首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From body weight, food intake and carcass composition data on 542 Hereford bull calves, measuredfrom 200 to 400 days, several traits relating to the efficiency of beef cattle production were derived and analysed. Traits included body weight at various ages, weight gain, predicted carcass lean content, lean growth rate, food intake, food conversion ratio, lean food conversion ratio, food intake in relation to metabolic body weight, energy required for protein and fat deposition, and predicted maintenance expenditure.Maintenance expenditure and the costs of fat and protein deposition were calculated by two means,firstly from allometric equations describing fat and protein accretion, and secondly from a multiple regression of food intake on weight gain and predicted carcass lean content. The two methods gave different mean values, but the correlations between traits calculated by the two methods were almost all 1.00. Exponents for metabolic body weight derived from the two methods were 0.738 and 0.758, respectively.Genetic parameters were calculated using multivariate Restricted Maximum Likelihood techniques.Body weight, carcass composition and traits combining these measurements were moderately to strongly inherited whereas traits related to food intake and efficiency were weakly to moderately inherited. Energy used to deposit fat and lean was more strongly inherited than predicted maintenance expenditure, and these traits were genetically almost uncorrelated. Maintenance energy expenditure showed no genetic relationship with predicted carcass lean content. Efficiency and predicted maintenance expenditure were favourably correlated.  相似文献   

2.
Equations relating daily energy intake to metabolic body weight, daily weight gain and dry matter intake in growing bulls over a practical range of energy densities, have been calculated from data published by the Agricultural Research Council (1965), the U.K. Ministry of Agriculture, Fisheries and Food (1972) and from growth experiments conducted in Israel. The equations obtained from these three sources were similar and provide a simple method for relating the necessary energy content of rations for growing cattle with body weight, daily gain and the dry matter intake by linear programming.  相似文献   

3.
Single trait selection was practiced in three lines of Hereford cattle at two locations. Bulls were selected within sire families for increased weaning weight (WW) in the WW line (WWL), for postweaning gain (PG) in the PG line (PGL) and at random in the control line (CTL). Data include the performance of 2,467 calves produced from 1967 to 1981. Environmental effects were estimated from CTL (method I) and from multiple regression procedures (method II). Phenotypic and environmental time trends were negative for WW and generally were positive for PG. Estimated genetic gains for WW in WWL were 1.07 +/- .51 kg/yr in bulls and .62 +/- .36 kg/yr in heifers using method I and .50 +/- .31 kg/yr in bulls and .10 +/- .17 kg/yr in heifers using method II. Corresponding values for PG in PGL were .85 +/- .40 and 1.03 +/- .24 kg/yr in bulls and .30 +/- .28 and .37 +/- .12 kg in heifers. Correlated genetic gains for WW in PGL were larger than direct WW gains, whereas genetic gains for PG in WWL were smaller than direct PG gains. From method I, estimates of realized heritability (h2R) for WW were .31 +/- .18 in bulls and .22 +/- .13 in heifers. For PG, h2R was .31 +/- .13 in bulls and .06 +/- .12 in heifers. Using method II, h2R for WW was .09 +/- .08 in bulls and .02 +/- .07 in heifers. Corresponding values for PG were .29 +/- .10 and .11 +/- .08. Joint estimates of the realized genetic correlation between WW and PG were .69 +/- .18 and .46 +/- .31 for methods I and II, respectively. Variation in selection response was evaluated using quasi-replicates. Results of this study indicate that selection for PG improved both WW and PG faster than selection for WW.  相似文献   

4.
1. Nitrogen‐corrected apparent metabolisable energy (AMEn) values of 2 diets with different energy: protein ratio were estimated in an experiment with 8 groups of female and 8 of male chickens in 15 sequential 3‐day balance periods from the 12th to the 56th d of age.

2. The effect of sex on AMEn values was not significant.

3. The effect of age was highly significant. AMEn values of the mixture with the narrower energy: protein ratio increased with age. The dependence of AMEn of the diet with the wider energy: protein ratio on age was parabolic, AMEn values increasing only until the 37th day of life.

4. Under conditions of ad libitum feeding, AMEn of the mixture with the wider energy: protein ratio given to female chickens decreased significantly with increasing food intake.  相似文献   


5.
6.
Selection was applied from 1964 to 1978 for increased weaning weight (WWL) or yearling weight (YWL) in two Hereford lines. An Angus line was maintained as an unselected control line (CL). Each line was maintained with 50 cows and four sires each year (two sires selected each year and used for 2 yr). Primary traits measured in the lines were birth weight (BW), preweaning daily gain (WDG), weaning weight (WW), weaning conformation grade (WG), weaning condition score (WC), weaning to yearling daily gain (YDG), yearling weight (YW), yearling conformation grade (YG) and yearling condition score (YC). Averaged over two methods, estimated genetic responses/generation (in standard deviation units) in WWL and YWL were: BW, .29, .26; WDG, .17, .15; WW, .22, .19; WG, .19, .26; WC, .12, .12; YDG, -.02, .04; YW, .08, .14; YG, .19, .16; YC, -.13, -.03. The realized heritability estimates were .23 and .15 for WW and YW, respectively. The realized genetic correlation between WW and YW was .69. Progeny from crosses of selected WWL and YWL sires to Angus cows had similar feedlot and carcass performance. At the end of the study, milk yield and composition were similar for mature cows in WWL and YWL.  相似文献   

7.
Residual energy intake, defined as actual minus predicted energy intake during a production period, was estimated for each of 650 bull calves of 31 Holstein Friesian or Brown Swiss sires. Residual energy intake, measured under ad libitum feeding, had heritabilities similar to those of growth rate and energy conversion ratio with an estimate of approximately .3. Residual energy intake was related to average daily energy intake both phenotypically and genetically such that selection for decreased residual energy intake would lead to a decrease in daily feed intake. Such selection would also tend to increase carcass fatness (i.e., genetically fat animals are the most efficient). Residual energy intake estimated with and without correction for carcass composition were closely correlated. Thus, residual energy intake may be estimated without the knowledge of carcass composition in growing bulls of dual-purpose breeds.  相似文献   

8.
Data from 14 inbred lines and 14 linecross groups of Hereford cattle at the San Juan Basin Research Center, Hesperus, were used to evaluate expected and realized response in birth and weaning traits and postweaning traits in males and females over a 28-yr period. There were large differences in the means and variances of the performance traits among the inbreds and linecrosses, with the inbreds showing inbreeding depression and greater variability among lines, while the linecrosses manifested within-breed heterosis. Except for gain from weaning to 12 mo, in females, genetic progress was expected in all traits studied, mainly due to sire selection. Regressions of annual trait means on years indicated positive phenotypic trends in the inbreds for heart girth circumference at birth, adjusted weaning weight (adjusted for inbreeding), weaning score, final weight, feed consumption and the yearling weights and gains in females. Changes were negative for other traits. In the linecross group phenotypic trends were positive in all traits except heart girth circumference, weaning age, initial test weight and feed efficiency. Estimated genetic progress per generation due to within-line selection was negative in most of the traits in the inbreds but was considerably positive for the linecrosses for most of the traits. As expected, between-line selection yielded greater genetic improvement in the inbred than in the linecross population. The different patterns of response in the two populations are attributed to high rates and levels of inbreeding. Although variable, the actual progress was below prediction in most of the traits studied.  相似文献   

9.
The purpose of this study was to examine and attempt to quantify differences in milking performance between progeny of Danish, Swedish, German, N.R.S. and F.R.S. sires located in Danish progeny test stations. A total of 244 sire groups was examined. Least squares analyses of variance of daughter group means revealed strain differences in milk yield, the largest of which occurred between the Danish S.D.M. and the German strain. Since no significant differences in protein percentage and fat percentage were apparent, observed differences in fat and protein yields could be ascribed only to differences in milk yield. There were no significant differences in body weight amongst the strains examined.It was suggested that the observed differences in milking performance may have arisen from different selection practices in different countries of origin but that further experimental studies are required to resolve the question.  相似文献   

10.
Two experiments evaluated effects of ractopamine hydrochloride (RAC) on performance, intake patterns, and acid-base balance of feedlot cattle. In Exp. 1, 360 crossbred steers (Brangus, British, and British x Continental breeding; initial BW = 545 kg) were used in a study with a 3 x 3 factorial design to study the effects of dose [0, 100, or 200 mg/(steer x d) of RAC] and duration (28, 35, or 42 d) of feeding of RAC in a randomized complete block design (9 treatments, 8 pens/treatment). No dose x duration interactions were detected (P > 0.10). As RAC dose increased, final BW (FBW; P = 0.01), ADG (P < 0.01), and G:F (P < 0.01) increased linearly. As duration of feeding increased, ADG increased quadratically (P = 0.04), with tendencies for quadratic effects for FBW (P = 0.06), DMI (P = 0.07), and G:F (P = 0.09). Hot carcass weight increased linearly (P = 0.02) as dose of RAC increased. Thus, increasing the dose of RAC from 0 to 200 mg/(steer x d) and the duration of feeding from 28 to 42 d improved feedlot performance, although quadratic responses for duration of feeding indicated little improvement as the duration was extended from 35 to 42 d. In Exp. 2, 12 crossbred beef steers (BW = 593 kg) were used in a completely random design to evaluate the effects of RAC [0 or 200 mg/(steer x d) for 30 d; 6 steers/treatment] on rate of intake, daily variation in intake patterns, and acid-base balance. To assess intake patterns, absolute values of daily deviations in feed delivered to each steer relative to the total quantity of feed delivered were analyzed as repeated measures. There were no differences (P > 0.10) in feedlot performance, urine pH, blood gas measurements, or variation in intake patterns between RAC and control cattle, but steers fed RAC had increased (P = 0.04) LM area, decreased (P = 0.03) yield grade, and increased (P < 0.10) time to consume 50 and 75% of daily intake relative to control steers. Our results suggest that feeding RAC for 35 d at 200 mg/(steer x d) provided optimal performance, and no effects on acid-base balance or variation in intake patterns of finishing steers were noted with RAC fed at 200 mg/(steer x d) over a 30-d period.  相似文献   

11.
Two experiments were conducted to determine independent effects of BW and DE intake on body composition and the partitioning of retained body energy between lipid and protein in pigs with high lean tissue growth potentials and when energy intake limited whole-body protein deposition. In a preliminary N-balance experiment involving 20 entire male pigs at either 30 or 100 kg BW, it was established that whole-body protein deposition increased linearly (P < 0.05) with DE intake at both BW. These results indicate that DE intake controlled whole-body protein deposition and that these pigs did not achieve their maximum whole-body protein deposition when fed semi-ad libitum. In the main serial slaughter experiment, 56 pigs, with a BW of 15 kg, were assigned to one of four DE intake schemes and slaughtered at 40, 65, 90, or 115 kg BW. Within DE intake schemes, DE intake was increased linearly (P < 0.05) with BW, allowing for an assessment of effects of DE intake and slaughter BW on chemical and physical body composition (carcass, viscera, blood). Between 15 and 90 kg BW, average DE intake of 16.1, 20.9, 25.2, and 28.8 MJ/d supported average BW gains of 502, 731, 899, and 951 g/d, respectively. The proportion of whole-body protein present in the carcass increased with BW and decreased with DE intake (P < 0.05), whereas the distribution of whole-body lipid between carcass and viscera was not influenced by BW and DE intake. A mathematical relationship was developed to determine the relationship between DE intake at slaughter (MJ/d) and chemical body composition in these pigs: whole-body lipid-to-protein ratio = 1.236 - 0.056 x (DE intake) + 0.0013 x (DE intake)2, r2 = 0.71. The data suggests that absolute DE intake alone was an adequate predictor of chemical body composition in this population of entire male pigs over the BW and DE intake ranges that were evaluated, simplifying the characterization of this aspect of nutrition partitioning for growth in different pig populations.  相似文献   

12.
The objectives of this study were to compare different models for analysing body weight (BW) and average daily feed intake (ADFI) data collected during a 70-day feedlot test period and to explore whether genetic parameters change over time to evaluate the implications of selection response. (Co)variance components were estimated using repeatability and random regression models in 2,071 Angus steers. Models included fixed effects of contemporary group, defined as herd–year–observation_date–age, with additive genetic and permanent environmental components as random effects. Models were assessed based on the log likelihood, Akaike's information criterion and the Bayesian information criterion. For both traits, random regression models (RRMs) presented a better fit, indicating that genetic parameters change over the test period. Using a two-trait RRM, the heritability from day 1 up to day 70 for BW increased from 0.40 to 0.50, while for ADFI, it decreased from 0.44 to 0.33. The genetic correlation increased from 0.53 at day 1 up to 0.79 at day 70. Selection based on an index assuming no change in genetic parameters would yield a 2.78%–3.13% lower selection response compared to an index using parameters estimated with RRMs and assuming these genetic parameters are correct. Results imply that it may be beneficial to implement RRMs to account for the change of parameters across the feedlot period in feed efficiency traits.  相似文献   

13.
14.
1. Heart rate (measured on restrained hens in two experiments) was used as an indicator of short term fear and pain responses of light and heavy strains of hens subjected to beak trimming. 2. In the first experiment 3 mm of the upper and lower mandibles was trimmed, while in the second 0, 2, 4, 6 and 8 mm of upper and lower mandibles were removed. 3. Production responses to beak trimming were measured after trimming, for 4 weeks in experiment 1 and for 10 weeks in experiment 2. 4. In the first experiment the recovery of beak trimmed hens to normal heart rate took significantly longer than that of control hens subjected only to catching and restraint, suggesting that there was short term pain associated with beak trimming. 5. The heavier strain took about 4 min longer to return to a normal heart rate than the lighter strain, indicating a strain difference in responsiveness to beak trimming. 6. Trimming the hens' beak by 3 mm had no significant effect on rate of lay or body weight, but their mean egg weight was depressed and food intake took 9 to 10 d to recover to pre-trimming values. 7. In the second experiment a plateau was reached in recovery time of the heart rate once 4 mm of beak was removed. Removal of 4, 6 and 8 mm of beak depressed normal feeding and resulted in variable effects on production and body weight.  相似文献   

15.
Evaluations of steer and heifer progeny from a diallel mating design of Simmental, Limousin, Polled Hereford and Brahman beef cattle over 5 yr are presented. Traits evaluated included final weight, hot carcass weight, ribeye area, 12th rib fat thickness, marbling score, yield grade, dressing percentage and percentage of kidney, pelvic and heart fat. Progeny of Simmental sires were heavier at slaughter than those with Brahman sires (P less than .05), but no differences were found for carcass weight. Dressing percentage was higher for Limousin crosses compared with progeny of other sire breeds (P less than .05). Similar results were found for dam breeds, except that progeny of Limousin dams had heavier carcasses with a higher dressing percentage (P less than .05) than Brahman crosses. Crosses of Limousin and Simmental had larger ribeye areas (P less than .05) compared with calves of the other breeds. Progeny of Polled Hereford dams had higher marbling scores and were fatter than progeny of dams of other breeds (P less than .05). Heterosis estimates were significant for all Brahman crosses for final weight, carcass weight and ribeye area, but these contrasts were negligible for other traits. Estimates of general combining ability were positive and significant for Simmental for final weight, carcass weight, ribeye area and marbling score and were significant and negative for Limousin for final weight, fat thickness and yield grade. Maternal values were generally small.  相似文献   

16.
The objective of this study was to determine an appropriate method for using yearling scrotal circumference observations and heifer pregnancy observations to produce EPD for heifer pregnancy. We determined the additive genetic effects of and relationship between scrotal circumference and heifer pregnancy for a herd of Hereford cattle in Solano, New Mexico. The binary trait of heifer pregnancy was defined as the probability of a heifer conceiving and remaining pregnant to 120 d, given that she was exposed at breeding. Estimates of heritability for heifer pregnancy and scrotal circumference were .138+/-.08 and .714+/-.132, respectively. Estimates of fixed effects for age of dam and age were significant for heifer pregnancy and bull scrotal circumference. The estimate of the additive genetic correlation between yearling heifer pregnancy and yearling bull scrotal circumference was .002+/-.45. Additional analyses included models with additive genetic groups for scrotal circumference EPD for heifer pregnancy or heifer pregnancy EPD for scrotal circumference to account for a potential nonlinear relationship between scrotal circumference and heifer pregnancy. Results support the development of a heifer pregnancy EPD because of a higher estimated heritability than previously reported. The development of a heifer pregnancy EPD would be an additional method for improving genetic merit for heifer fertility.  相似文献   

17.
Relationships between estimated growth curve parameters of dams and performance traits of their progeny were studied in Angus, Hereford and Shorthorn herds, each divided into four inbred and two noninbred lines. Growth curve parameters were calculated from the growth function Yt=A(1-Be-Kt), where Yt was weight at age t, A was estimated mature weight, B was an estimate related to early life weight changes and provided for a Y-intercept term and K was estimated general rate of maturing. Least-squares analyses of progeny variables were calculated separately for each breed and sex. Line differences did not influence any of the progeny variables except weaning type score of Shorthorn males (P less than .01). Birth year exerted a curvilinear effect on birth weights of Angus female progeny (P less than .01), a linear influence on 205-d weights of Shorthorn male progeny (P less than .05) and a curvilinear effect on weaning type scores of Angus and Shorthorn male progeny (P less than .01). Regression coefficients on weaning age indicated that calves born earlier in the calving season had lighter birth weights and that older calves at weaning received higher type scores. Inbreeding of the progeny negatively influenced (P less than .05) birth weights of Angus male and Hereford female progeny. Hereford male and Shorthorn female 205-d weights were negatively affected (P less than .05) by inbreeding, while weaning type scores of Shorthorn female progeny were negatively influenced (P less than .001) by inbreeding. Regression coefficients of all progeny variables on inbreeding in all analyses indicated negative trends.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The NRC recommendations for cats for energy and protein supply during gestation and lactation are based on limited data. This study aimed to answer the question: Can the energy requirement be met with canned food or is the volume restrictive? Therefore, balance trials were conducted in 10 queens before mating, during the 4th and 7th week of gestation and during the 2nd and 6th week of lactation. The cats were fed with canned food ad libitum. Additionally, the body composition of the queens was measured by dual‐energy X‐ray absorptiometry (Dexa) before mating, after parturition and after weaning. Eight of 10 cats presented increased body fat content and lean body mass during gestation. The weight loss during lactation led to a loss of lean body mass, but only six cats lost body fat of widely differing amounts. It was evident that the queens’ dry matter intake was consistent with that of queens fed ad libitum with dry food. The cats lost lean body mass during lactation and had negative protein balances in the 2nd week of lactation. This seems to be physiological in early lactation. Nevertheless, the protein recommendations for lactation seem to be too low.  相似文献   

19.
20.
Rates of gain and feed efficiency are important traits in most breeding programs for growing farm animals. The rate of gain (GAIN) is usually expressed over a certain age period and feed efficiency is often expressed as residual feed intake (RFI), defined as observed feed intake (FI) minus expected feed intake based on live weight (WGT) and GAIN. However, the basic traits recorded are always WGT and FI and other traits are derived from these basic records. The aim of this study was to develop a procedure for simultaneous analysis of the basic records and then derive linear traits related to feed efficiency without retorting to any approximation. A bivariate longitudinal random regression model was employed on 13,791 individual longitudinal records of WGT and FI from 2,827 bulls of six different beef breeds tested for their own performance in the period from 7 to 13 mo of age. Genetic and permanent environmental covariance functions for curves of WGT and FI were estimated using Gibbs sampling. Genetic and permanent covariance functions for curves of GAIN were estimated from the first derivative of the function for WGT and finally the covariance functions were extended to curves for RFI, based on the conditional distribution of FI given WGT and GAIN. Furthermore, the covariance functions were extended to include GAIN and RFI defined over different periods of the performance test. These periods included the whole test period as normally used when predicting breeding values for GAIN and RFI for beef bulls. Based on the presented method, breeding values and genetic parameters for derived traits such as GAIN and RFI defined longitudinally or integrated over (parts of) of the test period can be obtained from a joint analysis of the basic records. The resulting covariance functions for WGT, FI, GAIN, and RFI are usually singular but the method presented here does not suffer from the estimation problems associated with defining these traits individually before the genetic analysis. All the results are thus estimated simultaneously, and the set of parameters is consistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号