceding crops including clover, sunflower, safflower, and sorghum residues on shoot and grain Zn uptake by two wheat genotypes differing in Zn-deficiency tolerance Back Cross and Kavir in a calcareous Zn-deficient soil. Incorporation of all preceding crop residues into the soil significantly increased organic matter (OM) content, dissolved organic C (DOC), and diethylene triamine pentaacetic acid (DTPA) extractable Zn concentration in the soil. Residues of safflower and clover had the greatest effect on increasing DOC. Shoot and grain Zn concentrations were increased by incorporating all pre-crop residues into the soil although this increase was greater at safflower and clover treatments. Incorporation of sorghum residues into the soil had a negative effect on shoot and grain dry matter yield of wheat. Incorporation of safflower and clover residues into the soil increased Zn uptake by wheat shoot and grain. There was a positive significant correlation between shoot and grain Zn concentration with DOC in soil solution. It shows that DOC, produced from decomposition of crop residues, has facilitated Zn uptake by roots of wheat plants and particularly its transfer to grains.  相似文献   

20.
Copper(Cu)-based fungicide application to control foliar diseases in grapevine(Vitis vinifera L.) can increase soil Cu availability. Brazilian soils have high natural Cu and manganese(Mn) concentrations, increasing the potential for toxicity to grapevine plants. Application of amendment substances can reduce the concentrations of toxic chemical species of Cu and Mn in soil solution, especially for the soils grown with young plants. We evaluated the chemical speciation of Cu and Mn in soil soluti...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号