首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mesopelagic species are the principal constituents of larval fish assemblages inhabiting the southerly California Current region. Seasonal larval abundance is influenced by circulation of the California Current and subtropical Countercurrent, including regional changes of the physical, chemical, and biological characteristics during the El Niño‐Southern Oscillation. This study examines the mesopelagic fish larvae distribution and abundance patterns between seasons and years, with the aim of describing the mesopelagic larval assemblages during dynamic environmental changes induced by El Niño (1997–1998) and the rapid transition to La Niña (1998–2000) along the west coast of the Baja California Peninsula (25–31°N). Despite large oceanographic variability, larval assemblages varied principally on a seasonal basis, related to reproductive periods and the north–south gradient influenced by the seasonal pattern of the California Current. An increased diversity, number of species, and abundance of tropical species was noticeable during the northward expansion of warm‐water taxa during El Niño, principally in the northern areas (Ensenada and Punta Baja). After El Niño, population adjustments and rapid recovery occurred during La Niña conditions, which reflected seasonal differences in the mesopelagic community structure that are closely related to the seasonal pattern of oceanic currents.  相似文献   

2.
3.
Samples from the southern California sector of the California Current System were examined to test for changes in abundance, reproduction, recruitment and naupliar survival of the planktonic copepod, Calanus pacificus, coincident with the 1993 Californian El?Niño, relative to 1992 (also El Niño conditions) and to 1989–1991 (defined as `normal'). In 1993, as in 1992, females were rare in both winter and spring, but per capita reproduction was less, food limitation was greater and biomass of chlorophyll was reduced only in winter. Recruitment was more variable than was naupliar survival. Recruitment increased in both El Niño springs, but survival of older naupliar stages decreased. The mesoscale distributions of larval anchovy, relative to eggs and nauplii of Calanus, did not result in efficient use of the reduced supply of this source of food, and the abundance of larval anchovy did not cause measurable variation in the survival of naupliar Calanus.  相似文献   

4.
We assessed growth in subyearling chinook salmon (Oncorhynchus tshawytscha) during the 1998 El Niño and 1999 La Niña in the Gulf of the Farallones, a region of the continental shelf off central California seaward of the Golden Gate and the southernmost ocean entry point for the species in North America. Juvenile salmon demonstrated greater growth during this strong El Niño, when water temperature anomalies of more than +3°C were recorded at local buoys, than during the similarly strong 1999 La Niña. Slopes of regressions of weight on length, length on age, and weight on age were all significantly greater for juvenile salmon during the 1998 El Niño compared with those in the 1999 La Niña. Daily otolith increment widths, an estimator of somatic growth, corroborated population data. Between June 1 and August 9, mean increment widths for juvenile chinook salmon in 1998 were 3.54 ± 0.03 μm, significantly larger than the 3.13 ± 0.03 μm found in juveniles during the same time interval in 1999. Condition factor for juvenile chinook salmon entering the ocean at the Golden Gate was the same in both years, but became significantly greater in ocean fish during the 1998 El Niño than in ocean fish during the 1999 La Niña. Energy storage was significantly greater in ocean juvenile salmon during the 1998 El Niño as well. Mean triacylglycerol/cholesterol ratios increased following ocean entry in 1998, whereas they declined in ocean juveniles during 1999. Thus, not only was growth better in the El Niño period compared with La Niña, but lipid accumulation was also better. Oceanographic data for 1998 indicated elevated temperatures, lower salinity, greater freshwater outflow from San Francisco Bay, northerly flowing coastal currents, and positive upwelling index anomalies. This combination of environmental factors resulted in greater zooplankton productivity that, in conjunction with higher temperatures, allowed metabolic processes to enhance growth. Although El Niño events have certainly produced large-scale, and often adverse, effects on ecosystems, the results of this study emphasize the importance of local oceanographic conditions to growth and other physiological and ecological processes.  相似文献   

5.
Copepod community structure and abundance of the most abundant species were studied during 15 cruises made between 1982 and 1989 along the west coast of the Baja California Peninsula, Mexico. The number of species and species diversity (Shannon's index) for each sampling station of the oceanographic cruises were obtained. Though the zone was dominated during the year by the tropical copepod component, similarities between El Niño 1982–83 and 1987–88 were observed. Tropical-equatorial populations were added to the regular tropical composition (50%) of the community of copepods resulting in a wide distribution of those populations in 1982–83 and in 1987–88. The scenario in 1984–89 (without 1987–88) was significantly different from both El Niños because of the sea surface temperature, the species diversity, and the tropical copepod component, although 1982 was similar to 1985 in diversity index and number of species. Environmental conditions prevailing along the west coast of Baja California during El Niño indicate that in 1982–83 the effect on the copepod community was greater than during the 1987–88 event.  相似文献   

6.
The springtime spatial pattern of demersal fish assemblages in the northern Argentine coastal ecosystem (34°–41°S) and their relationships with environmental variables were investigated over 6 years (1981, 1983, 1994, 1995, 1998 and 1999). For each fish assemblage area for each year, we identified the most common species and those species that had the highest ability to discriminate it from adjacent assemblage areas. Within each area, species were considered as resident (common in all years) or facultative (contributing to less than 90% of similarity within any year). The analysis (detrended canonical correspondence analysis), conducted using species abundances (t nm?2) and environmental data, indicated that six fish assemblage areas are consistently distinguishable. The fish assemblage areas correspond to inner, central and middle regions of the Río de la Plata estuary, and inner, central and middle regions of the coastal shelf. Spatial differences in the composition among areas were primarily due to changes in species composition rather than changes in relative abundance, and were primarily related to water mass characteristics. Salinity in the estuary and temperature on the shelf were more relevant to the spatial structuring of the fish community in each environment. The assemblage areas showed a remarkable degree of temporal persistence in species composition and geographical location. The facultative species contributed more to the species composition temporal dynamics than resident species. El Niño (La Niña) condition, associated with increase (decrease) of the Río de la Plata freshwater discharge, produced a movement of the estuarine assemblage areas to the coastal shelf (upriver). Under normal freshwater discharge conditions, the boundaries of the fish assemblages were relatively more stable.  相似文献   

7.
Off southern‐central Chile, the impact of spring upwelling variability on common sardine (Strangomera bentincki) recruitment was examined by analyzing satellite and coastal station winds, satellite chlorophyll, and common sardine recruitment from a stock assessment model. In austral spring, the intensity of wind‐driven upwelling is related to sea surface temperature (SST) from the Niño 3.4 region, being weak during warm periods (El Niño) and strong during cold periods (La Niña). Interannual changes in both spring upwelling intensity and SST from the Niño 3.4 region are related to changes in remotely sensed chlorophyll over the continental shelf. In turn, year‐to‐year changes in coastal chlorophyll are tightly coupled to common sardine recruitment. We propose that, in the period 1991–2004, interannual changes in the intensity of spring upwelling affected the abundance and availability of planktonic food for common sardine, and consequently determined pre‐recruit survival and recruitment strength. However, the importance of density‐dependent factors on the reproductive dynamic cannot be neglected, as a negative association exists between spawning biomass and recruitment‐per‐spawning biomass. Coastal chlorophyll, upwelling intensity, and SST anomalies from the Niño 3.4 region could potentially help to predict common sardine recruitment scenarios under strong spring upwelling and El Niño Southern Oscillation (ENSO)‐related anomalies.  相似文献   

8.
The larval mesopelagic fish assemblage and its distribution patterns were investigated in the Kuroshio region off southern Japan in late winter. A total of 8690 fish larvae was collected, 85.8% of which were mesopelagic fish larvae. Mesopelagic fish larvae were significantly more abundant in the area east of the Kuroshio axis than west of the Kuroshio axis (660.6 versus 194.5 ind 10 m?2). Sigmops gracile, Bathylagus ochotensis, Notoscopelus japonicus, Diaphus slender type and Myctophum asperum were the five most abundant larvae and accounted for 16.9, 16.4, 15.2, 13.9 and 9.3% of the total catch in numbers, respectively. We conclude that these larvae were transported by the Kuroshio Current to the more productive transition waters, where they spend their juvenile stage from spring to early summer. The possibility of expatriation and southward long‐distance spawning migrations of N. japonicus and B. ochotensis are discussed, based on the geographic distribution patterns of their larvae, juveniles and adults.  相似文献   

9.
The Peru‐Humboldt Current system (HCS) supports the world's largest pelagic fisheries. Among the world's eastern boundary current systems, it is the most exposed to high climatic stress and is directly affected by El Niño and La Niña events. In this volatile ecosystem, fish have been led to develop adaptive strategies in space and time. In this paper, we attempt to understand the mechanisms underlying such strategies, focusing on the El Niño 1997–98 in Peru from which an extensive set of hydrographic, capture and acoustic survey data are available. An integrated analysis of the data is crucial, as each has substantial shortcomings individually; for example, both catch data and acoustic surveys may easily lead to wrong conclusions. Existing hypotheses on anchovy and sardine alternations lead us to a ‘habitat‐based’ synthetic hypothesis. Using our data, an integrated approach evaluated how fish responded to habitat variation, and determined the consequences in terms of fish‐population variability. Various factors occurring at a range of different spatio‐temporal scales were considered: interdecadal regime (warm ‘El Viejo’/cool ‘La Vieja’ decadal scale); strength and the duration of the El Niño Southern Oscillation event (interannual scale); population condition before the event (interannual scale); fishing pressure and other predation (annual scale); changes in reproductive behaviour (intra‐annual scale); presence of local upwelling (local scale). During El Niño 1997–98, anchovy was able to exploit a small‐scale temporal and spatial ‘loophole’ inside the general unfavourable conditions. Moreover, sardine did not do better than anchovy during this El Niño and was not able to take advantage of the ‘loophole’ opened by this short‐term event. Our results question the traditional view that El Niño is bad for anchovy and good for sardine.  相似文献   

10.
  1. Dosidicus gigas is an ecologically and economically important squid species extensively distributed in the eastern Pacific Ocean. Its habitat is extremely sensitive to climatic and environmental variability.
  2. The relationship between habitat pattern of D. gigas and El Niño–Southern Oscillation (ENSO, divided into the El Niño, ENSO-neutral, and La Niña events) was assessed from 1950 to 2015, using a habitat suitability index (HSI) modelling approach including two crucial environmental variables: sea surface temperature (SST) and sea surface height anomaly (SSHA).
  3. On the basis of cross-correlation analysis, it showed that both SST anomaly and SSHA were significantly positively related to the ENSO index. Moreover, a significantly negative association was found between the HSI values and the ENSO index.
  4. Due to the El Niño events, SST off Peru became higher and sea level rose, resulting in contracted areas of suitable SST and SSHA; consequently, suitable habitats for D. gigas dramatically decreased. In contrast, during the ENSO-neutral and La Niña years, the extent of suitable SST and SSHA increased due to the colder water and lower sea level, and suitable habitat for D. gigas expanded.
  5. Moreover, the latitudinal gravity centre of HSI was significantly positively associated with the ENSO index. Relative to the ENSO-neutral and La Niña years, a southward movement of the monthly preferred SST isotherm for D. gigas during the El Niño years could explain the occurrence of more suitable habitats in southern waters off Peru.
  6. These findings suggested that the ENSO event plays an important role in regulating environmental conditions off Peru and further affected the spatio-temporal distribution of D. gigas habitat.
  相似文献   

11.
1. This paper sets out to: (1) review previous ecological studies and analyse recent trends of the Peruvian bay scallop fishery in order to better understand and to model the species’ temporal and spatial (meta) population dynamics along the South Pacific coast; (2) develop a fisheries model to protect the stock from overexploitation and optimize the annual yield of the pulse fishery in Independence Bay, the centre of the scallop diving fishery in Peru. 2. Natural stock fluctuations are very pronounced in this species and are positively correlated with the El Niño–Southern Oscillation (ENSO). During such an event, habitat conditions for the Peruvian bay scallop are improved either regionally or locally, such that populations proliferate and larval production and dispersal are greatly increased. Extinct beds and new habitats are recolonized during these periods (producing a strong pulse of metapopulation biomass), although most become extinct very shortly thereafter. 3. For management purposes, two considerations are fundamental: (1) heavy overfishing or extinction of the main scallop source populations would endanger the metapopulation as a whole; (2) rates of growth and survival greatly increase (and with them the potential yield of the scallop stock) locally over an El Niño cycle in a way that can be roughly estimated from past experience, including the most recent El Niño event (1997–1998). 4. We suggest a fisheries management regime capable of adapting to natural changes and propose a procedure for calculating both the optimal yield and the respective fishing effort under normal upwelling and El Niño scenarios, considering changes in the size at first capture (Lc) and fishery mortality (F). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Mangalore coast is well known for its multi‐species and multi‐gear fisheries and the fishery and oceanographic features of this region is a true representation of the Malabar upwelling system. Ten years of study (1995–2004) of oceanographic parameters has been carried out from the inshore waters off Mangalore to understand their seasonal and interannual variations and influences on the pelagic fishery of the region. Attempt has been also made to understand the influence of local and global environmental conditions on the alternating patterns of abundance between the Indian mackerel and oil sardine from the area. Field‐ and satellite‐derived oceanographic data have shown that coastal upwelling occurs during July–September with a peak in August resulting in high nutrient concentrations and biological productivity along the coast. Nearly 70% of the pelagic fish catch, dominated by oil sardine and mackerel, was obtained during September–December, during or immediately after the upwelling season. Catches of scombroid fishes were significantly related to cold Sea Surface Temperature, while such relationships were not observed for sardines and anchovies. Significant positive correlations were observed between the ENSO events (MEI) and seawater temperature from the study area. The extreme oceanographic events associated with the cold La Niña, which preceded the exceptional 1997–98 El Niño event, were responsible for the collapse of the pelagic fishery, especially the mackerel fishery along the southwest coast of India (Malabar upwelling system). Coinciding with the collapse of the mackerel fishery, oil sardine populations revived during 1999–2000 all along the southwest coast of India. Tolerance of oil sardine to El Niño / La Niña events and the low predatory pressure experienced by their eggs and larvae due to the collapse of mackerel population might have resulted in its population revival.  相似文献   

13.
Larval and early juvenile fishes were sampled from the eastern Bering Sea (EBS) shelf during summer from 1996 to 2000. Data from these collections were used to examine spatial and temporal patterns in species assemblage structure and abundance. Cluster analyses based on Bray–Curtis dissimilarity coefficients were used to group species and stations according to similar abundance and species composition. Ordination techniques were used to verify groupings, and a non‐parametric stepwise procedure using a Spearman correlation coefficient (BIO‐ENV) was used to relate groupings to predominant environmental variables. These approaches revealed a pattern of station groupings that were generally related to bathymetry in 1996, 1997, 1999, and 2000, although no obvious relationship to geographic boundaries was observed in 1998. Significant differences in species associations were observed in 1997 and 1998, and depressions in abundance were also noted among many species between 1997 and 1999. A regional, full primitive equation model was used to simulate float trajectories on the EBS shelf in each year to better relate fish distributional observations to prevailing current patterns. Model results indicated general variations in flow in several years, although 1998 stood out with stronger northeast flow than in any of the other years examined. Observed disruptions of larval and early juvenile fish assemblages could be related to the strong El‐Niño event of 1997–98 in the EBS. If this idea is confirmed, our study suggests that larval and juvenile fish are sensitive and respond relatively quickly (1–2 yr) to environmental perturbations, and as such, may be timely indicators of environmental change.  相似文献   

14.
Larval transport in the slope region off north‐eastern North America influences recruitment to juvenile habitats for a variety of fishes that inhabit the continental shelf. In this study, collections of larval fishes were made during springtime over the continental slope to provide insights into larval distributions and transport. Ichthyoplankton composition and distribution mirrored the physical complexity of the region. Three larval fish assemblages were defined, each with different water mass distributions. A Gulf Stream assemblage was found predominantly in the Gulf Stream and associated with filaments of discharged Gulf Stream water in the Slope Sea. Larvae of this assemblage originated from oceanic and shelf regions south of Cape Hatteras. Several members of this assemblage utilize habitats in the Middle Atlantic Bight (MAB) as juveniles (Pomatomus saltatrix, Peprilus triacanthus) and other members of the assemblage may share this life cycle (Mugil curema, Sphyraena borealis, Urophycis regia). A Slope Sea assemblage was found in all water masses, and was composed of epi‐ and mesopelagic fish larvae, as well as larvae of benthic shelf/slope residents. Larvae of one member of this assemblage (U. tenuis) are spawned in the Slope Sea but cross the shelf‐slope front and use nearshore habitats for juvenile nurseries. A MAB shelf assemblage was found in MAB shelf water and was composed of larvae that were spawned on the shelf. Some of these species may cross into the Slope Sea before returning to MAB shelf habitats (e.g. Enchelyopus cimbrius, Glyptocephalus cynoglossus). Previous studies have examined the effect of warm‐core rings on larval distributions, but this study identifies the importance of smaller‐scale features of the MAB shelf/slope front and of filaments associated with Gulf Stream meanders. In combination with these advective processes, the dynamic nature of larval distributions in the Slope Sea appears to be influenced, to varying degrees, by both vertical and horizontal behaviour of larvae and pelagic juveniles themselves.  相似文献   

15.
Oceanographic and hydroacoustic data were obtained by the Instituto del Mar del Peru (IMARPE) during 72 cruises off the Peruvian coast between 1985 and 2017 to determine the ranges of the abiotic parameters influencing the anchovy (anchoveta) distribution and to observe the effect of the 1997–1998 El Niño event. The hydroacoustic data show a high seasonal variability in anchoveta distribution related to differences of environmental parameters as well as changes in distribution after the very strong El Niño event in 1997–1998. Geostatistic variograms were used to describe the seasonal variability and generalized additive models (GAMs) with a Tweedie distribution were applied to study the relationships between anchoveta and oceanographic parameters. The dependent variable was the value for anchoveta obtained from echosounder (nautical area scattering coefficient [NASC] of anchoveta) and the tested covariates were temperature, salinity, and dissolved oxygen at the sea surface; distance to the coast; year, latitude–longitude; and Oceanic Niño Index 1 + 2. The results show a high variability of anchoveta with seasonal differences in its distribution. Preferred abiotic conditions (temperature, salinity, oxygen) of anchoveta were 17.6–23.7°C, 32.30–35.14, and 5.9–8.7 ml/L in summer and 14.5–18.8°C, 34.81–35.12, and 5.2–6.3 ml/L in winter. The values in autumn and spring were intermediate and are considered as in transition. The anchoveta were detected at higher values after the 1997–1998 El Niño event, probably influenced by reduced standing stocks of congener fish species and by the Pacific decadal oscillation (PDO) or by a changes in climate.  相似文献   

16.
California market squid (Doryteuthis opalescens) support one of the largest and most valuable fisheries in California. However, market squid abundance varies greatly from year to year, ostensibly as a result of the El Niño Southern Oscillation (ENSO) phenomenon, although the underlying mechanism is not known. Classic hypotheses suggest that the early larval stage may be the key to uncovering this mechanism. Here, we perform a time series analysis, length‐distribution analysis, and growth analysis to investigate the effects of ENSO on paralarval D. opalescens. In contrast to classic hypotheses, we find that ENSO does not drive early paralarval survival or growth. Instead, we find that the ENSO operates primarily on the late paralarval stage, with El Niño conditions associated with lower survival of late‐stage paralarvae. We also find that time series models which use ENSO conditions during the previous juvenile and adult stage outperform models that use ENSO conditions during the paralarval stage. Our results suggest that the population bottleneck for D. opalescens does not occur in the early paralarval stage, but instead lies later in the squid's life.  相似文献   

17.
We used the average fork length of age‐3 returning coho (Oncorhynchus kisutch) and age‐3 ocean‐type and age‐4 stream‐type Chinook (Oncorhynchus tshawytscha) salmon along the northeast Pacific coast to assess the covariability between established oceanic environmental indices and growth. These indices included the Multivariate El Niño‐Southern Oscillation Index (MEI), Pacific Decadal Oscillation (PDO), Northern Oscillation Index, and Aleutian Low Pressure Index. Washington, Oregon, and California (WOC) salmon sizes were negatively correlated with the MEI values indicating that ultimate fish size was affected negatively by El Niño‐like events. Further, we show that the growth trajectory of WOC salmon was set following the first ocean winter. Returning ocean‐type British Columbia‐Puget Sound Chinook salmon average fork length was positively correlated with the MEI values during the summer and autumn of return year, which was possibly a result of a shallower mixed layer and improved food‐web productivity of subarctic Pacific waters. Size variation of coho salmon stocks south of Alaska was synchronous and negatively correlated with warm conditions (positive PDO) and weak North Pacific high pressure during ocean residence.  相似文献   

18.
《水生生物资源》2002,15(2):87-94
The recruitment of Strangomera bentincki (common sardine) and Engraulis ringens (anchovy) and the relationships with oceanographic conditions in the upwelling ecosystem of central-south Chile were investigated from 1990 to 1998, with emphasis on the 1997–1998 El Niño. Time series of recruitment, biomass, local sea surface temperature, and a coastal upwelling index were used to explore relationships during the spawning (July–August) and pre-recruitment (August–December) periods. The 1997–1998 El Niño caused physical changes in the small pelagic fish habitat off central-south Chile. Anomalous sea surface temperatures (SST) and upwelling indexes began to be detected from May 1997 and persisted into 1998. Recruitment of common sardine showed significantly negative relationship with SST anomalies during the pre-recruitment period, as well as with the upwelling index during the peak of spawning. However, the recruitment of anchovy did not seem to be affected by the environmental changes observed in the 1990s. Instead, the recruitment rate of anchovy showed negative relationship with the recruitment rate of common sardine. We conclude that the conditions of the 1997–1998 El Niño off central-south Chile affected the survival of common sardine offspring, and that the recruitment success of anchovy could be determined by less-abundant cohorts of common sardine through a biological mechanism of interaction.  相似文献   

19.
《Fisheries Research》1988,6(2):105-123
The 1983 El Niño event off the Pacific Coast of North America resulted in increased adult mortality and decreased average size for Oregon's coho and chinook salmon. Actual return of adult coho salmon to the Oregon Production Area in 1983 was only 42% of the pre-season prediction. Coho smolts entering the ocean in the spring of 1983 also survived poorly, resulting in low adult returns again in 1984. Abundance of chinook stocks in southern Oregon was also reduced, as was abundance of Columbia River chinook stocks that show localized ocean distribution. Northerly migrating chinook stocks from the Columbia River showed little or no decline in abundance. The average weight of coho and chinook salmon landed in 1983 by Oregon's commercial troll fishery was the lowest recorded since statistics were first recorded in 1952. Comparison of the length-weight relationship for these fish indicated coho and chinook were in poorer condition in 1983 than in non-El Niño years. Because adult coho salmon returned to hatcheries at a smaller size, the fecundity (eggs per female) in 1983 was reduced from the 1978–1982 average by 24% at coastal hatcheries and by 27% at Columbia River hatcheries. The fecundity of chinook salmon was unchanged at most hatcheries.  相似文献   

20.
A generalized additive model (GAM) was constructed to separate and quantify the effects of fishery‐based (operational) and oceanographic parameters on the bigeye tuna (Thunnus obesus) catch rates at Palmyra Atoll in the central Tropical Pacific. Bigeye catch, the number of hooks per set, and set location from 4884 longline sets spanning January 1994 to December 2003 were used with a temporally corresponding El Niño‐Southern Oscillation (ENSO) indicator built from sea surface height (SSH) data. Observations of environmental data combined with the results from the GAM indicated that there is an increase in bigeye catch rates corresponding to an increase in eastward advection during the winter months of El Niño events. A seasonal pattern with higher bigeye catch rates from December to April and a spatial pattern with higher rates to the northeast and northwest of the atoll were observed during this study period. It is hypothesized that the combination of the eastward advection of the warm pool coupled with vertical changes in temperature during the winter months of El Niño events increases the availability of bigeye tuna in this region. This increase in availability may be due to a change in exploitable population size, location, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号