首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To investigate the changes in colloid osmotic pressure (COP) and total protein concentrations during routine general anesthesia in horses. STUDY DESIGN: Prospective, clinical study. ANIMALS: Twelve adult healthy horses aged 9.1 +/- 4.7 years and weighing 474 +/- 79 kg presented for elective surgery and 14 adult horses aged 8.7 +/- 7.3 years and weighing 510 +/- 85 kg. METHODS: All horses were premedicated with xylazine and anesthesia induced with ketamine, diazepam and guaifenesin, and maintained with isoflurane for 2.5 hours. Lactate Ringer's solution was administered at 11 mL kg(-1) hour(-1). Osmolality, COP, electrolytes, glucose, and lactate were measured with specific commercial analyzers. Total protein (TP) was determined with a refractometer and packed cell volume with centrifuged capillary tubes. In the second group of 14 horses samples were taken from both venous and arterial sites simultaneously and the above measurements performed. RESULTS: Before anesthesia, COP and TP were 22.2 +/- 2 mmHg and 6.9 +/- 0.4 g dL(-1), respectively. Within 15 minutes of anesthetic induction, COP and TP decreased significantly (19.9 +/- 1.9 mmHg and 6.3 +/- 1.9 g dL(-1); p < 0.01). During anesthesia COP and TP decreased in a linear form (COP r2 = 0.96 and TP r2 = 0.97). The COP and TP were 15 +/- 1.3 mmHg and 5.1 +/- 0.2 g dL(-1) at the end of anesthesia. Calculation of COP from TP values failed to accurately predict measured COP. Simultaneous arterial and venous samples in the 14 anesthetized horses yielded no differences for COP or TP. CONCLUSIONS AND CLINICAL RELEVANCE: The data indicate that COP, like TP, decreases over the course of routine anesthetic management of horses and venous versus arterial samples should reveal comparable information.  相似文献   

2.
ObjectiveTo investigate changes in colloid osmotic pressure (COP), total protein (TP) and osmolality (OSM) during anesthesia in horses given intravenous lactated Ringer’s solution (LRS) or LRS and hetastarch (HES).Study designProspective, clinical trial.AnimalsFourteen horses presented for surgery. Mean age 8.3 ± 1.9 years; mean weight 452 ± 25 kg.MethodsHorses were premedicated with xylazine intravenously (IV); anesthesia was induced with ketamine and diazepam IV, and maintained with sevoflurane. Butorphanol was administered IV with pre-medications or immediately after induction. Xylazine was administered IV for recovery if necessary. LRS was administered IV to all horses with a target rate of 5–10 mL kg?1 hour?1. Half of the horses also received 6% HES, 2.5 mL kg?1 over 1 hour in addition to LRS. Horses that received LRS only were considered the LRS group. Horses that received both LRS and HES were considered the LRS/HES group. Blood was drawn pre- and post-anesthesia, immediately following induction, and every 30 minutes throughout anesthesia. COP, TP and OSM were measured.ResultsCOP and TP significantly decreased at similar rates for both treatment groups from pre-anesthetic values. Pre-anesthetic COP was significantly greater in the LRS group when compared to the LRS/HES group pre-, post- and throughout anesthesia. In the LRS group post-anesthetic OSM was significantly different than the pre-anesthesia value and that for the LRS/HES group.Conclusions and clinical relevanceAdministration of IV HES (2.5 mL kg?1, over 1 hour) in combination with LRS does not attenuate the decrease in COP typically seen during anesthesia with crystalloid administration alone. Based on these results, administration of HES at this rate and total volume would not be expected to prevent fluid shifts into the interstitium through its effects on COP.  相似文献   

3.
Arterial blood was collected from 25 clinically normal horses immediately before and serially throughout the first hour of halothane oxygen anaesthesia. Blood was analysed for oxygen and carbon dioxide partial pressure (PaO2, PaCO2). Measurements of inspired oxygen concentration during anaesthesia permitted direct correlation with blood gases. Horses were divided arbitrarily into two groups based on their age: two to seven years, n = 15; over seven years, n = 10. Average (+/- sd) PaO2 and PaCO2 was 14.1 +/- 1.5 kPa (106 +/- 11 mmHg) and 5.9 +/- 0.6 kPa (44.4 +/- 4.4 mmHg) respectively in conscious, young horses and 14.0 +/- 0.7 and 5.8 +/- 0.5 kPa (105 +/- 5 and 43.3 +/- 3.8 mmHg) respectively in conscious older horses. Arterial oxygen tension decreased to 9.3 +/- 1.0 and 8.5 +/- 1.4 kPa (69.6 +/- 7.8 and 63.7 +/- 10.4 mmHg) in young and older air breathing horses respectively immediately following intravenous anaesthetic induction, recumbency and orotracheal intubation. At this time, PaCO2 was 6.5 +/- 0.5 and 6.0 +/- 0.7 kPa (48.7 +/- 3.5 and 45.1 +/- 4.9 mmHg) respectively. By 30 mins after the start of halothane in oxygen (6 litres/min) anaesthesia PaO2 increased to a maximum in both study groups. Arterial PCO2 increased steadily during anaesthesia and 60 mins after induction PaCO2 was 10.5 +/- 2.4 kPa (78.5 +/- 17.8 mmHg) in the younger horses and 9.2 +/- 1.6 kPa (68.8 +/- 11.8 mmHg) in the older horses. During inhalation anaesthesia PaO2 tended to be greater at comparable time periods in the younger horses despite a slightly greater degree of hypoventilation.  相似文献   

4.
OBJECTIVE: To quantitate effects of dose of sevoflurane and mode of ventilation on cardiovascular and respiratory function in horses and identify changes in serum biochemical values associated with sevoflurane anesthesia. ANIMALS: 6 healthy adult horses. PROCEDURE: Horses were anesthetized twice: first, to determine the minimum alveolar concentration (MAC) of sevoflurane and second, to characterize cardiopulmonary and serum biochemical responses of horses to 1.0, 1.5, and 1.75 MAC multiples of sevoflurane during controlled and spontaneous ventilation. Results-Mean (+/- SEM) MAC of sevoflurane was 2.84 +/- 0.16%. Cardiovascular performance during anesthesia decreased as sevoflurane increased; the magnitude of cardiovascular depression was more severe during mechanical ventilation, compared with spontaneous ventilation. Serum inorganic fluoride concentration increased to a peak of 50.8 +/- 7.1 micromol/L at the end of anesthesia. Serum creatinine concentration and sorbitol dehydrogenase activity reached their greatest values (2.0 +/- 0.8 mg/dL and 10.2 +/- 1.8 U/L, respectively) at 1 hour after anesthesia and then returned to baseline by 1 day after anesthesia. Serum creatine kinase, aspartate aminotransferase, and alkaline phosphatase activities reached peak values by the first (ie, creatine kinase) or second (ie, aspartate aminotransferase and alkaline phosphatase) day after anesthesia. CONCLUSIONS AND CLINICAL RELEVANCE: Sevoflurane causes dose-related cardiopulmonary depression, and mode of ventilation further impacts the magnitude of this depression. Except for serum inorganic fluoride concentration, quantitative alterations in serum biochemical indices of liver- and muscle-cell disruption and kidney function were considered clinically unremarkable and similar to results from comparable studies of other inhalation anesthetics.  相似文献   

5.
OBJECTIVE: To study whether hemodynamic function in horses, particularly mean arterial blood pressure (MAP), is better maintained with sevoflurane than isoflurane, thus requiring less pharmacological support. STUDY DESIGN: Prospective randomized clinical investigation. Animals Thirty-nine racehorses undergoing arthroscopy in lateral recumbency. METHODS: Horses were assigned to receive either isoflurane (n = 20) or sevoflurane (n = 19) at 0.9-1.0 minimum alveolar concentration (MAC) for maintenance of anesthesia. Besides routine clinical monitoring, cardiac output (CO) was measured by lithium dilution. Hemodynamic support was prescribed as follows: when MAP decreased to <70 mmHg, patients were to receive infusion of 0.1% dobutamine, which was to be discontinued at MAP >85 mmHg or heart rate >60 beats minute(-1). Statistical analysis of results, given as mean +/- SD, included a clustered regression approach. RESULTS: Average inhalant anesthetic time [91 +/- 35 (isoflurane group) versus 97 +/- 26 minutes (sevoflurane group)] and dose (in MAC multiples), volume of crystalloid solution infused, and cardiopulmonary parameters including CO were similar in the two groups, except heart rate was 8% higher in isoflurane than sevoflurane horses (p < 0.05). To maintain MAP >70 mmHg, isoflurane horses received dobutamine over a significantly longer period (55 +/- 26 versus 28 +/- 21% of total anesthetic time, p < 0.01) and at a 51% higher dose than sevoflurane horses (41 +/- 19 versus 27 +/- 23 microg kg(-1) MAC hour(-1); p = 0.058), with 14/20 isoflurane animals and only 9/19 sevoflurane horses being infused with dobutamine at >30 microg kg(-1) MAC hour(-1) (p < 0.05). Dobutamine infusion rates were consistently lower in the sevoflurane as compared to the isoflurane group, with differences reaching significance level during the 0-30 minutes (p < 0.01) and 61-90 minutes periods (p < 0.05). CONCLUSIONS AND CLINICAL RELEVANCE: Horses under sevoflurane anesthesia may require less pharmacological support in the form of dobutamine than isoflurane-anesthetized horses. This could be due to less suppression of vasomotor tone.  相似文献   

6.
OBJECTIVE: To compare the effect of anesthesia alone with anesthesia and abdominal surgery on plasma thromboxane B(2) concentrations in horses. STUDY DESIGN: Non-randomized experimental study. ANIMALS: Six male mixed-bred horses (5-12 years, 350 +/- 18 kg). METHODS: All horses were anesthetized for 2.5 hours using halothane, and a month later abdominal surgery was performed using the same anesthetic technique with a similar duration. The schedule of anesthesia included pre-medication with diazepam (0.1 mg kg(-1) IM), followed by xylazine (2.2 mg kg(-1) IV), and 10 minutes later anesthesia was induced with ketamine hydrochloride (2.2 mg kg(-1) IV). After orotracheal intubation, anesthesia was maintained with halothane. Blood samples for the determination of thromboxane B(2) (TXB(2)) were obtained before, at induction, at 60 minutes after halothane was first inspired, and at recovery from anesthesia as well as at the corresponding stages of the experimental abdominal surgery (before induction, prior to laparotomy, enterectomy, enteroanastomosis, abdominal wall closure). RESULTS: Baseline value for the anesthesia group was 76 +/- 12 pg mL(-1) and increased (p < 0.001) after 1 hour of anesthesia to 265 +/- 40 pg mL(-1). With surgery, the corresponding value was 285 +/- 21 pg mL(-1) (hour 1, p < 0.001) and 210 +/- 28 pg mL(-1) (hour 2, p < 0.001), respectively. These were not different from anesthesia alone. CONCLUSION: The increased concentrations of thromboxane B(2) between 1 and 2.5 hours of halothane anesthesia and during the corresponding stages of the surgical intervention suggested that the anesthetic technique caused a significant increase in thromboxane B(2) and that surgery did not appear to contribute to this response.  相似文献   

7.
ObjectiveTo evaluate and compare hemostatic variables and clinical bleeding following the administration of 6% hetastarch (600/0.75) or lactated Ringer’s solution (LRS) to dogs anesthetized for orthopedic surgery.Study designRandomized blinded prospective study.AnimalsFourteen, healthy adult mixed-breed hound dogs of either sex, aged 11–13 months, and weighing 20.8 ± 1.2 kg.MethodsThe dogs were randomly assigned to receive a 10 mL kg?1 intravenous (IV) bolus of either 6% hetastarch (600/0.75) or LRS over 20 minutes followed by a maintenance infusion of LRS (10 mL kg?1hour?1) during anesthesia. Before (Baseline) and at 1 and 24 hours after bolus administration, packed cell volume (PCV), total protein concentration (TP), prothrombin time (PT), activated partial thromboplastin time (APTT), von Willebrand’s factor antigen concentration (vWF:Ag), factor VIII coagulant activity (F VIII:C), platelet count, platelet aggregation, colloid osmotic pressure (COP) and buccal mucosal bleeding time (BMBT) were measured. In addition a surgeon who was blinded to the treatments assessed bleeding from the incision site during the procedure and at 1 and 24 hours after the bolus administration.ResultsFollowing hetastarch or LRS administration, the PCV and TP decreased significantly 1-hour post-infusion. APTT did not change significantly compared to baseline in either treatment group, but the PT was significantly longer at 1-hour post-infusion than at 24 hours in both groups. No significant change was detected for vWF:Ag, FVIII:C, platelet aggregation or clinical bleeding in either group. The BMBT increased while platelet count decreased significantly at 1-hour post-infusion in both groups. The COP decreased significantly in both treatment groups 1-hour post-infusion but was significantly higher 1-hour post-infusion in the hetastarch group compared to the LRS group.Conclusions and clinical relevanceAt the doses administered, both hetastarch and LRS can alter hemostatic variables in healthy dogs. However, in these dogs undergoing orthopedic surgery, neither fluid was associated with increased clinical bleeding.  相似文献   

8.
9.
OBJECTIVE: To compare anesthesia-related events associated with IV administration of 2 novel micellar microemulsion preparations (1% and 5%) and a commercially available formulation (1%) of propofol in horses. Animals-9 healthy horses. PROCEDURES: On 3 occasions, each horse was anesthetized with 1 of the 3 propofol formulations (1% or 5% microemulsion or 1% commercial preparation). All horses received xylazine (1 mg/kg, IV), and anesthesia was induced with propofol (2 mg/kg, IV). Induction and recovery events were quantitatively and qualitatively assessed. Venous blood samples were obtained before and at intervals following anesthesia for quantification of clinicopathologic variables. RESULTS: Compared with the commercial formulation, the quality of anesthesia induction in horses was slightly better with the micellar microemulsion formulas. In contrast, recovery characteristics were qualitatively and quantitatively indistinguishable among treatment groups (eg, time to stand after anesthesia was 34.3 +/- 7.3 minutes, 34.1 +/- 8.8 minutes, and 39.0 +/- 7.6 minutes in horses treated with the commercial formulation, 1% microemulsion, and 5% microemulsion, respectively). During recovery from anesthesia, all horses stood on the first attempt and walked within 5 minutes of standing. No clinically relevant changes in hematologic and serum biochemical analytes were detected during a 3-day period following anesthesia. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the micellar microemulsion preparation of propofol (1% or 5%) has similar anesthetic effects in horses, compared with the commercially available lipid propofol formulation. Additionally, the micellar microemulsion preparation is anticipated to have comparatively low production costs and can be manufactured in various concentrations.  相似文献   

10.
OBJECTIVE: To characterize behavioral and physiological responses to short-term, unsupplemented intravenous (IV) anesthesia in healthy horses at high altitude (2240 m), and to test the hypothesis that the dose of butorphanol modifies the response of the horse to propofol anesthesia following xylazine pre-medication. STUDY DESIGN: Randomized prospective butorphanol dose cross-over experimental design. Animals Eight healthy horses, 13 +/- 6 (mean +/- SD) years of age, and weighing 523 +/- 26 kg. METHODS: Each horse was anesthetized three times with at least 3 weeks between each anesthesia. After collecting pre-drug data, xylazine (0.5 mg kg(-1)) was given IV. Five minutes later butorphanol was given IV according to a randomized order of three doses: 0.025, 0.05 and 0.075 mg kg(-1). Five minutes later, anesthesia was induced with propofol, 2 mg kg(-1) IV. Data on heart rate (HR) and respiratory rate (f(r)), mean arterial blood pressure, P(a)O(2), P(a)CO(2) and pH(a) were collected before, during and for 60 minutes following anesthesia, and quality of induction and recovery was scored. RESULTS: The pre-drug values for the three butorphanol groups did not differ. The combined pre-drug values from the 24 studies were HR, 33 +/- 7 beats minute(-1); f(r), 11 +/- 3 breaths minute(-1); P(a)O(2), 67 +/- 7 mmHg; P(a)CO(2), 36 +/- 4 mmHg; and pH(a), 7.42 +/- 0.04. Five minutes after anesthetic induction P(a)O(2) decreased and P(a)CO(2) increased 14.5 +/- 7.7 and 5.1 +/- 4.9 mmHg, respectively, but returned to pre-drug levels within 15 minutes of anesthetic recovery. There were no significant butorphanol dose-related differences in physiological results, anesthetic induction and recovery quality scores or recovery time. CONCLUSIONS AND CLINICAL RELEVANCE: Dose of butorphanol did not markedly influence study results. Notably, low P(a)O(2) values related to geographic location of study and general anesthesia indicates a narrow margin of error for hypoxemia-related complications in anesthetized horses breathing unsupplemented air at high altitude.  相似文献   

11.
Objective – To determine if horses before undergoing anesthesia for surgical correction of colic would have lower plasma arginine vasopressin (AVP) concentrations than healthy horses undergoing anesthesia for arthroscopic surgery, and would not increase their plasma AVP concentrations in response to anesthesia and surgery. Design – Prospective clinical study. Setting – University teaching hospital. Animals – Fourteen horses with colic and 8 healthy horses. Interventions – Horses with colic underwent anesthesia and surgery for alleviation of colic, and healthy horses underwent anesthesia and surgery for arthroscopy. Measurements and Main Results – Plasma AVP was measured perioperatively in horses with colic and in healthy horses. Before anesthesia, and 30 and 60 minutes after induction, horses with colic had greater median plasma AVP concentrations than control horses (P≤0.001); thereafter during anesthesia differences in AVP concentrations between the 2 groups were not significant. In the control group, plasma AVP concentration increased during 120 minutes of anesthesia; no such increase occurred in colic horses. Conclusions – Compared with healthy horses, horses with colic had higher preanesthesia plasma AVP concentrations that did not increase further in response to anesthesia and surgery. Exogenous AVP is associated with decreased splanchnic perfusion in a variety of animal species and, therefore, could be detrimental to horses with colic. Thus, it may be inappropriate to use exogenous AVP in support of blood pressure in anesthetized horses with colic. Further studies are warranted to define appropriate indications for the use of AVP in horses with colic.  相似文献   

12.
OBJECTIVE: To characterize the effect of general anesthesia and minor surgery on renal function in horses. ANIMALS: 9 mares with a mean (+/- SE) age and body weight of 9+/-2 years and 492+/-17 kg, respectively. PROCEDURE: The day before anesthesia, urine was collected (catheterization) for 3 hours to quantitate baseline values, and serum biochemical analysis was performed. The following day, xylazine (1.1 mg/kg, IV) was administered, and general anesthesia was induced 5 minutes later with diazepam (0.04 mg/kg, IV) and ketamine (2.2 mg/kg, IV). During 2 hours of anesthesia with isoflurane, Paco2 was maintained between 48 and 52 mm Hg, and mean arterial blood pressure was between 70 and 80 mm Hg. Blood and urine were collected at 30, 60, and 120 minutes during and at 1 hour after anesthesia. RESULTS: Baseline urine flow was 0.92+/-0.17 ml/kg/h and significantly increased at 30 and 60 minutes after xylazine administration (2.14+/-0.59 and 2.86+/-0.97 ml/kg/h respectively) but returned to baseline values by the end of anesthesia. Serum glucose concentration increased from 12+/-4 to 167+/-8 mg/dl at 30 minutes. Glucosuria was not observed. CONCLUSIONS AND CLINICAL RELEVANCE: Transient hyperglycemia and an increase in rine production accompanies a commonly used anesthetic technique for horses. The increase in urine flow is not trivial and should be considered in anesthetic management decisions. With the exception of serum glucose concentration and urine production, the effect of general anesthesia on indices of renal function in clinically normal horses is likely of little consequence in most horses admitted for elective surgical procedures.  相似文献   

13.
ObjectiveHypoxemia is common during equine field anesthesia. Our hypothesis was that oxygen therapy from a portable oxygen concentrator would increase PaO2 during field anesthesia compared with the breathing of ambient air.Study designProspective clinical study.AnimalsFifteen yearling (250 – 400 kg) horses during field castration.MethodsHorses were maintained in dorsal recumbency during anesthesia with an intravenous infusion of 2000 mg ketamine and 500 mg xylazine in 1 L of 5% guaifenesin. Arterial samples for blood gas analysis were collected immediately post-induction (PI), and at 15 and 30 minutes PI. The control group (n = 6) breathed ambient air. The treatment group (n = 9) were administered pulsed-flow oxygen (192 mL per bolus) by nasal insufflation during inspiration for 15 minutes PI, then breathed ambient air. The study was performed at 1300 m above sea level. One-way and two-way repeated-measures anova with post-hoc Bonferroni tests were used for within and between-group comparisons, respectively. Significance was set at p ≤ 0.05.ResultsMean ± SD PaO2 in controls at 0, 15 and 30 minutes PI were 46 ± 7 mmHg (6.1 ± 0.9 kPa), 42 ± 9 mmHg (5.6 ± 1.1 kPa), and 48 ± 7 mmHg (6.4 ± 0.1 kPa), respectively (p = 0.4). In treatment animals, oxygen administration significantly increased PaO2 at 15 minutes PI to 60 ± 13 mmHg (8.0 ± 1.7 kPa), compared with baseline values of 46 ± 8 mmHg (6.1 ± 1 kPa) (p = 0.007), and 30 minute PI values of 48 ± 7 mmHg (6.5 ± 0.9 kPa) (p = 0.003).ConclusionsThese data show that a pulsed-flow delivery of oxygen can increase PaO2 in dorsally recumbent horses during field anesthesia with ketamine-xylazine-guaifenesin.Clinical relevanceThe portable oxygen concentrator may help combat hypoxemia during field anesthesia in horses.  相似文献   

14.
A normal plasma colloid osmotic pressure (COP) interval was established for foals and compared to values for adult horses. Plasma samples were obtained from 38 Thoroughbred foals that had normal findings on postfoaling examination and 10 healthy Thoroughbred adult horses. Samples were analyzed using a commercially available colloid osmometer. Fifty samples were obtained from 38 foals. Twelve foals had 2 samples taken, 1 during the 1st 24 hours of life and the 2nd between 24 and 72 hours of life. For foals with 2 samples, only 1 randomly selected value was used in group analysis. Total plasma protein, albumin, and globulin concentrations were measured on all samples from foals. The mean measured plasma COP for foals was 18.8 +/- 1.9 mm Hg for the 38 samples analyzed. Measured plasma COP did not differ significantly over the time period examined for either the 12 paired samples (P = .13) or with regression analysis of the 38 samples (P = .13). Calculation of mean COP, based on previously published quadratic equations using total protein, albumin, and globulin concentrations, underestimated mean measured foal COP values except for when total protein measured by refractometer was used in the Landis-Pappenheimer equation. In conclusion, the plasma COP interval (95% CI: 15.0 mm Hg, 22.6 mm Hg) obtained for healthy foals in this study was found to be lower than that of healthy adult Thoroughbreds (20.6 +/- 0.7 mm Hg, P = .006).  相似文献   

15.
The anesthetic and cardiopulmonary effects of midazolam, ketamine and medetomidine for total intravenous anesthesia (MKM-TIVA) were evaluated in 14 horses. Horses were administered medetomidine 5 microg/kg intravenously as pre-anesthetic medication and anesthetized with an intravenous injection of ketamine 2.5 mg/kg and midazolam 0.04 mg/kg followed by the infusion of MKM-drug combination (midazolam 0.8 mg/ml-ketamine 40 mg/ml-medetomidine 0.1 mg/ml). Nine stallions (3 thoroughbred and 6 draft horses) were castrated during infusion of MKM-drug combination. The average duration of anesthesia was 38 +/- 8 min and infusion rate of MKM-drug combination was 0.091 +/- 0.021 ml/kg/hr. Time to standing after discontinuing MKM-TIVA was 33 +/- 13 min. The quality of recovery from anesthesia was satisfactory in 3 horses and good in 6 horses. An additional 5 healthy thoroughbred horses were anesthetized with MKM- TIVA in order to assess cardiopulmonary effects. These 5 horses were anesthetized for 60 min and administered MKM-drug combination at 0.1 ml/kg/hr. Cardiac output and cardiac index decreased to 70-80%, stroke volume increased to 110% and systemic vascular resistance increased to 130% of baseline value. The partial pressure of arterial blood carbon dioxide was maintained at approximately 50 mmHg while the arterial partial pressure of oxygen pressure decreased to 50-60 mmHg. MKM-TIVA provides clinically acceptable general anesthesia with mild cardiopulmonary depression in horses. Inspired air should be supplemented with oxygen to prevent hypoxemia during MKM-TIVA.  相似文献   

16.
The anesthetic and cardiovascular effects of a combination of continuous intravenous infusion using a mixture of 100 g/L guaifenesin-4 g/L ketamine-5 mg/L medetomidine (0.25 ml/kg/hr) and oxygen-sevoflurane (OS) anesthesia (GKM-OS anesthesia) in horses were evaluated. The right carotid artery of each of 12 horses was raised surgically into a subcutaneous position under GKM-OS anesthesia (n=6) or OS anesthesia (n=6). The end-tidal concentration of sevoflurane (EtSEV) required to maintain surgical anesthesia was around 1.5% in GKM-OS and 3.0% in OS anesthesia. Mean arterial blood pressure (MABP) was maintained at around 80 mmHg under GKM-OS anesthesia, while infusion of dobutamine (0.39+/-0.10 microg/kg/min) was necessary to maintain MABP at 60 mmHg under OS anesthesia. The horses were able to stand at 36+/-26 min after cessation of GKM-OS anesthesia and at 48+/-19 minutes after OS anesthesia. The cardiovascular effects were evaluated in 12 horses anesthetized with GKM-OS anesthesia using 1.5% of EtSEV (n=6) or OS anesthesia using 3.0% of EtSEV (n=6). During GKM-OS anesthesia, cardiac output and peripheral vascular resistance was maintained at about 70% of the baseline value before anesthesia, and MABP was maintained over 70 mmHg. During OS anesthesia, infusion of dobutamine (0.59+/-0.24 microg/kg/min) was necessary to maintain MABP at 70 mmHg. Infusion of dobutamine enabled to maintaine cardiac output at about 80% of the baseline value; however, it induced the development of severe tachycardia in a horse anesthetized with sevoflurane. GKM-OS anesthesia may be useful for prolonged equine surgery because of its minimal cardiovascular effect and good recovery.  相似文献   

17.
Circulatory and respiratory function was monitored in nonmedicated, spontaneously breathing horses (n = 7) immediately before, during, and 1 hour after 85 +/- 4.1 (X +/- SEM) minutes of constant 1.57% isoflurane in O2 anesthesia. Comparison of values during anesthesia with those obtained while horses were awake revealed a significant (P less than 0.05) decrease in arterial blood pressure that was related to a slight, but insignificant, decrease in cardiac output and peripheral vascular resistance. Although isoflurane anesthesia and recumbency resulted in a significant (P less than 0.05) decrease in stroke volume, cardiac output did not decrease significantly because heart rate tended to increase. Isoflurane and recumbency also significantly (P less than 0.05) increased PaCO2, peak expiratory gas flow, total expiratory time, and PCV and significantly decreased PaO2, minute expired ventilation, and the ratio of peak inspired to expired gas flow. Differences imposed by isoflurane anesthesia were reversed by 1.5 hour after anesthesia.  相似文献   

18.
ObjectiveTo compare PaO2 and PaCO2 in horses recovering from general anesthesia maintained with either apneustic anesthesia ventilation (AAV) or conventional mechanical ventilation (CMV).Study designRandomized, crossover design.AnimalsA total of 10 healthy adult horses from a university-owned herd.MethodsDorsally recumbent horses were anesthetized with isoflurane in oxygen [inspired oxygen fraction = 0.3 initially, with subsequent titration to maintain PaO2 ≥ 85 mmHg (11.3 kPa)] and ventilated with AAV or CMV according to predefined criteria [10 mL kg–1 tidal volume, PaCO2 40–45 mmHg (5.3–6.0 kPa) during CMV and < 60 mmHg (8.0 kPa) during AAV]. Horses were weaned from ventilation using a predefined protocol and transferred to a stall for unassisted recovery. Arterial blood samples were collected and analyzed at predefined time points. Tracheal oxygen insufflation at 15 L minute–1 was provided if PaO2 < 60 mmHg (8.0 kPa) on any analysis. Time to oxygen insufflation, first movement, sternal recumbency and standing were recorded. Data were analyzed using repeated measures anova, paired t tests and Fisher’s exact test with significance defined as p < 0.05.ResultsData from 10 horses were analyzed. Between modes, PaO2 was significantly higher immediately after weaning from ventilation and lower at sternal recumbency for AAV than for CMV. No PaCO2 differences were noted between ventilation modes. All horses ventilated with CMV required supplemental oxygen, whereas three horses ventilated with AAV did not. Time to first movement was shorter with AAV. Time to oxygen insufflation was not different between ventilation modes.ConclusionsAlthough horses ventilated with AAV entered the recovery period with higher PaO2, this advantage was not sustained during recovery. Whereas fewer horses required supplemental oxygen after AAV, the use of AAV does not preclude the need for routine supplemental oxygen administration in horses recovering from general anesthesia.  相似文献   

19.
OBJECTIVE: To compare the quality of surgical anaesthesia and cardiorespiratory effects of three intramuscular (IM) anaesthetic combinations in rabbits. STUDY DESIGN: Prospective randomized cross-over experimental study. ANIMALS: Nineteen adult female chinchilla mixed-bred rabbits weighing 3.9 +/- 0.8 kg. METHODS: Rabbits were given one of three IM anaesthetic combinations: 0.25 mg kg(-1) medetomidine and 35.0 mg kg(-1) ketamine (M-K), 0.20 mg kg(-1) medetomidine and 0.02 mg kg(-1) fentanyl and 1.0 mg kg(-1) midazolam (M-F-Mz) and 4.0 mg kg(-1) xylazine and 50 mg kg(-1) ketamine (X-K). The effects of anaesthesia on nociceptive reflexes, circulatory and respiratory function were recorded. Statistical analyses involved repeated measures anova with paired Student's t-test applied post hoc. P-values <0.05 were considered as significant. RESULTS: Reflex loss was most rapid and complete in M-K recipients, whereas animals receiving M-F-Mz showed the longest tolerance of endotracheal intubation (78.1 +/- 36.5 minutes). Loss of righting reflex was significantly most rapid (p < 0.05) in the X-K group (114.7 +/- 24.0 minutes). Surgical anaesthesia was achieved in 16 of 19 animals receiving M-K, in 14 animals receiving M-F-Mz, and in seven animals with X-K, but only for a short period (7.1 +/- 11.6 minutes). This was significantly (p < 0.001) shorter than with M-K (38.7 +/- 30.0 minutes) and M-F-Mz (31.6 +/- 26.6 minutes). Heart rates were greatest in X-K recipients; lowest HR were seen in animals receiving M-F-Mz. Mean arterial blood pressure was significantly higher (about 88 mmHg) during the first hour in the M-K group. During recovery, the greatest hypotension was encountered in the X-K group; minimum values were 53 +/- 12 mmHg. Six of 19 animals in the M-F-Mz group showed a short period of apnoea (30 seconds) immediately after endotracheal intubation. Respiratory frequency was significantly lower in this group (p < 0.001). Highest values for arterial carbon dioxide partial pressures (PaCO(2)) (6.90 +/- 0.87 kPa; 52.5 +/- 6.5 mmHg) occurred after induction of anaesthesia in group M-F-Mz animals. There was a marked decrease in PaO(2) in all three groups (the minimum value 5.28 +/- 0.65 kPa [39.7 +/- 4.9 mmHg] was observed with M-K immediately after injection). Arterial PO(2) was between 26.0 and 43.0 kPa (196 and 324 mmHg) in all groups during O(2) delivery and decreased - but not <7.98 kPa - on its withdrawal. Immediately after drug injection, pH(a) values fell in all groups, with lowest values after 30 minutes (7.23 +/- 0.03 with M-K, 7.28 +/- 0.05 with M-F-Mz, and 7.36 +/- 0.04 with X-K). The X-K animals showed significantly (p < 0.001) higher pH values than medetomidine recipients. During 1 hour of anaesthesia pH values in the medetomidine groups remained below those of the X-K group. CONCLUSIONS: Surgical anaesthesia was induced in most animals receiving medetomidine-based combinations. Arterial blood pressure was maintained at baseline values for about 1 hour after M-K. Transient apnoea occurred with M-F-Mz and mandates respiratory function monitoring. Oxygen enrichment of inspired gases is necessary with all three combinations. Endotracheal intubation is essential in rabbits receiving M-F-Mz. CLINICAL RELEVANCE: The quality of surgical anaesthesia was greatest with M-K. All combinations allowed recoveries of similar duration. It is theoretically possible to antagonize each component of the M-F-Mz combination.  相似文献   

20.
Whole blood viscosity (WBV) was measured on six healthy horses and ten horses presented for colic surgery. A Wells-Brookfield cone-and-plate microviscometer at 6 rpm was used to determine WBV and WBV was adjusted for packed cell volume (PCV). The ten colic horses were divided into two groups: five horses that died or were euthanatized (group 1) and five horses that were discharged after surgery and medical therapy (group 2). The mean WBV for each group was compared using analysis of variance followed by Duncan multiple-range tests. Mean WBV of group 2 (5.81 +/- 1.48 centipoise [cp]) and normal horses (7.1 +/- 2.3 cp) was significantly (P less than 0.01) lower than group 1 (17.15 +/- 5.71 cp). This preliminary trial shows that horses that died or were euthanatized had a significantly higher WBV than horses surviving. Since viscosity was adjusted for PCV, the differences may represent changes in other factors such as fibrinogen, rouleaux formation, red blood cell deformability, PaO2, or intracellular calcium ion concentration. Thus, increases in WBV in horses with colic may indicate severely compromised regional perfusion that may lead to significant tissue damage. In this preliminary study, it appears that WBV may be a prognostic aid in horses with colic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号