首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Gallic acid (GA), 3,4,5-trihydroxybenzoic acid, is a natural polyphenolic acid and widely found in gallnuts, tea leaves and various fruits. Previous studies have shown that GA possesses anti-inflammatory, antiallergic and anticarcinogenic activity. In the present study, we aim to investigate the antitumor effects of GA on breast cancer cell. Our results revealed that GA treatment significantly reduced the cell growth of human breast cancer cell MCF-7 in a dose-dependent manner. Further flow cytometric analysis showed that GA induced significant G2/M phase arrest but slightly affected the population of sub-G1MCF-7 cells. Therefore, levels of cyclins, cyclin-dependent kinases (CDKs), and their regulatory proteins involved in S-G2/M transition were investigated. Our findings revealed that levels of cyclin A, CDK2, cyclin B1 and cdc2/CDK1 were diminished; in contrast, levels of the negative regulators p27(Kip1) and p21(Cip1) were increased by GA treatment. Additionally, Skp2, a specific ubiquitin E3 ligase for polyubiquitination of p27(Kip1) was reduced by GA treatment. Further investigation showed that GA attenuated Skp2-p27(Kip1) association and diminished polyubiquitination of p27(Kip1) in MCF-7 cells. Moreover, knockdown of p27(Kip1) but not p21(Cip1) significantly alleviated GA-induced accumulation of G2/M phase. These findings indicate that GA may upregulate p27(Kip1) level via disruption of p27(Kip1)/Skp2 association and the consequent degradation of p27(Kip1) by proteosome, leading to G2/M phase arrest of MCF-7 cell. It is suggested that GA should be beneficial to treatment of breast cancer and p27(Kip1)-deficient carcinomas.  相似文献   

2.
One newly bred variety of tea cultivar, purple-shoot tea, was selected to evaluate its antiproliferative effects on colorectal carcinoma cells, as well as normal colon cells. The phytochemicals and identified catechins of purple-shoot tea extract (PTE) were significantly higher than that of ordinary tea, especially the anthocyanins (surpassed by 135-fold) and anthocyanidins (surpassed by 3.5-fold). PTE inhibited the proliferation of COLO 320DM (IC(50) = 64.9 μg/mL) and HT-29 (IC(50) = 55.2 μg/mL) by blocking cell cycle progression during the G(0)/G(1) phase and inducing apoptotic death. Western blotting indicated that PTE induced cell cycle arrest by reducing the expression of cyclin E and cyclin D1 in COLO 320DM and the upregulation of p21 and p27 cyclin-dependent kinase inhibitors in HT-29. Two cells treated with PTE also indicated the cleavage of PARP, activation of caspase 3, and an increased Bax/Bcl-2 ratio. Our results showed that PTE is a potential novel dietary agent for colorectal cancer chemoprevention.  相似文献   

3.
Propolis, a natural product collected by honeybee, has been reported to exert a wide spectrum of biological functions. In this study, we have isolated a novel component, namely, propolin H, and investigated its effects in human carcinoma cells. Propolin H inhibited the proliferation of human lung carcinoma cell lines in MTT assay, and a significant G1 arrest was observed to occur in a dose-dependent manner at 24 h of exposure in H460 cells. After treatment with propolin H in H460 cells, the content of the CDK inhibitor p21Waf1/Cip1 protein increased in correlation with the elevation in p53 levels. Western blot analysis of G1 regulatory proteins further revealed a decrease in cyclin-dependent kinase 2 (CDK2) and CDK4 and an increase in cyclin E. The CDKs kinase activities assay showed that propolin H has inhibited CDK2 and CDK4 kinase activities. Accordingly, coimmunoprecipitations revealed an increased association of both CDK2 and CDK4 immunoreactive protein with the p21Waf1/Cip1 protein complex under propolin H-treated conditions. Additionally, we found that propolin H enhanced the expression of p21Waf1/Cip1 in p53-mutant and p53-null lung carcinoma cell lines, following the induction of G1 arrest. Together, these findings suggest that the induction of p21Waf1/Cip1 expression occurred through p53-dependent and -independent pathways in propolin H-treated cells. Propolin H exerts its significantly growth inhibitory effects and may have therapeutic applications.  相似文献   

4.
The effects of water extracts from Cassia tora L. (WECT) treated with different degrees of roasting on benzo[a]pyrene (B[a]P)-induced DNA damage in human hepatoma cell line HepG2 were investigated via the comet assay without exogenous activation mixtures, such as S9 mix. WECT alone, at concentrations of 0.1-2 mg/mL, showed neither cytotoxic nor genotoxic effect toward HepG2 cells. B[a]P-induced DNA damage in HepG2 cells could be reduced by WECT in a dose-dependent manner (P < 0.05). At a concentration of 1 mg/mL, the inhibitory effects of WECT on DNA damage were in the order unroasted (72%) > roasted at 150 degrees C (60%) > roasted at 250 degrees C (23%). Ethoxyresorufin-O-dealkylase activity of HepG2 cells was effectively inhibited by WECT, and a similar trend of inhibition was observed in the order unroasted (64%) > roasted at 150 degrees C (42%) > roasted at 250 degrees C (18%). The activity of NADPH cytochrome P-450 reductase was also decreased by unroasted and 150 degrees C-roasted samples (50% and 38%, respectively). Furthermore, glutathione S-transferase activity was increased by treatment with unroasted (1.26-fold) and 150 degrees C-roasted (1.35-fold) samples at 1 mg/mL. In addition, the contents of anthraquinones (AQs) in WECT, including chrysophanol, emodin, and rhein, were decreased with increasing roasting temperature. Each of these AQs also demonstrated significant antigenotoxic activity in the comet assay. The inhibitory effects of chrysophanol, emodin, and rhein on B[a]P-mediated DNA damage in HepG2 cells were 78, 86, and 71%, respectively, at 100 microM. These findings suggested that the decreased antigenotoxicity of the roasted samples might be due to a reduction in their AQs content.  相似文献   

5.
Loach protein hydrolysates (LPH) prepared by papain digestion were fractionated into four fractions, LPH-I (MW > 10 kDa), LPH-II (MW = 5-10 kDa), LPH-III (MW = 3-5 kDa), LPH-IV (MW < 3 kDa), and the in vitro antioxidant and antiproliferative (anticancer) activities of all fractions were determined. LPH-IV showed the lowest IC(50) value (16.9 ± 0.21 mg/mL) for hydroxyl radical scavenging activity and the highest oxygen radical scavenging capacity (ORAC) value (reaching 215 ± 5.9 mM Trolox/100 g loach peptide when the concentration was 60 μg/mL). Compared with other fractions, LPH-IV also exhibited stronger antiproliferative activity for human liver (HepG2), breast (MCF-7), and colon (Caco-2) cancer cell lines in a dose-dependent manner. When the protein concentration was 40 mg/mL, the HepG2 and MCF-7 cell proliferation of LPH-IV reached 7 and 4%, respectively, with no significant difference from those of LPH (8 and 7%, p > 0.05), with significantly less growth than those of LPH-I, LPH-II, and LPH-III, respectively (p < 0.05). The Caco-2 colon cell proliferation of LPH-IV was 12.8- and 8.7-fold smaller than those of LPH-I and LPH-II, respectively (p < 0.05). All of the fractions had a greater ability to inhibit Caco-2 colon cancer cell proliferation than to inhibit HepG2 liver cancer and MCF-7 breast cancer cell proliferation. The ORAC values of most of the fractions correlated (R(2) > 0.86, p < 0.01) with the antiproliferative activity of the three cancer cell lines, suggesting that higher antioxidant activity leads to better antiproliferative activity. However, further mechanistic and human clinical studies of the anticancer activity of loach protein hydrolysate fractions are needed.  相似文献   

6.
Hispolon is an active phenolic compound of Phellinus igniarius , a mushroom that has recently been shown to have antioxidant, anti-inflammatory, and anticancer activities. This study investigated the antiproliferative effect of hispolon on human hepatocellular carcinoma Hep3B cells by using the MTT assay, DNA fragmentation, DAPI (4,6-diamidino-2-phenylindole dihydrochloride) staining, and flow cytometric analyses. Hispolon inhibited cellular growth of Hep3B cells in a time-dependent and dose-dependent manner, through the induction of cell cycle arrest at S phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Hispolon-induced S-phase arrest was associated with a marked decrease in the protein expression of cyclins A and E and cyclin-dependent kinase (CDK) 2, with concomitant induction of p21waf1/Cip1 and p27Kip1. Exposure of Hep3B cells to hispolon resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. Hispolon treatment also activated JNK, p38 MAPK, and ERK expression. Inhibitors of ERK (PB98095), but not those of JNK (SP600125) and p38 MAPK (SB203580), suppressed hispolon-induced S-phase arrest and apoptosis in Hep3B cells. These findings establish a mechanistic link between the MAPK pathway and hispolon-induced cell cycle arrest and apoptosis in Hep3B cells.  相似文献   

7.
The tumor suppressor p53 and the ataxia-telangiectasia mutated (ATM) kinase play important roles in the senescence response to oncogene activation and DNA damage. It was previously shown that selenium-containing compounds can activate an ATM-dependent senescence response in MRC-5 normal fibroblasts. Here, the shRNA knockdown approach and other DNA damage assays are employed to test the hypothesis that p53 plays a role in selenium-induced senescence. In MRC-5 cells treated with methylseleninic acid (MSeA, 0-10 μM), depletion of p53 hampers senescence-associated expression of β-galactosidase, disrupts the otherwise S and G2/M cell cycle arrest, desensitizes such cells to MSeA treatment, and increases genome instability. Pretreatment with KU55933, an ATM kinase inhibitor, or NU7026, an inhibitor of DNA-dependent protein kinase, desensitizes MSeA cytotoxicity in scrambled but not p53 shRNA MRC-5 cells. These results suggest that p53 is critical for senescence induction in the response of MRC-5 noncancerous cells to selenium compounds.  相似文献   

8.
Here we studied the antiproliferative activity of theaflavins in cervical carcinoma HeLa cells by investigating their effects on cellular microtubules and purified goat brain tubulin. Theaflavins inhibited proliferation of HeLa cells with IC(50) value of 110 ± 2.1 μg/mL (p = < 0.01), caused cell cycle arrest at G(2)/M phase and induced apoptosis with alteration of expression of pro- and antiapoptotic proteins. Along with these antiproliferative activities, theaflavins act as microtubule depolymerizers. Theaflavins disrupted the microtubule network accompanied by alteration of cellular morphology and also decreased the polymeric tubulin mass of the cells. The polymerization of cold treated depolymerized microtubules in HeLa cells was prevented in the presence of theaflavins. In vitro polymerization of purified tubulin into microtubules was also inhibited by theaflavins with an IC(50) value of 78 ± 2.43 μg/mL (P < 0.01). Thus, disruption of cellular microtubule network of HeLa cells through microtubule depolymerization may be one of the possible mechanisms of antiproliferative activity of theaflavins.  相似文献   

9.
We have previously demonstrated that sulforaphane is a potent inducer for thioredoxin reductase in HepG2 and MCF-7 cells (Zhang et al. Carcinogenesis 2003, 24, 497-503; Wang et al. J. Agric. Food Chem. 2005, 53, 1417-1421). In this study, we have shown that sulforaphane is not only an inducer for thioredoxin reductase but also an inducer for its substrate, thioredoxin in HepG2, and undifferentiated Caco-2 cells. Sulforaphane acts at two levels in the regulation of thioredoxin reductase/thioredoxin system by the upregulation of the expression of both the enzyme and the substrate. In human hepatoma HepG2 cells, sulforaphane induced thioredoxin reductase mRNA and protein by 4- and 2-fold, respectively, whereas thioredoxin mRNA was induced 2.9-fold and thioredoxin protein was unchanged in whole cell extracts, but an increase in nuclear accumulation (1.8-fold) was observed. Moreover, the induction of thioredoxin reductase was found faster than that of thioredoxin. The effects of PI3K and MAPK kinase inhibitors, LY294002, PD98059, SP600125, and SB202190, have been investigated on the sulforaphane-induced expression of thioredoxin reductase and thioredoxin. PD98059 abrogates the sulforaphane-induced thioredoxin reductase at both mRNA and protein levels in HepG2 cells, although other inhibitors were found less effective. However, both PD98059 and LY294002 significantly decrease thioredoxin mRNA expression in HepG2 cells. None of the inhibitors tested were able to modulate the level of expression of either thioredoxin reductase mRNA or protein in Caco-2 cells suggesting that there are cell-specific responses to sulforaphane. In summary, the dietary isothiocyanate, sulforaphane, is important in the regulation of thioredoxin reductase/thioredoxin redox system in cells.  相似文献   

10.
11.
Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.  相似文献   

12.
The objective of this study was to investigate the antiproliferative effect and the mechanism of trypsin inhibitor (TI) from sweet potato [Ipomoea batatas (L.) Lam. 'Tainong 57'] storage roots on NB4 promyelocytic leukemia cells. The results showed that TI inhibited cellular growth of NB4 promyelocytic leukemia cells in a time-dependent and dose-dependent manner, and treatment for 72 h induced a marked inhibition of cellular growth, showing an IC50 of 57.1 +/- 8.26 microg/mL. TI caused cell cycle arrest at the G1 phase as determined by flow cytometric analysis and apoptosis as shown by DNA laddering. TI-induced cell apoptosis involved p53, Bcl-2, Bax, and cytochrome c protein in NB4 cells. P53 and Bax proteins were accumulated, and antiapoptotic molecule Bcl-2 was decreased in the tested cells in a time-dependent manner during TI treatment. TI also induced a substantial release of cytochrome c from the mitochondria into the cytosol. Hence, TI induced apoptosis in NB4 cells through a mitochondria-dependent pathway, which was associated with the activation of caspase-3 and -8. These results demonstrated that TI induces NB4 cell apoptosis through the inhibition of cell growth and the activation of the pathway of caspase-3 and -8 cascades.  相似文献   

13.
In this study, 4,7-dimethoxy-5-methyl-1,3-benzodioxole (SY-1) was isolated from three different sources of dried Antrodia camphorata (AC) fruiting bodies. AC is a medicinal mushroom that grows on the inner heartwood wall of Cinnamomum kanehirai Hay (Lauraceae), which is an endemic species that is used in Chinese medicine for its antitumor properties. We demonstrated that SY-1 [given as a 1-30 mg/kg body weight intraperitoneal (ip) injection three times per week] profoundly decreased the growth of COLO-205 human colon cancer cell tumor xenografts in an athymic nude mouse model. We further demonstrated that significant AC extract-mediated antitumor effects were observed at the highest concentration (5 g/kg body weight/day). No gross toxicity signs were observed (i.e., body weight changes, general appearance, or individual organ effects). Frozen COLO-205 xenograft tumors were pulverized in liquid N(2), and the expression of cell cycle regulatory proteins was detected by immunoblotting. We found that the p53-mediated p27/Kip1 protein was significantly induced in the low-dose (1 mg/kg body weight) SY-1-treated tumors, whereas the p21/Cip1 protein levels did not change. The G0/G1 phase cell cycle regulators induced by SY-1 were also associated with a significant decrease in cyclins D1, D3, and A. These results provide further evidence that SY-1 may have significance for cancer chemotherapy.  相似文献   

14.
15.
Pterostilbene, an active constituent of blueberries, is known to possess anti-inflammatory activity and also induces apoptosis in various types of cancer cells. Here, the effects of pterostilbene on cell viability in human gastric carcinoma AGS cells were investigated. This study demonstrated that pterostilbene was able to inhibit cell proliferation and induce apoptosis in a concentration- and time-dependent manner. Pterostilbene-induced cell death was characterized with changes in nuclear morphology, DNA fragmentation, and cell morphology. The molecular mechanism of pterostilbene-induced apoptosis was also investigated. The results show the caspase-2, -3, -8, and -9 are all activated by pterostilbene, together with cleavage of the downstream caspase-3 target DNA fragmentation factor (DFF-45) and poly(ADP-riobse) polymerase. Moreover, the results indicate that the Bcl-family of proteins, the mitochondrial pathway, and activation of the caspase cascade are responsible for pterostilbene-induced apoptosis. Pterostilbene markedly enhanced the expression of growth arrest DNA damage-inducible gene 45 and 153 (GADD45 and GADD153) in a time-dependent manner. Flow cytometric analysis indicated that pterostilbene blocked cell cycle progression at G1 phase in a dose- and time-dependent manner. Pterostilbene increased the p53, p21, p27, and p16 proteins and decreased levels of cyclin A, cyclin E, cyclin-dependent kinase 2 (Cdk2), Cdk4, and Cdk6, but the expression of cyclin D1 was not affected. Over a 24 h exposure to pterostilbene, the degree of phosphorylation of Rb was decreased after 6 h. In summary, pterostilbene induced apoptosis in AGS cells through activating the caspase cascade via the mitochondrial and Fas/FasL pathway, GADD expression, and by modifying cell cycle progress and changes in several cycle-regulating proteins. The induction of apoptosis by pterostilbene may provide a pivotal mechanism of the antitumor effects and for treatment of human gastric cancer.  相似文献   

16.
Previous studies have shown that anthocyanin-rich berry extracts inhibit the growth of cancer cells in vitro. The objective of this study was to compare the effects of berry extracts containing different phenolic profiles on cell viability and expression of markers of cell proliferation and apoptosis in human colon cancer HT-29 cells. Berry extracts were prepared with methanol extraction, and contents of the main phenolic compounds were analyzed using HPLC. Anthocyanins were the predominant phenolic compounds in bilberry, black currant, and lingonberry extracts and ellagitannins in cloudberry extract, whereas both were present in raspberry and strawberry extracts. Cells were exposed to 0-60 mg/mL of extracts, and the cell growth inhibition was determined after 24 h. The degree of cell growth inhibition was as follows: bilberry > black currant > cloudberry > lingonberry > raspberry > strawberry. A 14-fold increase in the expression of p21WAF1, an inhibitor of cell proliferation and a member of the cyclin kinase inhibitors, was seen in cells exposed to cloudberry extract compared to other berry treatments (2.7-7-fold increase). The pro-apoptosis marker, Bax, was increased 1.3-fold only in cloudberry- and bilberry-treated cells, whereas the pro-survival marker, Bcl-2, was detected only in control cells. The results demonstrate that berry extracts inhibit cancer cell proliferation mainly via the p21WAF1 pathway. Cloudberry, despite its very low anthocyanin content, was a potent inhibitor of cell proliferation. Therefore, it is concluded that, in addition to anthocyanins, also other phenolic or nonphenolic phytochemicals are responsible for the antiproliferative activity of berries.  相似文献   

17.
Naringenin, a well-known naturally occurring flavonone, demonstrates cytotoxicity in a variety of human cancer cell lines; its inhibitory effects on tumor growth have spurred interest in its therapeutic application. In this study, naringenin was derivatized to produce more effective small-molecule inhibitors of cancer cell proliferation, and the anticancer effects of its derivative, 5-hydroxy-7,4'-diacetyloxyflavanone-N-phenyl hydrazone (N101-43), in non-small-cell lung cancer (NSCLC) cell lines NCI-H460, A549, and NCI-H1299 were investigated. Naringenin itself possesses no cytotoxicity against lung cancer cells. In contrast, N101-43 inhibits proliferation of both NCI-H460 and A549 cell lines; this capacity is lost in p53-lacking NCI-H1299 cells. N101-43 induces apoptosis via sub-G1 cell-cycle arrest in NCI-H460 and via G0/G1 arrest in A549 cells. Expression of apoptosis and cell-cycle regulatory factors is altered: Cyclins A and D1 and phospho-pRb are down-regulated, but expression of CDK inhibitors such as p21, p27, and p53 is enhanced by N101-43 treatment; N101-43 also increases expression levels of the extrinsic death receptor Fas and its binding partner FasL. Furthermore, N101-43 treatment diminishes levels of cell survival factors such as PI3K and p-Akt dose-dependently, and N101-43 additionally induces cleavage of the pro-apoptotic factors caspase-3, caspase-8, and poly ADP-ribose polymerase (PARP). Cumulatively, these investigations show that the naringenin derivative N101-43 induces apoptosis via up-regulation of Fas/FasL expression, activation of caspase cascades, and inhibition of PI3K/Akt survival signaling pathways in NCI-H460 and A549 cells. In conclusion, these data indicate that N101-43 may have potential as an anticancer agent in NSCLC.  相似文献   

18.
This study was designed to develop a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous detection and quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples with particular focus on the optimization of the sample preparation protocol and method validation. All 25 mycotoxins were extracted in a single step with a mixture of methanol/ethyl acetate/water (70:20:10, v/v/v). The method limits of quantification (LOQ) varied from 0.3 μg/kg to 106 μg/kg. Good precision and linearity were observed for most of the mycotoxins. The method was applied for the analysis of naturally contaminated peanut cake, cassava flour and maize samples from the Republic of Benin. All samples analyzed (fifteen peanut cakes, four maize flour and four cassava flour samples) tested positive for one or more mycotoxins. Aflatoxins (total aflatoxins; 10-346 μg/kg) and ochratoxin A (相似文献   

19.
Spanish black radish (Raphanus sativus L. var. niger) is a member of the Cruciferae family that also contains broccoli and Brussels sprouts, well-known to contain health-promoting constituents. Spanish black radishes (SBR) contain high concentrations of a glucosinolate unique to the radish family, glucoraphasatin, which represents >65% of the total glucosinolates present in SBR. The metabolites of glucosinolates, such as isothiocyanates, are implicated in health promotion, although it is unclear whether glucosinolates themselves elicit a similar response. The crude aqueous extract from 0.3 to 3 mg of dry SBR material increased the activity of the phase II detoxification enzyme quinone reductase in the human hepatoma HepG2 cell line with a maximal effect at a concentration of 1 mg/mL. Treatment of HepG2 cells with the crude aqueous extract of 1 mg of SBR per mL also significantly induced the expression of mRNA corresponding to the phase I detoxification enzymes: cytochrome P450 (CYP) 1A1, CYP1A2, and CYP1B1 as well as the phase II detoxification enzymes: quinone reductase, heme oxygenase 1, and thioredoxin reductase 1. Previous studies have shown that the myrosinase metabolites of different glucosinolates vary in their ability to induce detoxification enzymes. Here, we show that while glucoraphasatin addition was ineffective, the isothiocyanate metabolite of glucoraphasatin, 4-methylthio-3-butenyl isothiocyanate (MIBITC), significantly induced phase II detoxification enzymes at a concentration of 10 microM. These data demonstrate that the crude aqueous extract of SBR and the isothiocyanate metabolite of glucoraphasatin, MIBITC, are potent inducers of detoxification enzymes in the HepG2 cell line.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号