首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In modern society stress is a major problem, causing lack of mental and social well-being as well as potential vulnerability to problems at work. Previous studies have found natural environments to be relaxing. In this intervention study, performed in Northern Sweden, the hypothesis was that an outdoor forest environment would be more relaxing than an indoor handicraft environment. Forty-six participants with high stress levels (PSQ  0.4) (33 women, 13 men, average age 48 years) were randomly assigned to visit either the forest environment (n = 27) or the handicraft environment (n = 19). The participants visited their assigned environment twice a week during three months, either in autumn or spring. During each visit they spent two hours performing, simple and undemanding activities. Psychological health outcomes were measured by the questionnaires CIS, PSQ, SCQ, SMBQ, SF-36 before and after the three months interventions. Sleeping patterns were monitored by an Actiwatch and sleep diary. The participants’ mood before and after each visit were estimated by a questionnaire. The results show that the participants’ health had improved after the interventions in both the forest and handicraft environments. The sleep latency increased slightly among participants in the handicraft environment. For participants in both environments the levels of fatigue, stress and burnout were all lower. They felt less limitation due to physical problems and did not feel so tired. Also their mental health had improved. From start to end of a visit to either environments the participants’ mood was improved, and they felt more relaxed, alert, happy, harmonious, peaceful and clearheaded. Over time during the intervention, they also felt significantly more clearheaded. We conclude that the health of all participants improved, irrespective of the environment visited.  相似文献   

2.
We measured air temperature in an urban green area that includes forest and grassland and in the surrounding urban area for a full year in Nagoya, central Japan, to elucidate seasonal variations of the difference in air temperature between urban and green areas. We determined the range of the “cool-island” effect as well as the relationship between vegetation cover and air temperature throughout the year. The temperature difference between urban and green areas was large in summer and small in winter. The maximum air temperature difference was 1.9 °C in July 2007, and the minimum was ?0.3 °C in March 2004. The difference was larger during the day than during the night in summer, whereas in winter the opposite relationship was true. However, winter diurnal variation was not particularly noticeable, a behaviour thought to be related to reduced shading by deciduous trees in the green area. During the night, the cooling effect of the green area reached 200–300  m into the urban area. During the day, the cooling effect between August and October 2006 exceeded 300 m and varied widely, although there was no correlation beyond 500 m. The correlation between air temperature and forest-cover ratio within a radius of 200 m from each measurement site was significant from 16:00 to 19:00. There was also a correlation during the night; this correlation was weakest in the early morning. The effect of the forest-cover ratio on air temperature was most pronounced in August 2006 and June 2007.  相似文献   

3.
Gynoecism has been used on a large scale in heterosis breeding of cucumber. Production of hybrid seeds in bitter gourd is highly expensive because it is done mainly through hand pollination. But utilization of a gynoecious line would be more economical and easier method. Since gynoecious parent has only female flowers, the open pollinated seeds it produces will be F1 hybrid. It will reduce the cost of male flower pinching and hand pollination. Two gynoecious lines, DBGY-201 and DBGY-202 were crossed with two monoecious cultivars, “Pusa Do Mausami” and “Pusa Vishesh” and their F2 populations were observed to determine the inheritance pattern of gynoecious sex form. Another experiment was conducted to determine magnitude of heterosis by utilizing nine inbred lines including one gynoecious line, DBGY-201 in diallel (without reciprocal) mating system. All the gynoecious hybrids showed significant heterosis in a desirable direction for traits like sex ratio (male:female), days to first picking, number of fruits per plant, yield per plant, and vine length. The segregation pattern in F2 suggested that gynoecious sex form in bitter gourd was governed by single recessive gene. The gynoecious hybrids DBGY-201 × “Pusa Vishesh” and DBGY-201 × “Pusa Do Mausami” were important for early harvest (~50 days after sowing) whereas DBGY-201 × “Priya” and DBGY-201 × “Arka Harit” were promising for higher yield.  相似文献   

4.
Of interest to researchers and urban planners is the effect of urban forests on concentrations of ambient air pollution. Although estimates of the attenuation effect of urban vegetation on levels of air pollution have been put forward, there have been few monitored data on small-scale changes within forests, especially in urban forest patches. This study explores the spatial attenuation of particulate matter air pollution less than 10 μ in diameter (PM10) within the confines of an evergreen broadleaved urban forest patch in Christchurch, New Zealand, a city with high levels of PM10 winter air pollution. The monitoring network consisted of eight monitoring sites at various distances from the edge of the canopy and was operated on 13 winter nights when conditions were conducive for high pollution events. A negative gradient of particulate concentration was found, moving from higher mean PM10 concentrations outside the forest (mean=31.5 μg m?3) to lower concentrations deep within the forest (mean=22.4 μg m?3). A mixed-effects model applied to monitor meteorological, spatial and pollution data indicated temperature and an interaction between wind speed and temperature were also significant (P?0.05) predictors of particulate concentration. These results provide evidence of the potential role that urban forest patches may play in mitigating particulate matter air pollution and should be considered in plans for improving urban air quality.  相似文献   

5.
The aim of this study was to test whether fragmentation or recreational use affect tree regeneration in urban forests, and to quantify these effects. We sampled tree saplings at different distances from edges in spruce (Picea abies) dominated forests, and at different distances from paths that represented different levels of wear. Generalized linear mixed models were used to test our hypotheses. We found that fragmentation favours the regeneration of deciduous trees in urban spruce dominated forests: distance from the edge had a pronounced effect on regeneration, at least up to 80 m into the forests. Saplings of Betula pendula, Populus tremula, other deciduous species and Pinus sylvestris benefited from edge conditions. Betula pubescens saplings, however, were most abundant in the interior and small Sorbus aucuparia saplings at 25–30 m from the edge. All species suffered from the direct effects of trampling, while varying responses of species to distance from the paths were observed up to 6 m, and possibly further. As trees essentially define the living conditions for other forest species, we suggest that the spatial extent of edge and trampling effects should be studied for different types of forests. This knowledge should then be used in urban forestry and planning to define the threshold value that will allow for at least some “intact” interior. We suggest a diameter larger than 160 m to support indigenous species in boreal spruce dominated forests.  相似文献   

6.
The understanding of cross-cultural upon park usage is vital to be enhanced among public since findings that been discovered in the Western context are not own any similarities with the Asian context. In fact, it has been in a long run for the Western nations to primarily contextualized and conceptualized much on the literature of park usage. This study aims to look at how the people use and perceive urban parks in their daily life in the Malaysian cultural context, and also highlights the constraints faced by Malaysians while using the urban parks in the city of Kuala Lumpur. A survey consisted of 669 urban park users as the sample of the study (365 men, 304 females) aged between 18 and 73 years (M = 34.85, SD = 11.46) were conducted in five urban parks in Kuala Lumpur. Respondents were recruited based on a random sampling method, which composed of three main ethnic groups in Malaysia. Malaysians wanted to use the urban parks for multiple purposes including active activities and others. Most of them would visit the parks and spend their time in a group consisting of family members or friends rather than alone. The percentage of respondent with 74.7% stated their reason of visiting the urban park in order “to get fresh air”, followed by the factor of reducing stress and relaxing with 69.7%; and the latter reason would be “to exercise, play games or keep in shape” with 61.4%. More than 80% of the respondents claimed the parks in Kuala Lumpur are safe to be visited. This is because, majority of the respondents tend to visit the parks in group of family or friends rather than alone. In addition, most of the respondents would run their activities in parks during the weekends, which simultaneously make them to enjoy their day in such comfortable and secure way. The findings of this survey would contribute to a better understanding of the present park usage of Kuala Lumpur residents. With a better understanding of current park-visiting habits, various constraints faced by the residents related to public security and safety, the Kuala Lumpur City Hall have been suggested to develop more comprehensive strategy in order to provide engagement and urban parks stimulation for its residents. In addition, this study is also fruitful for Kuala Lumpur future parks in terms of its development, design and management.  相似文献   

7.
The normalized difference vegetation index (NDVI) is often used as a marker of surrounding greenness in epidemiological studies aiming to evaluate the health effects of green space in urban settings. However, it is not clear the relationship between built environment characteristics, including green space, and NDVI. We aimed to evaluate the relationship between built environment characteristics, based on land-use and land-cover maps, and NDVI as a marker of surrounding greenness in the city of Barcelona. We used data from an already existing cohort of pregnant women in Barcelona (N = 8402). NDVI was derived and averaged within buffers of 100 m and 300 m for each participant, and categories of the built environment (m2) were derived from land-use and land-cover maps of Barcelona. We conducted ANOVA models to calculate the contribution (R2) of each land-use (or land-cover) category. The variability in NDVI in Barcelona was mainly explained by urban green (R2 between 0.32 and 0.53) and natural green areas (R2 between 0.19 and 0.52), although for the latter less than 4% of the participants were exposed to this. Both land-use and land-cover maps explained NDVI at 300 m better (full models explaining 76% and 78%, respectively) than at 100 m buffers (full models explaining 55% and 54%, respectively). Results of the present study indicate that NDVI can be a useful greenness metric depending on the hypothesis and area of study. However, for certain sizes of study areas (buffers smaller than 100 m), NDVI might have a lower predictive value. Results of the present study should be replicated in studies from other cities with different urban characteristics and climate conditions.  相似文献   

8.
Knowledge of allometric equations can enable urban forest managers to meet desired economic, social, and ecological goals. However, there remains limited regional data on young tree growth within the urban landscape. The objective of this study is to address this research gap and examine interactions between age, bole size and crown dimensions of young urban trees in New Haven, CT, USA to identify allometric relationships and generate predictive growth equations useful for the region. This study examines the 10 most common species from a census of 1474 community planted trees (ages 4–16). Regressions were applied to relate diameter at breast height (dbh), age (years since transplanting), tree height, crown diameter and crown volume. Across all ten species each allometric relationship was statistically (p < 0.001) significant at an α-level of 0.05. Consistently, shade trees demonstrated stronger relationships than ornamental trees. Crown diameter and dbh displayed the strongest fit with eight of the ten species having an R2 > 0.70. Crown volume exhibited a good fit for each of the shade tree species (R2 > 0.85), while the coefficients of determination for the ornamentals varied (0.38 < R2 < 0.73). In the model predicting height from dbh, ornamentals displayed the lowest R2 (0.33 < R2 < 0.55) while shade trees represented a much better fit (R2 > 0.66). Allometric relationships can be used to develop spacing guidelines for commonly planted urban trees. These correlations will better equip forest managers to predict the growth of urban trees, thereby improving the management and maintenance of New England's urban forests.  相似文献   

9.
Birds are ecosystem service providers and excellent urban ecosystem indicators because they are sensitive to habitat structure. Light detection and ranging (LiDAR) technology is a promising tool in bird habitat characterization because it can directly acquire fine-scale 3-D information over large areas; however, most of past avian ecological studies using LiDAR were conducted in North America and Europe, and there have been no studies in Asia. The robustness of LiDAR data across different habitat types remain problematic. In this study, we set 13 plots having different canopy area percentages in a large-scale urban park in Japan, and examined the usefulness of airborne LiDAR data in modeling richness and diversity of forest bird species and the abundance of Paridae species that play an important role in the urban food web. Bird surveys were conducted eight times at each plot during the birds’ breeding season, and the results were estimated using generalized linear models. In consequence, all of the response variables were explained by one or a few LiDAR variables, and the 1 × 1 × 1-m voxel-based variables were especially robust estimators. When targeting only densely-forested plots having more than 60% canopy area, the LiDAR data efficiency declined in estimation of the richness and diversity of whole forest bird species, whereas a laser penetration rate was efficient for estimating the Paridae species abundance. These results implied that the LiDAR data are useful in habitat characterization of forest birds, and even when targeting only dense forests, some LiDAR variables are effective for habitat estimation of birds preferring specific forest structures. In the future, application of LiDAR across a variety of ecosystems will greatly serve to develop adaptive conservation and management planning for urban forests.  相似文献   

10.
《Scientia Horticulturae》2005,106(4):568-581
The response of melon (Cucumis melo) plants to long-term salinity was investigated to determine the availability of the NaCl pre-treatments (seed priming + seedling conditioning) as an interesting strategy for increasing the salt tolerance. Seeds of melon cultivars “Hasanbey” and “Kirkagac” were primed with 18 dS m−1 NaCl solution for 3 days at 20 °C. During emergence and seedling growth, non-primed seeds were irrigated with local irrigation water (EC: 0.3 dS m−1) whereas primed groups were treated with 9.0 dS m−1 saline solution for 35 days. Seedlings derived from pre-treated (P) and non-pre-treated (NP) groups were transplanted to 8 l pots. After transplanting, salinity treatments were started with the first irrigation. The salinity treatments consisted of five levels (control, 4.5, 9.0, 13.5 and 18.0 dS m−1) of irrigation solution for a period of 90 days. NaCl pre-treatments diminished the inhibiting effect of salinity on growth of melon plants. However, competence for salt adaptation varied with cultivar and the level of salinity. The physiological response of the P plants was also maintained in the long-term. Stomatal conductance and relative chlorophyll content of P plants tended to be higher than those of the NP ones. In addition, NaCl pre-treatments enhanced K and Ca concentrations of leaves and stems, and prevented toxic effects of salinity because less Na accumulated in stems. These results suggest that the use of NaCl pre-treatments could be a useful strategy to increase the salt tolerance of melon plants in the long-term and also to permit the establishment of melon crop by direct sowing in a saline medium.  相似文献   

11.
Leaf area of urban vegetation is an important ecological characteristic, influencing urban climate through shading and transpiration cooling and air quality through air pollutant deposition. Accurate estimates of leaf area over large areas are fundamental to model such processes. The aim of this study was to explore if an aerial LiDAR dataset acquired to create a high resolution digital terrain model could be used to map effective leaf area index (Le) and to assess the Le variation in a high latitude urban area, here represented by the city of Gothenburg, Sweden. Le was estimated from LiDAR data using a Beer-Lambert law based approach and compared to ground-based measurements with hemispherical photography and the Plant Canopy Analyser LAI-2200. Even though the LiDAR dataset was not optimized for Le mapping, the comparison with hemispherical photography showed good agreement (r2 = 0.72, RMSE = 0.97) for urban parks and woodlands. Leaf area density of single trees, estimated from LiDAR and LAI-2200, did not show as good agreement (r2 = 0.53, RMSE = 0.49). Le in 10 m resolution covering most of Gothenburg municipality ranged from 0 to 14 (0.3% of the values >7) with an average Le of 3.5 in deciduous forests and 1.2 in urban built-up areas. When Le was averaged over larger scales there was a high correlation with canopy cover (r2 = 0.97 in 1 × 1 km2 scale) implying that at this scale Le is rather homogenous. However, when Le was averaged only over the vegetated parts, differences in Le became clear. Detailed study of Le in seven urban green areas with different amount and type of greenery showed a large variation in Le, ranging from average Le of 0.9 in a residential area to 4.1 in an urban woodland. The use of LiDAR data has the potential to considerably increase information of forest structure in the urban environment.  相似文献   

12.
Understanding users’ spatial distribution in forest park is crucial for providing visitors with quality recreation experiences and for park planning and management. Utilizing users’ spatial distribution data, this study aims at investigating associations between trail use level and trail spatial attributes, through examining two large urban forest parks (Gongqing forest park and Paotaiwan forest park) in Shanghai, China. Users’ spatial distribution was measured utilizing GPS trackers with the interval of 10 seconds. This study conceptualizes trail spatial attributes as trail metric attributes and trail configurational attributes. Trail metric attributes include trail mean distance to gates, length, width and level of enclosure, which are calculated based on park map and on-site observation. We computed trail configurational attributes utilizing space syntax theory, which comprise measures of global integration, control, and connectivity. Trail connection with features/facilities, visual connection with water and shading are included as covariate variables. In total, we obtained 134 valid samples in Gongqing forest park and 210 valid samples in Paotaiwan forest park for analysis. Multivariate regression analyses indicate that when involving covariate variables, consistently in both parks, a greater trail usage is significantly related to trail shorter mean distance to park gate, trail width wider than 3 meters, higher global integration and higher control values. Collectively, these four trail spatial attributes explained 31.7 % (p < 0.001) and 27.3 % (p < 0.001) of the variances in trail use level in Gongqing forest park and Paotaiwan forest park. These findings provide direct implications to park designers and managers for providing visitors with different desirable social conditions, and ultimately improve users’ experiences and satisfactions.  相似文献   

13.
This study aims to verify the effects of nature sounds on attention, and physiological and psychological relaxation. Twenty-six university students (mean age: 21.5 ± 1.9 years) participated in this study, and the experiment was conducted with one person at a time. A mixed sound of valley water and birds in a forest environment was used as the nature sound, and a road traffic sound was used as the urban sound (control). The participants performed the following steps: (1) closed their eyes and rested for 1 min; (2) opened their eyes and completed attention tasks while hearing nature or urban sounds for 1 min; (3) closed their eyes again and rested while hearing the same sound for 1 min. We used Harris and Harris grid for the attention task. We measured the participants’ oxy-hemoglobin concentration, heart rate variability, and heart rate for physiological evaluation, and used semantic differential method, and profile of mood states for psychological evaluation. As a result, ① There was no significant difference in the results of the attention task; however, the scores were slightly higher when hearing nature sound. ② The oxy-hemoglobin concentration and heart rate was lower, and parasympathetic nerve activity was enhanced when hearing nature sound than when hearing urban sound. ③ Once participants heard nature sound, they felt more comfortable, relaxed, and natural, and the negative mood state was lower, while the positive mood state was higher than urban sound. This suggests that hearing nature sounds may be an effective way to relieve stress in everyday life.  相似文献   

14.
Citizen science has been gaining popularity in ecological research and resource management in general and in urban forestry specifically. As municipalities and nonprofits engage volunteers in tree data collection, it is critical to understand data quality. We investigated observation error by comparing street tree data collected by experts to data collected by less experienced field crews in Lombard, IL; Grand Rapids, MI; Philadelphia, PA; and Malmö, Sweden. Participants occasionally missed trees (1.2%) or counted extra trees (1.0%). Participants were approximately 90% consistent with experts for site type, land use, dieback, and genus identification. Within correct genera, participants recorded species consistent with experts for 84.8% of trees. Mortality status was highly consistent (99.8% of live trees correctly reported as such), however, there were few standing dead trees overall to evaluate this issue. Crown transparency and wood condition had the poorest performance and participants expressed concerns with these variables; we conclude that these variables should be dropped from future citizen science projects. In measuring diameter at breast height (DBH), participants had challenges with multi-stemmed trees. For single-stem trees, DBH measured by participants matched expert values exactly for 20.2% of trees, within 0.254 cm for 54.4%, and within 2.54 cm for 93.3%. Participants’ DBH values were slightly larger than expert DBH on average (+0.33 cm), indicating systematic bias. Volunteer data collection may be a viable option for some urban forest management and research needs, particularly if genus-level identification and DBH at coarse precision are acceptable. To promote greater consistency among field crews, we suggest techniques to encourage consistent population counts, using simpler methods for multi-stemmed trees, providing more resources for species identification, and more photo examples for other variables. Citizen science urban forest inventory and monitoring projects should use data validation and quality assurance procedures to enhance and document data quality.  相似文献   

15.
Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed data can reduce costs if measurements derived from remotely sensed data are accurate. This study identifies and measures the errors incurred in estimating key tree dimensions from two types of remotely sensed data: high-resolution aerial imagery and LiDAR (Light Detection and Ranging). Using Sacramento, CA, as the study site, we obtained field-measured dimensions of 20 predominant species of street trees, including 30–60 randomly selected trees of each species. For each of the 802 trees crown diameter was estimated from the aerial photo and compared with the field-measured crown diameter. Three curve-fitting equations were tested using field measurements to derive diameter at breast height (DBH) (r2 = 0.883, RMSE = 10.32 cm) from the crown diameter. The accuracy of tree height extracted from the LiDAR-based surface model was compared with the field-measured height (RMSE = 1.64 m). We found that the DBH and tree height extracted from the remotely sensed data were lower than their respective field-measured values without adjustment. The magnitude of differences in these measures tended to be larger for smaller-stature trees than for larger stature species. Using DBH and tree height calculated from remotely sensed data, aboveground biomass (r2 = 0.881, RMSE = 799.2 kg) was calculated for individual tree and compared with results from field-measured DBH and height. We present guidelines for identifying potential errors in each step of data processing. These findings inform the development of procedures for monitoring tree growth with remote sensing and for calculating single tree level carbon storage using DBH from crown diameter and tree height in the urban forest.  相似文献   

16.
Urbanisation is increasing tremendously in some parts of the world. Consequently, many rural forests may become depleted, although many opportunities exist for urban forests to increase. However, few studies have quantified the carbon (C) sequestration capacities of urban and rural forests in specific climatic zones. The present study compared carbon sequestration in two temperate deciduous forests located in Nagoya and Toyota, central Japan. The Nagoya University forest represented an urban forest, and a site in Toyota represented a rural forest. The urban forest at Nagoya University had comparatively smaller areas of green space and larger areas of buildings and roads. Land uses for building and road, which are typical of urban areas, result in smaller diurnal temperature ranges but higher air temperature, vapour pressure deficit, and atmospheric carbon dioxide (CO2) concentration. The urban forest in this study exhibited higher gross ecosystem exchange (GEE), especially in the active growing season from May to September, suggesting the possible effect of CO2 fertilisation. However, higher air temperatures caused comparatively smaller net ecosystem exchange (NEE) because of higher ecosystem respiration (RE). Although both forests functioned as CO2 sinks at annual time scales, the rural Toyota forest site (5.43 t C ha–1 yr–1) had 36% higher net ecosystem production (NEP=–NEE; the negative sign indicates uptake by the forest ecosystem from the atmosphere) than that at the urban forest. The higher normalised respiration (i.e., RE/GPP ratio; GPP=–GEE where GPP represents gross primary production) at the Nagoya University forest might be attributable to factors associated with the degree of urbanisation. Thus, in temperate forests, factors associated with urbanisation may reduce the atmospheric carbon sink function by accelerating respiration. This is an issue of global interest, as many countries are experiencing rapid urbanisation.  相似文献   

17.
A tree diversity inventory was carried out in urban green spaces (UGSs) of Chennai metropolitan city, India. This inventory aims to study the diversity, density and richness of trees in UGSs of Chennai. A total of one hundred 10 m × 10 m (total 1 ha) plots were laid to reveal tree diversity and richness of UGSs. Trees with ≥10 cm girths at breast height (gbh) were inventoried. We recorded 45 species in 42 genera and 21 families. Caesalpiniaceae and Fabaceae each with 6 species dominated the study area followed by Arecaceae (3). Density and stand basal area of the present study were 500 stems ha?1 and 64.16 m2, respectively. Most of the inventoried trees were native (31 species) and deciduous (28 species). Fabaceae and Caesalpiniaceae dominated the present study area in terms of stand basal area and density. The Shannon diversity index and evenness of study area were 2.79 and 0.73, respectively. The most important species and families based on species important value index (IVI) and family important value index were Albizia saman, Polyalthia longifolia and Azadirachta indica; Fabaceae, Caesalpiniaceae and Annonaceae respectively. We find Chennai's urban forest is relatively superior to many urban forests of the world in terms of stand basal area and species richness. Results emphasize the importance of enhancement of urban green spaces in Chennai metropolitan city.  相似文献   

18.
Paired aerial photographs were interpreted to assess recent changes in tree, impervious and other cover types in 20 U.S. cities as well as urban land within the conterminous United States. National results indicate that tree cover in urban areas of the United States is on the decline at a rate of about 7900 ha/yr or 4.0 million trees per year. Tree cover in 17 of the 20 analyzed cities had statistically significant declines in tree cover, while 16 cities had statistically significant increases in impervious cover. Only one city (Syracuse, NY) had a statistically significant increase in tree cover. City tree cover was reduced, on average, by about 0.27 percent/yr, while impervious surfaces increased at an average rate of about 0.31 percent/yr. As tree cover provides a simple means to assess the magnitude of the overall urban forest resource, monitoring of tree cover changes is important to understand how tree cover and various environmental benefits derived from the trees may be changing. Photo-interpretation of digital aerial images can provide a simple and timely means to assess urban tree cover change to help cities monitor progress in sustaining desired urban tree cover levels.  相似文献   

19.
We investigated the hypothesis that manipulating water out-flow of a plant through the shoot environment (potential transpiration, ET0) in a glasshouse could modulate the effect of salinity/osmotic potential in the root environment upon yield of tomatoes. Contrasting root-zone salinity treatments were combined with two climate treatments — a reference (high transpiration, HET0) and a “depressed” transpiration (low transpiration, LET0). The salinity treatments, characterised by their electrical conductivity (EC) were 6.5, 8 and 9.5 dS m−1, were always coupled with a reference treatment of EC=2 dS m−1. In another experiment, concentrated nutrients (Nutrients) and nutrients with sodium chloride (NaCl) at the same EC of 9 dS m−1 were compared.Marketable fresh-yield production efficiency decreased by 5.1% for each dS m−1 in excess of 2 dS m−1. The number of harvested fruits was not affected; yield loss resulted from reduced fruit weight (3.8% per dS m−1) and an increased fraction of unmarketable harvest. At the LET0 treatments, yield loss was only 3.4% per dS m−1 in accordance with the reduction in fruit weight. Low transpiration did increase fruit fresh yield by 8% in both NaCl and Nutrients treatments at an EC=9 dS m−1. Neither EC nor ET0 affected individual fruit dry weight. Accordingly, fruit dry matter content was significantly higher at high EC than in the reference (4% per each EC unit in excess of 2 dS m−1) and responded to ET0 to a minor extent. Control of the shoot environment in a greenhouse to manipulate the fresh weight of the product may mitigate the effects of poor quality irrigation water without affecting product quality.  相似文献   

20.
Promoting the plant diversity of urban green spaces is crucial to increase ecosystem services in urban areas. While introducing ornamental plants can enhance the biodiversity of green spaces it risks environmental impacts such as increasing emissions of biogenic volatile organic compounds (BVOCs) that are harmful to air quality and human health. The present study, taking Qingdao City as a case study, evaluated the plant diversity and BVOC emissions of urban green spaces and tried to find out a solution to increase biodiversity while reducing BVOC emissions. Results showed that: (1) the species diversity and phylogenetic diversity of trees in urban green spaces were 22% and 16% lower than rural forest of this region; (2) urban areas had higher BVOC emission intensity (2.6 g C m−2 yr−1) than their rural surroundings (2.1 g C m−2 yr−1); (3) introducing the selected 11 tree species will increase 15% and 11% of species diversity and phylogenetic diversity, respectively; and (4) the BVOC emissions from green spaces will more than triple by 2050, but a moderate introduction of the selected low-emitting trees species could reduce 34% of these emissions. The scheme of introducing low-emitting ornamental species leads to a win–win situation and also has implications for the sustainable green space management of other cities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号