首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commercially available tomato cultivars were hydroponically cultured for inoculation, with Ralstonia solanacearum (K-101), which causes bacterial wilt, by pouring an inoculum suspension into the nutrient solution. Cultivar susceptibility to the bacteria was evaluated, based on the highest percentage of wilting. Because the length of time for wilt appearance varied among cultivars, some cultivars appeared to be suppressive to the translocation and/or multiplication of the invading pathogen. Thus, this hydroponic inoculation system is effective for examining levels of susceptibility in tomato cultivars to bacterial wilt. Received 13 December 2000/ Accepted in revised form 27 March 2001  相似文献   

2.
Bacterial wilt, caused by the Ralstonia solanacearum species complex (RSSC), is a destructive plant disease in Guangxi, China. However, the diversity of RSSC populations in the area is unknown. To this end, we performed an extensive bacterial wilt survey from 2015 to 2018. Using phylotype-specific multiplex PCR (Pmx-PCR) and an egl-based tree, 189 strains collected from 20 plant species were identified as R. pseudosolanacearum phylotype I, which included 14 sequevars (12, 13, 14, 15, 16, 17, 18, 30, 34, 44, 48, 54, 70, and 71); two strains isolated from potato plants belonged to R. solanacearum phylotype II, sequevar 1. Sequevars 13, 17, and 44 were prevalent in Guangxi, and sequevar 13 dominated the RSSC sequevars of four Cucurbitaceae plants. The susceptibility of different Cucurbitaceae species to bacterial wilt and the host range of 16 representative strains were further tested. Members of the Cucurbita, Momordica, and Luffa genera were susceptible to bacterial wilt, with wilt incidence ranging from 73% to 100%. Most strains were pathogenic to solanaceous plants, mulberry, and ginger plants but not to melon crops; however, the strains from kidney bean, pepper, and Cucurbitaceae plants were highly virulent to melon crops. This is the first comprehensive report on the genetic and host range diversity of the RSSC in Guangxi and the susceptibility of different Cucurbitaceae species to bacterial wilt, which can provide valuable information for the development of bacterial wilt control strategies.  相似文献   

3.
X. Li  Y. Liu  L. Cai  H. Zhang  J. Shi  Y. Yuan 《Plant pathology》2017,66(8):1345-1356
Tobacco bacterial wilt caused by Ralstonia solanacearum is a serious disease affecting tobacco cultivation in southwest China. The response surface methodology was employed to evaluate the optimal conditions of tobacco bacterial wilt, and green fluorescent protein gene (gfp) labelling was applied to monitor the location and survival dynamics of R. solanacearum (Rs::gfp) on tobacco roots and in soil under these optimal conditions. The results showed that the highest wilt incidence was 91.13%, which occurred when the population reached 6.6 × 106 CFU/g soil, the temperature was 30.55 °C, and the humidity was >81.42%. The Rs::gfp densely colonized the root tips and root hairs, and cells of Rs::gfp were observed intermittently in the elongation zone or at the point of the emerging lateral roots. The Rs::gfp number in the rhizosphere soil was 10.75‐, 73.13‐ and 74.86‐times higher than that in the bulk soil at 10, 15 and 20 days after transplantation, respectively. Increased colonization by Rs::gfp was related to the population of the pathogen, the environmental temperature and the humidity in the soil. These three conditions determined whether R. solanacearum would induce tobacco wilt. This is the first study to investigate factors affecting the virulence of a tobacco wilt bacterial pathogen, which is important for conducting field diagnosis and biocontrol of tobacco bacterial wilt.  相似文献   

4.
为预测芝麻青枯病造成的产量损失,以茎秆病斑长度为指标确定成熟期芝麻青枯病严重度的分级标准,测定4个芝麻品种在不同青枯病严重度下的农艺性状指标、产量构成因子以及产量,建立单株蒴果数、单蒴粒数、千粒重、单株产量与青枯病严重度的回归方程,在此基础上对芝麻青枯病严重度与单株产量损失率进行回归分析。结果表明:随着青枯病严重度上升,芝麻株高显著降低,空梢长度显著增长,始蒴高度显著增高;而芝麻单株蒴果数、单蒴粒数、千粒重均显著下降,其中芝麻单株蒴果数降低最显著,各级芝麻病株的单株蒴果数之间显著差异,且4个芝麻品种9级病株的单株蒴果数比0级病株降低71.24%~79.08%;各级病株的单株产量之间显著差异,4个芝麻品种的1、3、5、7和9级病株平均产量损失率分别为12.56%、29.53%、54.01%、72.57%和81.98%;青枯病严重度与单株蒴果数、单蒴粒数、千粒重3个产量构成因子呈极显著线性负相关;青枯病严重度x与产量损失率y的线性回归方程为y=2.5534+9.4132x(R~2=0.9867),说明青枯病严重度越高,损失率越大。  相似文献   

5.
Pseudomonas fluorescens FPT9601, a plant growth-promoting rhizobacterium (PGPR) isolated from tomato rhizosphere, can protect tomato (Lycopersicon esculentum Mill) from bacterial wilt disease caused by Ralstonia solanacearum. This strain produces antibiotics 2,4-diacetylphloroglucinol (2,4-DAPG) and hydrogen cyanide (HCN). It also produces proteases and uncharacterized siderophores (Sid). A mutant strain SM2214, obtained by Tn5 insertion, did not produce 2,4-DAPG, HCN or proteases, but overproduced Sid. Marker-exchange mutagenesis confirmed that a single transposon insertion caused the multiple phenotypic changes of this mutant. Complementation of the mutant with a 1.3-kb DNA fragment that was amplified from genomic DNA of the wild-type P. fluorescens strain by PCR could restore the lost functions of the mutant strain. Nucleotide sequencing revealed that the fragment contained a 642-bp open reading frame (ORF) highly homologous to the regulator responser gene gacA. The in vitro anti-bacterium test and plant protection experiment under greenhouse conditions indicated that the gacA gene played an important role in the suppression of tomato bacterial wilt disease. Received 20 November 2000/ Accepted in revised form 19 January 2001  相似文献   

6.
Bacterial wilt in cardamom (Elettaria cardamomum Maton) was observed in Kerala state of India. Infected plants showed wilting wherein all leaves roll or curl upward towards the midrib centre, turn yellow, and the whole plant finally dies; the collar region shows water-soaked lesions initially and turns dark brown eventually; copious quantity of bacterial exudate is observed on the cut end of the pseudostem. The bacterium was identified as Ralstonia solanacearum based on a panel of phenotypic characters such as fluidal white colony on Kelman’s medium, biovar assay and biolog assay (BiologGN), and genotypic characters such as Multiplex-PCR based phylotyping, sequences of 16S rDNA, 16-23S intergenic region, and recN gene. Collectively these tests revealed that the R. solanacearum infecting cardamom belong to biovar 3 and phylotype 1 confirming its Asian origin. Upon soil inoculation, the bacterium caused typical wilting of the cardamom plants in three weeks and ginger plantlets in two weeks. Cross transmissibility of the bacterium was observed in cardamom and ginger wherein the plants succumbed to wilt when R. solanacearum from either of the host was inoculated. BOX-PCR fingerprinting revealed that the strain is identical (100%) to a ginger strain of R. solanacearum, which is widely prevalent in the Indian sub-continent. Furthermore, Multilocus Sequence Typing (MLST) based strain comparison confirmed that cardamom and ginger strain were identical to each other at 11 loci. Apart from striking phenotypic and genotypic (allelic) similarities, geographical origin, and cross transmissibility of the cardamom strain of R. solanacearum strongly suggest that the new occurrence of wilt of cardamom in India could have an origin in bacterial wilt of ginger. Perusal of records on Ralstonia-induced bacterial wilt in crop plants, particularly among the Zingiberaceae family, reveals that this is a new report of bacterial wilt disease in small cardamom.  相似文献   

7.
Bacterial wilt caused by Ralstonia solanacearum is one of the most devastating bacterial diseases of plants worldwide. Management of bacterial wilt in tomato and other crops has been difficult, and so novel but easily implemented control methods are being sought. To evaluate the effect of cold-water irrigation on bacterial wilt of tomato, four treatments were used in which CF (chemically fertilized) soil and CF + FYM (chemical fertilizer + farmyard manure [FYM]) soil were inoculated with a bacterial suspension (R. solanacearum strain YU1Rif43) at 106 colony forming units (CFU) g?1 soil. Tomato seedlings were grown in Agri-pots in a plant growth chamber. The soil was irrigated with water that was kept at the same temperature in each treatment: 4, 10, 20, or 30°C. Incidence and severity of wilt, counting of the colonies of the culturable population of pathogen, and dry-mass and height of the plants were examined. After 45 days and in both kinds of soil, most of the plants had wilted in soil irrigated at 30°C. Wilt incidence was substantially reduced when transplanted seedlings were irrigated at lower temperatures (4–20°C). Survival of R. solanacearum was also reduced after being irrigated with water at lower temperatures, indicating that the reduced incidence of wilt was linked to reduced survival of the pathogen. Dry-mass and plant height were slightly higher under control conditions than in soils irrigated at lower temperatures. This study suggests that cold-water irrigation could significantly reduce bacterial wilt of tomato and have an adverse effect on survival of the wilt pathogen.  相似文献   

8.
Verticillium dahliae Klebahn is the causal agent of tomato wilt disease. Isolates of V. dahliae can be classified based on pathogenicity to tomato, but the pathotypes are indistinguishable in morphology. We designed PCR primers for specific detection of isolates pathogenic to tomato (tomato pathotype) from the sequences of a pathotype-specific gene, vdt1. With the primer pair Tg5/Tc3, a PCR product (approximately 3.2 kb) specific to tomato pathotype was amplified from the genomic DNA of isolates. Using the primer pair, a tomato pathotype isolate was specifically detected from hypocotyls of inoculated tomato and eggplant. On the other hand, no amplification was observed from non-tomato pathotype isolates of V. dahliae, some other wilt pathogens of tomato and a healthy host plant. Therefore, the primer pair can be useful for pathotype-specific detection of V. dahliae as well as for diagnosis of wilt disease of tomato plant. Received 7 September 2001/ Accepted in revised form 3 December 2001  相似文献   

9.
番茄枯萎病菌和青枯病菌拮抗细菌的评价   总被引:3,自引:1,他引:2  
为筛选出对番茄枯萎病和青枯病有较好防效的生防菌,采用平板对峙法,以番茄枯萎病菌Fusarium oxysporum和番茄青枯病菌Ralstonia solanacearum为靶标菌,从江苏沭阳、宿迁、溧水及内蒙古海拉尔分离到的2 062株细菌菌株中筛选拮抗菌株,并采用平板对峙法、拮抗菌液灌根法、分子生物学方法进行拮抗物质检测、盆栽试验及种属鉴定。结果表明:从2 062株细菌中共筛选到21株对番茄枯萎病和青枯病具有很强拮抗作用的菌株,均能分泌蛋白酶,具有解磷作用;不能分泌几丁质酶和纤维素酶,仅4株细菌能分泌嗜铁素。拮抗细菌SY290对番茄枯萎病和番茄青枯病防效最高,分别达到74.2%和75.0%,SQ728和LS536次之,但防效均大于60%。结合各菌株形态特征、16S r DNA与gyr-B序列分析结果,菌株SY177、SY290和SQ728鉴定为解淀粉芽胞杆菌Bacillus amyloliquefaciens,菌株LS536为枯草芽胞杆菌B.subtilis。  相似文献   

10.
Bacterial wilt caused by Ralstonia solanacearum is a serious disease of peanut (Arachis hypogaea) in China. However, the molecular basis of peanut resistance to R. solanacearum is poorly understood. Arachis duranensis, a wild diploid species of the genus Arachis, has been proven to be resistant to bacterial wilt, and thus holds valuable potential for understanding the mechanism of resistance to bacterial wilt and genetic improvement of peanut disease resistance. Here, suppression subtractive hybridization (SSH) and macroarray hybridization were employed to detect differentially expressed genes (DEGs) in the roots of A. duranensis after Rsolanacearum inoculation. A total of 317 unique genes were obtained, 265 of which had homologues and functional annotations. KEGG analysis revealed that a large proportion of these unigenes are mainly involved in the biosynthesis of phytoalexins, particularly in the biosynthetic pathways of terpenoids and flavonoids. Subsequent real‐time polymerase chain reaction (PCR) analysis showed that the terpenoid and flavonoid synthesis‐related genes showed higher expression levels in a resistant genotype of A. duranensis than in a susceptible genotype, indicating that the terpenoids and flavonoids probably played a fundamental role in the resistance of Aduranensis to R. solanacearum. This study provides an overview of the gene expression profile in the roots of wild Arachis species in response to R. solanacearum infection. Moreover, the related candidate genes are also valuable for the further study of the molecular mechanisms of resistance to R. solanacearum.  相似文献   

11.
花生青枯病(Pseudomonas solanacearum E.F.Smith)是六十年代以来,在山东省逐渐蔓延起来的主要病害,面积已达20万亩以上。一般发病率5~10%,重者达50%以上。该病每年6月初始见,6月下旬至7月中旬为发病盛期,累计病株数符合y=de~(-(b/x))曲线。本病的发生与土壤含砂率有密切关系。含砂量越高,发病越重(r=0.8956~*)。在相同土壤中,土壤田间持水量与发病呈负相关(r=-0.905~*)。试验示范证实,采用以抗病良种为主的综合防病措施,是防治本病经济有效的方法,推广面积在3万亩以上。氯化苦处理土壤也有良好的效果。  相似文献   

12.
Mulberry wilt disease (MWD) was recently identified in Hangzhou, Zhejiang province, China. Typical symptoms of the disease are browning of vascular tissues, leaf wilt, defoliation, and tree decline. Unlike the symptoms of bacterial wilt disease caused by Ralstonia solanacearum, symptoms of MWD generally started from the bottom of the plants and moved upward. In inoculation experiments, four selected MWD strains caused mulberry shoot leaf wilt, discoloration, and defoliation. They also induced whole plant leaf wilt, defoliation and dark brown discoloration of vascular tissue. Based on Biolog metabolic profiles, fatty acid methyl ester analysis (FAME) and sequence analysis of the partial 16S rDNA and rpoB genes four MWD strains were identified as members of the genus Enterobacter. The 16S rDNA and rpoB gene sequences revealed a close relationship among two isolates, R2-2 and R6-2, and the E. asburiae type strain JCM6051. The isolates showed >98% similarity to E. asburiae JCM6051 in their rpoB gene. These results indicated that isolates R2-2 and R6-2 belonged to E. asburiae. No similarity in 16S rDNA sequences above 97% was found between either of the remaining isolates, R11-2 or R18-2, and any recognized Enterobacter species, suggesting that the two isolates may represent novel Enterobacter species. rpoB gene similarity values between the isolates and Enterobacter spp. type strains were <98%, providing further evidence that the two isolates may represent a novel species within the Enterobacter. The causal agent for MWD was previously reported to be E. cloacae, however, this study found that other Enterobacter spp. (E. asburiae and Enterobacter sp.) also cause MWD.  相似文献   

13.
14.
为明确棉花内生真菌CEF-373菌株对棉花黄萎病的防效及其作用机理,利用圆盘滤膜法和平板对扣培养法测定菌株CEF-373对大丽轮枝菌Verticillium dahliae菌丝生长的抑制作用,测定其对棉花黄萎病的温室和田间防效,并通过活性氧含量及防御基因表达情况来分析其作用机理。结果表明,菌株CEF-373的挥发性代谢产物和非挥发性代谢产物对大丽轮枝菌菌丝的生长均有显著抑制作用,抑制率最高分别可达37.75%和100.00%。用1×107CFU/mL的菌株CEF-373分生孢子悬浮液灌根后,对棉花黄萎病的温室防效可达71.12%,用质量比为3%的菌株CEF-373固体菌剂拌土栽培后,对棉花黄萎病的温室防效可达62.74%,防治作用显著。菌株CEF-373的发酵液滴灌和微生物肥料处理40 d后,对棉花黄萎病的田间防效达到最大,分别为36.23%和27.71%,而在后期有所降低。菌株CEF-373可以诱导棉花叶片中细胞活性氧的爆发;且菌株CEF-373成功激活了苯丙氨酸解氨酶、过氧化物酶、多酚氧化酶、几丁质酶和病程相关蛋白基因PR10的表达,对大丽轮枝菌的侵染具有抵御作用。表明棉花内生真菌CEF-373菌株通过抑制大丽轮枝菌生长以及诱导寄主系统抗病性来有效防治棉花黄萎病,具有较好的生物防治应用前景。  相似文献   

15.
吡唑并嘧啶衍生物 ((E)-N-(2-氟-4-三氟甲基苯乙烯基)-1-甲基-1H-吡唑并[3,4-d]嘧啶-4-胺,简称BDO-1) 和哒嗪酮衍生物 (4-羟基-1-(4-甲氧基苯基)-6-氧代-1,6-二氢吡嗪-3-甲酸甲酯,简称PDZ-1) 是由华东理工大学创制并合成的新化合物,本研究分别测定了其离体抑菌活性及其诱导抗病活性,并对田间应用技术进行了研究。结果表明:离体抑菌试验结果显示,BDO-1和PDZ-1对供试黄瓜的尖孢镰孢菌和多主棒孢菌并无杀菌活性;温室盆栽试验发现,2个化合物对7种蔬菜病害具有明显的诱导抗病活性,其中:BDO-1在10 mg/L下对黄瓜细菌性角斑病、黄瓜棒孢叶斑病、黄瓜枯萎病、黄瓜霜霉病、番茄早疫病、番茄灰叶斑和辣椒疫病的防治效果分别为58.81%、61.79%、69.88%、64.14%,54.42%、54.85%和63.59%;PDZ-1在10 mg/L下对黄瓜细菌性角斑病和黄瓜棒孢叶斑病的防治效果分别为62.33%和59.15%。田间防治效果验证结果表明,BDO-1和PDZ-1对黄瓜枯萎病的防治效果分别为62.95 %和48.45%。研究发现,BDO-1和PDZ-1在质量浓度为10 mg/L、诱导5次、每次间隔5d的条件下施用,对黄瓜枯萎病和棒孢叶斑病可发挥最佳防治效果。  相似文献   

16.
Bacterial wilt of forage grasses, caused by the pathogen Xanthomonas translucens pv. graminis (Xtg), is a major disease of forage grasses such as Italian ryegrass (Lolium multiflorum). The plant genotype‐bacterial isolate interaction was analysed to elucidate the existence of race‐specific responses and to assist the identification of plant disease resistance genes. In a greenhouse experiment, 62 selected plant genotypes were artificially inoculated with six different bacterial isolates. Significant differences in resistance were observed among Lmultiflorum genotypes (P < 0·001) and in virulence (intensity of disease symptoms) among Xtg isolates (P < 0·001) using the area under the disease progress curve (AUDPC). No significant genotype‐isolate interaction (P > 0·05) could be observed using linear regression modelling. However, additive main effects and multiplicative interaction effects (ammi ) analysis revealed five genotypes which did not cluster close to the origin of the biplot, indicating specific interactions between these genotypes and some bacterial isolates. Simple sequence repeat (SSR) markers were used to identify marker‐resistance associations using the same plant genotypes and bacterial isolates. The SSR marker NFA027 located on linkage group (LG) 5 was significantly associated with bacterial wilt resistance across all six bacterial isolates and explained up to 37·4% of the total variance of AUDPC values. Neither the inoculation experiment nor the SSR analyses revealed major host genotype‐pathogen isolate interactions, thus suggesting that Xtg resistance, observed so far, is effective across a broad range of different bacterial isolates and plant genotypes.  相似文献   

17.
Application of Rhizobacteria for Induced Resistance   总被引:6,自引:0,他引:6  
This article provides a review of experiments conducted over a six-year period to develop a biological control system for insect-transmitted diseases in vegetables based on induced systemic resistance (ISR) mediated by plant growth-promoting rhizobacteria (PGPR). Initial experiments investigated the factors involved in treatment with PGPR led to ISR to bacterial wilt disease in cucumber caused by Erwinia tracheiphila. Results demonstrated that PGPR-ISR against bacterial wilt and feeding by the cucumber beetle vectors of E. trachiphiela were associated with reduced concentrations of cucurbitacin, a secondary plant metabolite and powerful beetle feeding stimulant. In other experiments, PGPR induced resistance against bacterial wilt in the absence of the beetle vectors, suggesting that PGPR-ISR protects cucumber against bacterial wilt not only by reducing beetle feeding and transmission of the pathogen, but also through the induction of other plant defense mechanisms after the pathogen has been introduced into the plant. Additional greenhouse and field experiments are described in which PGPR strains were selected for ISR against cucumber mosaic virus (CMV) and tomato mottle virus (ToMoV). Although results varied from year to year, field-grown tomatoes treated with PGPR demonstrated a reduction in the development of disease symptoms, and often a reduction in the incidence of viral infection and an increase in tomato yield. Recent efforts on commercial development of PGPR are described in which biological preparations containing industrial formulated spores of PGPR plus chitosan were formulated and evaluated for use in a transplant soil mix system for developing plants that can withstand disease attack after transplanting in the field.  相似文献   

18.
During the last decade, a new bacterial disease has impaired the yield of vegetable sweet potato (30–80%) in Taiwan. Infected plants developed stunting, root and stem rot, vascular discoloration and wilting. Ten bacterial isolates that caused the same symptoms in sweet potatoes after inoculation were reisolated and classified as Ralstonia solanacearum phylotype I biovar 4 based on physical and molecular analyses. Moreover, these isolates also caused wilting in convolvulaceous, solanaceaous and cruciferous plants. This report is the first of bacterial wilt of sweet potato caused by R. solanacearum in Taiwan.  相似文献   

19.
Bacterial wilt caused by Ralstonia solanacearum is a serious disease of eucalypt in humid and high temperature areas worldwide. Spreading of the bacterium in the field or to other nurseries occurs mainly by symptomless infected plant material. The use of pathogen-free propagating material as well as planting of resistant genotypes are currently the only strategies used for disease control. Therefore, a reliable and sensitive method for detection of low titres of R. solanacearum in infected plant tissue is essential for the success of management programmes. In this work, we adapted an efficient intercalating dye-based real-time PCR protocol to detect the bacterium in symptomless eucalypt plants as well as to investigate its movement in eucalypt clones CLR172 and CLR371, which exhibit resistant and susceptible phenotypes, respectively. We found that the bacterium translocates acropetally and basipetally in inoculated but symptomless cuttings of the resistant clone, as in cuttings of the susceptible clone displaying symptoms. Nevertheless, a smaller concentration of bacterial DNA was detected in tissues of the resistant clone. Mature biofilms occluding the xylem vessels were present in the susceptible clone whereas only single cells or small aggregates were observed in the resistant clone. This work contributes to improve our knowledge of the colonization process of R. solanacearum in eucalypt clones with different levels of susceptibility and to understand how the defence mechanisms against bacterial wilt in Eucalyptus work. Our findings could aid in the selection of the most resistant eucalypt clones to be used in wilt disease management programmes.  相似文献   

20.
Abstract

A new bacterial disease of tobacco, not previously reported was found in Karnataka. Studies on the disease initiated to identify the causal agent the factors which predispose the plants to epidemics, and control of the disease, revealed that it occurs in epiphytotic form following heavy rains after the crop has been topped, and is more severe in thicker leaves. The primary source of inoculum is the soil, and secondary spread takes place by rainwater splashing from infected to healthy plants. The disease is found predominantly in beedi tobacco and causes severe damage to the crop resulting in economic loss in yield. The causal organism is Erwinia chrysanthemi. In vitro evaluation of chemicals showed that streptomycin sulphate + chlorotetra‐cycline (Streptocycline), streptomycin sulphate (Ambystrin) and streptomycin sulphate + oxytetracycline (Paushamycin) were effective in control of the bacterial disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号