首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed data can reduce costs if measurements derived from remotely sensed data are accurate. This study identifies and measures the errors incurred in estimating key tree dimensions from two types of remotely sensed data: high-resolution aerial imagery and LiDAR (Light Detection and Ranging). Using Sacramento, CA, as the study site, we obtained field-measured dimensions of 20 predominant species of street trees, including 30–60 randomly selected trees of each species. For each of the 802 trees crown diameter was estimated from the aerial photo and compared with the field-measured crown diameter. Three curve-fitting equations were tested using field measurements to derive diameter at breast height (DBH) (r2 = 0.883, RMSE = 10.32 cm) from the crown diameter. The accuracy of tree height extracted from the LiDAR-based surface model was compared with the field-measured height (RMSE = 1.64 m). We found that the DBH and tree height extracted from the remotely sensed data were lower than their respective field-measured values without adjustment. The magnitude of differences in these measures tended to be larger for smaller-stature trees than for larger stature species. Using DBH and tree height calculated from remotely sensed data, aboveground biomass (r2 = 0.881, RMSE = 799.2 kg) was calculated for individual tree and compared with results from field-measured DBH and height. We present guidelines for identifying potential errors in each step of data processing. These findings inform the development of procedures for monitoring tree growth with remote sensing and for calculating single tree level carbon storage using DBH from crown diameter and tree height in the urban forest.  相似文献   

2.
Heritage trees in a city, echoing factors conducive to outstanding performance, deserve special care and conservation. To understand their structural and health conditions in urban Hong Kong, 30 defect-disorder (DD) symptoms (physical and physiological) subsumed under four tree-position groups (soil-root, trunk, branching, and crown-foliage) and tree hazard rating were evaluated. The surveyed 352 trees included 70 species; 14 species with 233 trees were native. More trees had medium height (10–15 m), medium DBH (1–1.5 m) and large crown (>15 m). In ten habitats, public park and garden (PPG) accommodated the most trees, and roadside traffic island (RTI) and public housing estate (PH) had the least. Tree dimensions and tree habitats were significantly associated. The associations between the 2831 DD and tree-position groups, tree habitats and tree hazard rating were analyzed. Fourteen trees from Ficus microcarpa, Ficus virens and Gleditsia fera had high hazard rating, 179 trees from 22 species moderate rating, and 159 trees from 55 species low rating. RTI, roadside tree strip (RTS), roadside tree pit (RTP), roadside planter (RP) and stone wall (SW) had more moderate hazard rating, and PPG, roadside slope (RS) and government, institutional and community land (GIC) more low rating. Redundancy analysis showed that DD were positively correlated with RTS, RTP, RP and SW, but negatively correlated with PPG, RS and GIC (p < 0.05). The DD significantly increased tree hazard rating and failure potential. Future management implications for heritage-tree conservation and enhancement focusing squarely on critical tree defect-disorder in urban Hong Kong were explored, with application to other compact cities.  相似文献   

3.
One of the limiting factors to estimate accurately the biomass stocks of urban forests is the availability of allometric models developed from urban trees measurements. In addition, the traditional methods (destructive) to develop biomass equations are rarely applied in cities. The aim of this study was to develop a non-destructive method based on fractal analysis for trees of Fraxinus uhdei present in the green areas of Chapultepec Park in Mexico City. Diameter at breast height (DBH), total height and the height of the whorls of 46 randomly-selected trees were measured. In each tree, three different-order branches were collected to measure their total length and that of their links, the diameter before and after each branching point, the insertion angle, the number of branches, twigs and leaves, and fresh and dry weight. The felling of seven individuals at the site was taken advantage of to fit a taper function for the trunk and determine its biomass. Acceptable estimates with good accuracy were obtained for F. uhdei trees with a DBH of less than 23 cm. It is feasible to develop biomass models from measuring the branches and the trunk of young F. uhdei trees through the implementation of structural indices based on fractal geometry and without the need to fell healthy trees.  相似文献   

4.
Tree planting has been favoured in many North American cities, including Montreal which aims to increase its canopy from 20% to 25% in 2025. However, the mortality rate of street trees is especially high in the first few years after planting. Studies have shown that variables that are intrinsic to the tree and those related to its location, the urban form and the socio-demographic characteristics of the surrounding environment are significantly associated either with trees’ survival rate or with vegetation cover. In this research we examine variables that have statistical associations with tree growth, which is the diameter at breast height divided by the number of years on the ground, for approximately 28,000 street trees in Montreal. Independent variables were nested into three spatial scales: the tree (species and physical variables), the street section (urban form variables), and the census tract (socio-demographic variables). Multilevel models reveal that 65.51% of the growth variance is potentially explained by the species and planting physical conditions such as the east and north sides (positive associations with the growth), signage as an obstruction (negative association). 28.54% of the grow variance is potentially explained by the urban form, in our case building age (convex relationship with the growth), mixed zoning (negatively) and residential zoning (positively). At the neighbourhood level, although none of our variables is significant, 6.95% of the growth variance is be potentially explained by other missing variables. New planting programs should hence consider the urban form in order to improve tree growth.  相似文献   

5.
Street trees are threatened by multiple stresses from biophysical and anthropogenic factors. This situation can be extremely challenging in highly developed urban areas with limited space for tree planting. Asia has some of the most densely populated cities globally, but there is a lack of data on factors affecting street tree health in the region. This study aims to examine the impact of constrained planting environments on the health condition of street trees through a case study in Kyoto City, Japan. The health condition of 1230 street trees distributed throughout the city was assessed from June to October 2018. Additionally, several tree- and site-related variables were collected to identify their impact on tree health. Trees that were in excellent and good condition accounted for 19.9 % and 32.0 % of the sample population, respectively. Multivariate linear regression (N = 1139) revealed that tree health condition was significantly related to pruning intensity, tree pit size, adjacent land use, presence/absence of tree grate or guard, width of sidewalk, tree height, presence/absence of dedicated cycle route, tree pit pattern, crown light exposure, DBH and tree pit type. Platanus × acerifolia and other trees with large diameters exhibited relatively poor condition, along with those in tree pits with concrete paving, without tree grates, or in industrial areas, whereas trees planted in strips exceeding 1.8 m in length and exposed to weak pruning showed the best condition. These results imply the potential for healthy growth of street trees in the restricted planting spaces of Kyoto City, which suggests appropriate management and planting practices. Moreover, our empirical data can inform urban tree managers to support their efforts in making decisions on the better matching of species tolerances with urban site conditions for future street tree plans.  相似文献   

6.
Trees provide multiple ecosystem services in urban centers and increases in tree canopy cover is a key strategy for many municipalities. However, urban trees also experience multiple stresses and tree growth can be impacted by urban density and impervious surfaces. We investigated the impact of differences in urban form on tree growth in the City of Merri-bek, a local government area in metropolitan Melbourne, which is the temperate climate zone. Merri-bek has a gradient in population density and urban greenness from north to south, and we hypothesized that tree growth in the southern areas would be lower because trees were more likely to have less access to water with high levels of impervious surfaces. We selected three common native evergreen species, Eucalyptus leucoxylon, Melaleuca linariifolia, and Lophostemon confertus that exhibit differences in climate vulnerability and assessed the tree canopy expansion in four urban density zones in Merri-bek between 2009 and 2020 using aerial image analysis. The differences in urban form did not significantly influence tree canopy growth and all species showed similar canopy expansion rates. However, smaller trees showed a greater relative canopy increase in the ten years, whereas larger trees had a greater absolute canopy growth. Thus, older and larger trees should be protected and maintained to achieve the canopy expansion. Our study indicated that differences in urban form are unlikely to have major impacts on the growth and canopy expansion of well adapted native tree species in open, suburban centers.  相似文献   

7.
Urban forest managers must balance social, economic, and ecological goals through tree species selection and planting location. Ornamental trees are often popular in tree planting programs for their aesthetic benefits, but studies find that they have lower survivability and growth compared to larger shade trees. To maximize ecosystem services within these aesthetic preferences, it is important to select species carefully based on their ability to grow in each particular climate. However, little locality-specific and species-specific data exist on urban trees in many regions. This study examines the growth, survival, and vigor of three common ornamental street trees in San Francisco’s three different microclimate zones after over 16 years since planting. While we found over 70% survival for all three species throughout the city, there were significant differences in health and vigor among microclimates for each species, likely due to differences in drought-tolerance. While Arbutus had the greatest proportion of healthy trees in the Fog Belt and Sun Belt zones, Prunus cerasifera had the greatest proportion in the Sun Belt, and Prunus serrulata had the greatest proportions in the Transition and the Sun Belt zones. This species-specific and climate-specific information will better equip urban foresters to target both planting and tree-care of these popular species appropriately to maximize the benefits provided by these street trees while still maintaining a diverse canopy. Finally, we argue that simple survival calculations can mask more complex differences in the health and ability of different urban tree species to provide ecosystem services.  相似文献   

8.
Shade factors, defined as the percentage of sky covered by foliage and branches within the perimeter of individual tree crowns, have been used to model the effects of trees on air pollutant uptake, building energy use and rainfall interception. For the past 30 years the primary source of shade factors was a database containing values from 47 species. In most cases, values were obtained from measurements on a single tree in one location. To expand this database 11,024 shade factors were obtained for 149 urban tree species through a photometric process applied to the predominant species in 17 U.S. cities. Two digital images were taken of each tree, crowns were isolated, silhouette area defined and shade factors calculated as the ratio of shaded (i.e., foliage and woody material) pixels to total pixels within the crown silhouette area. The highly nonlinear relationship between both age and diameter at breast height (DBH), and shade factor was captured using generalized additive mixed models.We found that shade factors increased with age until trees reached about 20 years or 30 cm DBH. Using a single shade factor from a mature tree for a young tree can overestimate actual crown density. Also, in many cases, shade factors were found to vary considerably for the same species growing in different climate zones. We provide a set of tables that contain the necessary values to compute shade factors from DBH or age with species and climate effects accounted for. This new information expands the scope of urban species with measured shade factors and allows researchers and urban foresters to more accurately predict their values across time and space.  相似文献   

9.
In densely populated cities that are dominated by concrete buildings, urban parks serve as major green infrastructures for ecological and environmental functions. Trees are one of the important components that support these green infrastructures. Despite plenty of urban parks established in Hong Kong in the last 20 years, knowledge of tree composition and diversity is outdated. There were also no studies that investigated the differences in tree diversity in relation to park history. Therefore, this study aims to identify the temporary changes in tree composition and diversity in Hong Kong, by conducting a plot-based tree survey in 32 urban parks of different ages. Overall, 2801 trees belonging to 181 species were recorded in 319 plots across all the parks. A ridit analysis was conducted and it indicated the mature size of trees were not significantly larger in old parks. However, the linear mixed-effects models and the post-hoc tests suggested that DBH, tree height and the proportion of crown dieback for each class of tree size were greater in the old parks. Moreover, the composition of top-ranking dominant tree species varied substantially, where more ornamental and exotic trees were adopted in new parks. For species richness, the sample-based species accumulation curves of different park age overlapped when the horizontal axis of the curve was scaled by the average number of combined individual trees. When the horizontal axis was scaled by the number of plots, the curve for the old parks was above the curve for the new parks. The differences derived from these two accumulation methods indicated a higher tree density in old parks. For species evenness, both the rank-abundance curves and Rényi diversity curves depicted a similar low species evenness in old and new parks. These results suggested that species diversity remained largely unchanged from old parks to new parks though the dominant tree species varied. Greater attention should be paid to increase the species evenness in all urban parks, increase tree density in new parks and improve tree maintenance in old parks.  相似文献   

10.
Natural parks are comprised of preserved forested natural areas that are undergoing natural ecological processes. These areas can offer a refuge for local biodiversity and contribute substantially to ecosystem services in both rural areas with relatively low population densities, as well as high-density urban areas. Forested natural parks located in urban areas should experience more stressful environmental conditions than nearby rural areas, yet we know relatively little about how urbanization impacts tree communities within these important natural habitats. To better understand the impact of urbanization on forests, we investigated the species composition, abundance, and diversity of midstory and canopy trees as well as tree seedlings in urban and rural natural parks in and around Cleveland, Ohio. We found that both urban and rural natural parks have similar tree abundance, but midstory and canopy trees as well as tree seedling communities in the urban natural parks included higher abundances of stress-tolerant species compared to rural parks. In addition, this pattern was driven by changes in native tree species, as we observed low abundance of invasive species. More stress-resistant native species in urban areas include Quercus rubra and Prunus serotina, in contrast to rural natural parks which are dominated by Acer spp. and Fagus grandifolia. Lastly, we show that urban and rural natural parks have similar species diversity within plots, but we found higher variation in community composition among urban natural parks compared to among rural parks. Furthermore, Q. rubra and P. serotina were significantly larger in rural natural parks, indicating that both environmental stress and successional stage could drive compositional differences. Thus, we show that urbanization can have unexpected effects on plant community composition and diversity. Our study refutes the idea that these are degraded habitats, highlights the need to conserve them, and suggests that characterization of local variation in self-assembled urban tree communities will provide the most accurate picture of their management needs and potential ecosystem services.  相似文献   

11.
Urban conditions have been thought to affect tree growth, but there is little conclusive evidence as to the severity of those influences or how various species respond differentially to urban stress. Reduced growth expectations are important to understand, because they affect design choices for the urban tree canopy, particularly as required by legislative mandate. Five tree species (Acer rubrum, Prunus serrulata, Pyrus calleryana, Quercus pallustris and Zelkova serrata) grown in parking lots ranging from 18 to 23 years old in central and northern New Jersey, USA were studied. Tree height, diameter at breast height (DBH), and canopy radius were measured, as was apparent plant available soil (nonpaved planting zone area). Tree DBH, commonly recorded for many municipal inventories, was found to be a useful predictor of canopy area. Data were normalized within site, to facilitate multiple site analysis. Across different parking lots, reductions in tree size were consistently associated with reduced apparent soil access. A previous study from Florida, USA was used for comparison of regional data, permitting conclusions on canopy reductions, relative to specification of design space for tree establishment.  相似文献   

12.
Horse chestnut (Aesculus hippocastanum L.) is a common urban tree species in Ljubljana, the capital of Slovenia. This area is forecast to experience a general reduction in precipitation and an increase in temperature, which increases water demand in plants. Because A. hippocastanum is known for its drought vulnerability, the question of the future suitability of this urban tree species in Ljubljana has arisen. To investigate how climate has influenced A. hippocastanum radial growth and how trees responded to extreme climatic events, standardized precipitation-evapotranspiration index (SPEI) was used as a proxy for water demand. Climatic signal and its stability through time were calculated using Pearson’s correlation coefficient. Additionally, to investigate whether the trees had a common response to extreme climatic events, pointer years were calculated using Cropper values. We sampled 19 trees that were growing in Tivoli Park in Ljubljana. After successful cross-dating of 15 trees, the ring count showed that the trees had up to 201 tree-rings and had 130 on average. Climate-tree growth analysis showed that in July, 3-month SPEI had the strongest influence on radial growth, but its influence on radial growth decreased over time, possibly due to the die-off process of trees. The narrowest tree-rings were a result of unusually dry periods at the time of cambium activity and/or new cell growth. With the forecast of longer, more frequent summer drought periods in Ljubljana, soil moisture stress will increase, and as a result, a decrease in radial tree growth of A. hippocastanum trees from Tivoli Park is expected.  相似文献   

13.
Tree growth equations are an important and common tool used to effectively assess the yield and determine management practices in forest plantations. Increasingly, they are being developed for urban forests, providing tools to assist urban forest managers with species selection, placement, and estimation of management costs and ecosystem services. This study describes the development of allometric equations for Fraxinus americana and F. pennsylvanica growing in Oakville, Canada. With data collected from 103 ash trees, five allometric models were tested to develop equations estimating diameter-at-breast-height (dbh), tree height, crown width and crown height, using age and dbh as explanatory variables. Mean annual growth rates are presented to demonstrate species growth performance and were not significantly different over the first 40 years of growth for the two species. Of all the tested random coefficient models for both species, the cubic with weight 1/x provided the best fit for estimating dbh from age. The best models for other parameters were the loglog for crown height from dbh, the quadratic for crown diameter from dbh, and the linear for tree height from dbh for F. americana. Model types showed more consistency for F. pennsylvanica with linear providing the best fit for crown diameter, crown height and tree height from dbh. The number of model types suggests the difficulty of fitting any single model to the vast array of conditions affecting plant growth in urban areas where management practices and environment can significantly influence tree size and growth. These models may be used to estimate the growth of ash tree populations in Oakville and communities with similar climate, soil, planting, and management environments.  相似文献   

14.
Assessing tree growth trends over time is a central but challenging aspect of urban forest management. The potential damage caused by invasive devices used in dendrochronological analysis is a common concern among urban foresters. Thus, the development of a less-invasive method for assessing tree growth rate faster that provides reliable results is clearly beneficial. In this study, resistance drilling (RD) profiles were compared with stem core assessments (Core) to estimate the growth rate of 78 trees of three species (Quercus robur, Ulmus procera, and Platanus x acerofolia). All studied trees were core-sampled in 2013 and then resistance drilled in 2015 at a stem height of 1–1.3 m in both north (N) and west axes (W). The dependency and accuracy of paired annual ring series (CORE measurements and Resi reading) were tested using ANOVA and regression analysis. In addition, point and event year tests were determined to confirm the accuracy of the RD to assess growth trends at both population and tree level. Growth series from both methods were cross-dated to test the reliability of RD to relate historical tree growth to past climatic conditions. ANOVA analysis confirmed that average ring width values and age of 70 out of 78 trees were statistically similar for both methods and similar for both sampled stem axes. Within each tree, regression analysis indicated significant correlation between cored ring datasets and paired resistance drilled ring datasets (R2 = 0.78–0.95, p < 0.05) across species. RD reliably detected pointer years at population level for Q. robur only. For all species, RD could not adequately detect event years at tree level. Regardless of species and drill axes, RD was less accurate in measuring ring width below 1 mm. For all species, RD yielded lower intercorrelation indices and greater number of “A” flagged segments as compared to CORE. Overall, RD can successfully estimate mean annual ring values to a comparable standard as conventional CORE analysis. However, the RD device used in this study did not detect the inter-annual growth pattern to the same standard as stem CORE analysis, RD should not be used to replace dendrochronology in climate-tree growth studies.  相似文献   

15.
Tree size censusing is essential for evaluations of trees and forests, but traditional field surveys are both time- and labor-intensive. Here, we discuss the use of panoramic 360-degree street views available on the Internet for censusing of roadside trees in urban regions. Use of scale-independent, fixed-sized street objects as recalibrating meters in tandem with imagery software enabled street-view images to be used effectively in the remote measurement of diameter at breast height (DBH), tree height, underbranch height, and canopy projection size. Comparison of four independent meters determined that stem limewhite-related meters (used for tree disease and bark-freeze injury control; usually 1.3 in height throughout China) had greater precision than road curb height, lane width, and traffic line width meters. The limewhite meter’s precision was slightly lower than those of the meters in combination (i.e., when at least three of the abovementioned meters were used for the same tree measurement), but no statistically significant differences were detected between the limewhite and combined meters (p > 0.05). In contrast, the road curb height, traffic line width, and lane width meters all had significantly lower precision. The highest levels of precision were 92%, 87%, and 80% for DBH, height (tree height and underbranch height), and tree canopy size measurements, respectively. Empirical recalibration of the image-based measurements did not improve data precision with reference to field surveys (p > 0.05). Moreover, similar results were obtained regardless of individual users, and repeatability for DBH measurements (r2 > 0.92), and maximum differences among individual users were 0.6–1.9 cm for DBH (averaged at 22 cm) and 8–50 cm for underbranch height (mean value at 8 m). Labor costs and time needed for this approach were one-thirtieth to one-tenth those required for field surveys. Thus, the use of street-view images represents a more resourceful approach to assess forest ecological services.  相似文献   

16.
This case study describes a method for utilizing leaf-off airborne laser scanning (ALS) data for mapping characteristics of urban trees. ALS data were utilized to detect and update all street trees in the tree inventory of the City of Helsinki, Finland. The inventory consists of roughly 20,000 street trees with mean diameter at breast height (DBH) of 24 cm and mean height of 10.6 m. The large number of trees makes the manual updating process very laborious. The automatic mapping procedure presented in this paper detected 88.8% of all trees in the inventory. Tree height was predicted with root mean square error (RMSE) of 1.27 meters and tree DBH with RMSE of 6.9 cm. The presented method provides a practical and cost–effective tool for the mapping of urban tree characteristics. The cost–efficiency was further enhanced because the used ALS data were originally collected for other urban planning purposes.  相似文献   

17.
Urban trees provide a wide range of ecosystem services for city residents, with tall, mature trees with wide crowns generally regarded as preferable. The tree biomass which is responsible for shading, pollution removal, rain runoff retention etc. gets periodically reduced by the municipal tree management practice of pruning. This is a necessary activity, which reduces the risk of infrastructure damage and falling branches, but many estimates of ecosystem service provision in cities do not consider its impact explicitly. Tree mortality is also higher in cities, preventing trees from attaining and remaining at large sizes. This study used extensive field measurements of tree structure to estimate the impact of pruning on 8 tree species in two Italian cities: Taranto and Florence. Crown widths were reduced by 1.6 m on average, however there is large variation between species variation with branches more often being removed for thinning crowns resulting in larger gap fractions, which increased by 15% on average. No significant differences were observed for crown widths or gap fraction between trees pruned 3 and 4 years previously, suggesting that tree crowns structurally recover from pruning after 3 years. A deterministic model revealed that current urban forest pruning rates (every 6 years) and mortality (1%) may create a situation in which a city dominated by the species studied benefits from 93.5% of the maximum ecosystem services possible. This work will allow more nuanced estimates of urban forest services to be calculated.  相似文献   

18.
Citizen science has been gaining popularity in ecological research and resource management in general and in urban forestry specifically. As municipalities and nonprofits engage volunteers in tree data collection, it is critical to understand data quality. We investigated observation error by comparing street tree data collected by experts to data collected by less experienced field crews in Lombard, IL; Grand Rapids, MI; Philadelphia, PA; and Malmö, Sweden. Participants occasionally missed trees (1.2%) or counted extra trees (1.0%). Participants were approximately 90% consistent with experts for site type, land use, dieback, and genus identification. Within correct genera, participants recorded species consistent with experts for 84.8% of trees. Mortality status was highly consistent (99.8% of live trees correctly reported as such), however, there were few standing dead trees overall to evaluate this issue. Crown transparency and wood condition had the poorest performance and participants expressed concerns with these variables; we conclude that these variables should be dropped from future citizen science projects. In measuring diameter at breast height (DBH), participants had challenges with multi-stemmed trees. For single-stem trees, DBH measured by participants matched expert values exactly for 20.2% of trees, within 0.254 cm for 54.4%, and within 2.54 cm for 93.3%. Participants’ DBH values were slightly larger than expert DBH on average (+0.33 cm), indicating systematic bias. Volunteer data collection may be a viable option for some urban forest management and research needs, particularly if genus-level identification and DBH at coarse precision are acceptable. To promote greater consistency among field crews, we suggest techniques to encourage consistent population counts, using simpler methods for multi-stemmed trees, providing more resources for species identification, and more photo examples for other variables. Citizen science urban forest inventory and monitoring projects should use data validation and quality assurance procedures to enhance and document data quality.  相似文献   

19.
Urban environments are often characterized by extensive paved surfaces, exacerbating the urban heat island effect. At the same time, limited root space due to underground infrastructure poses a challenge for planting new trees in these areas. Trees in planters have emerged as popular design elements, offering innovative and sustainable greening solutions, particularly in urban environments with limited rooting space. However, growing conditions in planters may strongly impact tree growth and the provision of environmental ecosystem services (ES). In this 3-year study, we analyzed tree growth and ecosystem services (cooling by shading, CO2-fixation) of London plane (Platanus x hispanica Münchh.) and small-leaved lime (Tilia cordata Mill.) in four planting treatments: in-ground (G), planters in the ground (PG), non-insulated plastic planters (P), and insulated planters (PI). We also recorded soil temperature throughout the experiment and implemented soil drought conditions by reducing soil irrigation for half of the trees after one year. Our findings revealed higher thermal fluctuations in soil temperature within non-insulated plastic planters (P), reaching a maximum of 45 °C, surpassing the critical temperature threshold for plant growth (>38 °C). In contrast, insulated planters (PI) effectively mitigated soil temperatures, staying below 33.8 °C. When planted in the ground (G), P. x hispanica exhibited a significantly higher stem diameter increment (52–66%) compared to other planting treatments, aligning with the provision of ecosystem services. However, T. cordata trees showed a more moderate response to planting treatments in terms of growth and ecosystem service provision. Furthermore, the implementation of soil drought conditions resulted in a reduction of up to 34% in stem diameter increment for P. x hispanica and up to 25% for T. cordata. Our results underscore the necessity of tree species-specific knowledge about growth responses to different planting treatments for effective urban planning perspectives, as the provision of ecosystem services may be influenced differently.  相似文献   

20.
An analysis of tree health in urban greeneries exposed to winter road salt contamination was carried out in the cities of Alytus and Kaunas, Lithuania, during spring and summer 2009–2014. Trees were assessed for crown dieback, crown defoliation and foliage discolouration. In addition, the prevalence of saprotrophic pathogenic fungi that cause sooty mold disease was assessed in street and recreational plantings. Tilia cordata Mill. (small-leaved lime) was found to be the most common tree species among urban deciduous trees. Summarising the tree foliage results, saprotrophic fungi were detected on 16 species plants belonging to 13 genera. Three species of fungal pathogens belonging to two genera, two families, two classes, and two divisions, and 12 species of anamorphic fungi from nine genera were isolated and identified from Tilia cordata leaves. The most frequent sooty mold disease agents were Aspergillus brasiliensis and Cladosporium herbarum. Nonetheless, a weak correlation between salt contamination and lime tree damage by sooty mold was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号