首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
方形喷洒域变量施水精确灌溉喷头实现理论研究   总被引:7,自引:0,他引:7  
在总结国内外变量施水精确灌溉喷头实现方法的基础上,对方形喷洒域变量施水精确灌溉喷头的实现条件进行了研究。通过理论分析,给出方形喷洒域变量施水精确灌溉喷头的射程、流量和转速应服从的变化规律和计算公式。指出这种喷头在组合喷洒时,为保证组合喷灌均匀性达到喷灌的技术要求,需要首先提高单喷头喷灌均匀系数。通过比较分析,得出了这种喷头的最优水量分布曲线应为类矩形的结论。研究结果为方形喷洒域变量施水精确灌溉喷头实现方法的研究提供了理论依据。  相似文献   

2.
通过3a小区试验,摸清新疆主要粮食作物在滴灌条件下作物系数和水分生产率的变化规律,为提高水资源利用效率、加强灌区用水管理、编制流域综合规划等项工作提供科学的试验数据和决策依据。采用小区试验方法,以小麦、旱稻、玉米、土豆、谷子、大豆6种粮食作物为试验对象,设置灌水定额单因素4水平(300m3/hm2、375m3/hm2、450m3/hm2、525m3/hm2)随机分组的灌溉试验方案,利用测坑传感器实测各处理各年份作物需水量,利用气象数据计算作物参考蒸发蒸腾量,通过考种测产分析产量和灌水量关系。结果显示:滴灌条件下6种作物各生育期阶段作物系数0.45~1.21间,全生育期0.70~1.03之间;6种作物水分生产率在7.65~81.72 kg/(hm2·mm)之间。各作物的需水敏感期分别在快速发育期和生育中期。本研究摸清了滴灌条件下新疆主要粮食作物的作物系数和水分生产率的主要规律,为全区推进现代化灌区建设和田间高效节水提供科学的数据支撑。  相似文献   

3.
作物冠层对喷灌水分分布影响的研究进展   总被引:6,自引:0,他引:6  
喷灌水分到达冠层以后,经过冠层的截留和水分再分配过程,主要以两种方式到达地面,即穿过冠层直接落入土壤和通过叶片的集水,然后以茎秆为通道流入土壤.以不同方式进入土壤中的水量与作物的种类、冠层结构、种植密度,以及喷灌系统和喷灌时的农田小气候等因素有关.本文根据喷灌水分在农田的分布特点,把喷灌系统和作物结合起来,提出了喷灌有效灌水均匀系数的概念.该系数能综合反映灌溉水经过冠层再分配过程以后,田间水分的有效性.  相似文献   

4.
HE Qian 《干旱区科学》2020,12(5):865-886
Soil erosion in the Three-River Headwaters Region (TRHR) of the Qinghai-Tibet Plateau in China has a significant impact on local economic development and ecological environment. Vegetation and precipitation are considered to be the main factors for the variation in soil erosion. However, it is a big challenge to analyze the impacts of precipitation and vegetation respectively as well as their combined effects on soil erosion from the pixel scale. To assess the influences of vegetation and precipitation on the variation of soil erosion from 2005 to 2015, we employed the Revised Universal Soil Loss Equation (RUSLE) model to evaluate soil erosion in the TRHR, and then developed a method using the Logarithmic Mean Divisia Index model (LMDI) which can exponentially decompose the influencing factors, to calculate the contribution values of the vegetation cover factor (C factor) and the rainfall erosivity factor (R factor) to the variation of soil erosion from the pixel scale. In general, soil erosion in the TRHR was alleviated from 2005 to 2015, of which about 54.95% of the area where soil erosion decreased was caused by the combined effects of the C factor and the R factor, and 41.31% was caused by the change in the R factor. There were relatively few areas with increased soil erosion modulus, of which 64.10% of the area where soil erosion increased was caused by the change in the C factor, and 23.88% was caused by the combined effects of the C factor and the R factor. Therefore, the combined effects of the C factor and the R factor were regarded as the main driving force for the decrease of soil erosion, while the C factor was the dominant factor for the increase of soil erosion. The area with decreased soil erosion caused by the C factor (12.10×103 km2) was larger than the area with increased soil erosion caused by the C factor (8.30×103 km2), which indicated that vegetation had a positive effect on soil erosion. This study generally put forward a new method for quantitative assessment of the impacts of the influencing factors on soil erosion, and also provided a scientific basis for the regional control of soil erosion.  相似文献   

5.
喷灌冬小麦农田土壤水分分布特征及水量平衡   总被引:9,自引:3,他引:6  
以传统地面灌溉(畦灌)为对照,分析了喷灌条件下,冬小麦农田土壤水分分布特征和水量平衡。结果表明:喷灌条件下土壤水分运动表现出明显的非饱和土壤水运动特征,地面灌溉条件下土壤水分运动具有饱和土壤水运动的特征。喷灌条件下灌溉水主要分布在土壤表层0~50 cm范围内,地面灌溉条件下灌溉水可达地表以下150 cm处。喷灌条件下,没有明显的土壤水分渗漏发生;地面灌溉条件下,土壤水分渗漏量占灌溉水量的10%左右。2003年和2004年试验期间,喷灌蒸散量分别为312.2 mm和324.4 mm,分别比地面灌溉蒸散量少13.1 mm和35.1mm。  相似文献   

6.
Halimeh PIRI 《干旱区科学》2022,14(11):1274-1292
Water scarcity is the most significant barrier to agricultural development in arid and semi-arid regions. Deficit irrigation is an effective solution for managing agricultural water in these regions. The use of additives such as vermicompost (VC) to improve soil characteristics and increase yield is a popular practice. Despite this, there is still a lack of understanding of the interaction between irrigation water and VC on various crops. This study aimed to investigate the interaction effect of irrigation water and VC on greenhouse cucumber yield, yield components, quality, and irrigation water use efficiency (IWUE). The trials were done in a split-plot design in three replicates in a semi-arid region of southeastern Iran in 2018 and 2019. Three levels of VC in the experiments, i.e., 10 (V1), 15 (V2), and 20 t/hm2 (V3), and three levels of irrigation water, i.e., 50% (I1), 75% (I2), and 100% (I3) of crop water requirement were used. The results showed that the amount of irrigation water, VC, and their interaction significantly affected cucumber yield, yield components, quality, and IWUE in both years. Reducing the amount of irrigation water and VC application rates reduced the weight, diameter, length, and cucumber yield. The maximum yield (175 t/hm2) was recorded in full irrigation using 20 t/hm2 of VC, while the minimum yield (98 t/hm2) was found in I1V1 treatment. The maximum and minimum values of IWUE were recorded for I1V3 and I3V1 treatments as 36.07 and 19.93 kg/(m3?hm2), respectively. Moreover, reducing irrigation amount decreased chlorophyll a and b, but increased vitamin C. However, the maximum carbohydrate and protein contents were obtained in mild water-stressed conditions (I2). Although adding VC positively influenced the value of quality traits, no significant difference was observed between V2 and V3 treatments. Based on the results, adding VC under full irrigation conditions leads to enhanced yield and IWUE. However, in the case of applying deficit irrigation, adding VC up to a certain level (15 t/hm2) increases yield and IWUE, after which the yield begins to decline. Because of the salinity of VC, using a suitable amount of it is a key point to maximize IWUE and yield when applying a deficit irrigation regime.  相似文献   

7.
Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conservation measures in ephemeral gullies. In this study, an artificial simulated confluence test and stereoscopic photogrammetry were used to analyze the distribution characteristics of erosion and deposition in ephemeral gullies protected by geocells and the effect of different conflue...  相似文献   

8.
Field experiments were conducted from 1994 to 1997 at two locations to study the effectiveness of chlorsulfuron and triasulfuron applied through different irrigation methods (chemigation) for control of Orobanche aegyptiaca Pers. in tomato ( Lycopersicon esculentum Mill). Three split applications of chlorsulfuron at 2.5 g a.i. ha−1 and of triasulfuron at 7.5 g a.i. ha−1, through conventional sprinkler irrigation systems, 10–14 days apart followed immediately by sprinkling with water, controlled O. aegyptiaca by about 90% and 80% and increased crop yield 25–47% and 30%, respectively, without any crop injury symptoms. Repeated applications of the same herbicides at half rates resulted in slightly higher O. aegyptiaca control and crop yield than only one herbicide application at double rate. Chemigation by the sprinkler systems (microsprinklers, 60 m3 ha−1) slightly increased the herbicide efficiency as compared with the high volume spray (800 m3 ha−1). O. aegyptiaca control from sulfonylureas applied by drip chemigation was poor, as this probably requires very accurate timing and the herbicide distribution in the soil was not uniform.  相似文献   

9.
喷灌冬小麦农田土壤NO-3-N分布特征及作物吸氮规律   总被引:1,自引:0,他引:1       下载免费PDF全文
以传统地面灌溉(畦灌)为对照,2002~2003和2003~2004两个生产年度田间试验分析喷灌对冬小麦农田土壤NO3^-—N分布和作物吸氮的影响。试验结果表明:喷灌与地面灌溉相比,土壤NO3^-—N含量蜂值迁移较浅,土壤NO3^--N主要分布在冬小麦主要根系分布层0~40cm土层内。与喷灌相比,在冬小麦根系层下部,地面灌溉土壤NO3^-N存在不同程度的累积。试验期间地面灌溉土壤NO3^-—N累积淋失量分别为8.68kg/hm^2和7.70kg/hm^2,喷灌条件下没有明显的土壤NO3^-—N淋失,最大累积淋失量只有地面灌溉条件下的3%。2003和2004年喷灌冬小麦地上部分吸氮量分别为235.7kg/hm^2和161,7kg/hm^2,分别比地面灌溉高7.0kg/hm^2和34.7kg/hm^2。与地面灌溉相比,喷灌有利于冬小麦后期吸收氮素,喷灌不同生育期冬小麦吸氮量年际之间的差异都小于地面灌溉。  相似文献   

10.
徐慧  张运超 《干旱区研究》2013,30(4):582-587
根据《塔里木河流域近期综合治理规划》规定的水权分配方案,以保障干流天然植物正常生长所需水分和塔里木河下游不断流为前提,模拟计算了塔里木河干流现状灌溉需水的满足度。首先,采用定额法估算塔里木河干流天然植被需水量,选用90%保障率最枯月平均流量法,估算塔里木河干流最小河道内生态需水量,得出塔里木河干流不同保障率的水资源可利用量;其次,建立了塔里木河干流水资源评价和规划模型(WEAP),估算了各灌区基准年的需水量;最后,模拟计算了不同保障率下各灌区逐月的需水满足度。结果表明:随着来水保障率的提高,除了塔里木河下游灌区需水得到满足外,其他各灌区各月需水满足度出现不同程度的下降,生产用水与生态用水矛盾逐渐突出。在平水年、枯水年和特枯水年,灌溉总缺水量分别为0.43×108 m3、1.29×108 m3和2.44×108 m3,缺水最严重的月份主要集中在3月、11月,其次为4月和5月,缺水量最大的为塔里木河中游灌区。  相似文献   

11.
紫花苜蓿中心支轴式喷灌灌水均匀性试验研究   总被引:1,自引:0,他引:1  
为提高紫花苜蓿中心支轴式喷灌灌水均匀性及定量分析其主要影响因子,在鄂尔多斯市鄂托克前旗昂素镇示范区进行了紫花苜蓿中心支轴式喷灌灌水均匀性试验,采用基于标准差的Wilcox-Swailes均匀系数法计算了不同风速条件下的喷灌灌水均匀系数,并定量化研究了喷灌对漂移损失、冠层截留损失、漂移和冠层截留总损失以及土壤含水率的影响。结果表明:风速对喷灌灌水均匀系数影响显著,平均风速为2.57 m·s~(-1)和1.53 m·s~(-1)时均匀系数分别达到0.88和0.92,说明喷灌均匀性良好,平均风速为3.34 m·s~(-1)时均匀系数为0.72,喷灌均匀性较差;研究区喷灌灌水定额40 mm时最大土壤入渗深度为80 cm,灌水后0~40 cm土层土壤含水率的提高非常显著,新增灌水量在该土层的分配占85.0%~95.0%;风速对喷灌漂移损失影响显著,随着风速的增大漂移损失率明显提高;风速对冠层截留损失影响不如对漂移损失的影响显著,较大风速时冠层截留损失率反而较低;即使在风速较低时(1.53 m·s~(-1))紫花苜蓿分枝期喷灌漂移和冠层截留总损失率也在11.0%~15.0%,损失较大。  相似文献   

12.
Wind erosion is one of the main drivers of soil loss in the world, which affects 20 million hectare land of Iran. Besides the soil loss, wind erosion contributes to carbon dioxide emission from the soil into the atmosphere. The objective of this study is to evaluate monthly and seasonal changes in carbon dioxide emission in four classes i.e., low, moderate, severe and very severe soil erosion and the interactions between air temperature and wind erosion in relation to carbon dioxide emission in the Bordekhun region, Boushehr Province, southwestern Iran. Wind erosion intensities were evaluated using IRIFR (Iran Research Institute of Forests and Ranges) model, in which four classes of soil erosion were identified. Afterward, we measured carbon dioxide emission on a monthly basis and for a period of one year using alkali traps in each class of soil erosion. Data on emission levels and erosion classes were analyzed as a factorial experiment in a completely randomized design with twelve replications in each treatment. The highest rate of emission occurred in July (4.490 g CO2/(m2?d)) in severely eroded lands and the least in January (0.086 g CO2/(m2?d)) in low eroded lands. Therefore, it is resulted that increasing erosion intensity causes an increase in soil carbon dioxide emission rate at severe erosion intensity. Moreover, the maximum amount of carbon dioxide emission happened in summer and the minimum in winter. Soil carbon dioxide emission was just related to air temperature without any relationship with soil moisture content; since changes of soil moisture in the wet and dry seasons were not high enough to affect soil microorganisms and respiration in dry areas. In general, there are complex and multiple relationships between various factors associated with soil erosion and carbon dioxide emission. Global warming causes events that lead to more erosion, which in turn increases greenhouse gas emission, and rising greenhouse gases will cause more global warming. The result of this study demonstrated the synergistic effect of wind erosion and global climate warming towards carbon dioxide emission into the atmosphere.  相似文献   

13.
Soil erosion on farmland is a critical environmental issue and the main source of sediment in the Yellow River, China. Thus, great efforts have been made to reduce runoff and soil loss by restoring vegetation on abandoned farmland. However, few studies have investigated runoff and soil loss from sloping farmland during crop growth season. The objective of this study was to investigate the effects of soil management on runoff and soil loss on sloping farmland during crop growth season. We tested different soybean growth stages (i.e., seedling stage (R1), initial blossoming stage (R2), full flowering stage (R3), pod bearing stage (R4), and initial filling stage (R5)) and soil management practice (one plot applied hoeing tillage (HT) before each rainfall event, whereas the other received no treatment (NH)) by applying simulated rainfall at an intensity of 80 mm/h. Results showed that runoff and soil loss both decreased and infiltration amount increased in successive soybean growth stages under both treatments. Compared with NH plot, there was less runoff and higher infiltration amount from HT plot. However, soil loss from HT plot was larger than that from NH plot in R1-R3, but lower in R4 and R5. In the early growth stages, hoeing tillage was effective for reducing runoff and enhancing rainfall infiltration. By contrast, hoeing tillage enhanced soil and water conservation during the late growth stages. The total soil loss from HT plot (509.0 g/m2) was 11.1% higher than that from NH plot (457.9 g/m2) in R1-R5. However, the infiltration amount from HT plot (313.9 mm) was 18.4% higher than that from NH plot (265.0 mm) and the total runoff volume from HT plot was 49.7% less than that from NH plot. These results indicated that crop vegetation can also act as a type of vegetation cover and play an important role on sloping farmland. Thus, adopting rational soil management in crop planting on sloping farmland can effectively reduce runoff and soil loss, as well as maximize rainwater infiltration during crop growth period.  相似文献   

14.
Stemflow is vital for supplying water, fertilizer, and other crop essentials during sprinkler irrigation. Exploring the spatial and temporal variations of crop stemflow and its influencing factors will be essential to preventing soil water and nutrient ion's migration to deeper layers, developing, and optimizing effective sprinkler irrigation schedules. Based on the two-year experimental data, we analyzed the variation patterns (stemflow amount, depth, rate, and funneling ratio) of maize stemflow during the growing season, and clarified its vertical distribution pattern. Meanwhile, effects of sprinkler irrigation and maize morphological parameters on stemflow were investigated. The results showed that stemflow increased gradually as maize plant grew. Specifically, stemflow was small at the pre-jointing stage and reached the maximum at the late filling stage. The upper canopy generated more stemflow than the lower canopy until the flare opening stage. After the tasseling stage, the middle canopy generated more stemflow than the other positions. Variation in canopy closure at different positions was the main factor contributing to the above difference. As sprinkler intensity increased, stemflow also increased. However, the effect of droplet size on stemflow was inconsistent. Specifically, when sprinkler intensity was less than or equal to 10 mm/h, stemflow was generated with increasing droplet size. In contrast, if sprinkler intensity was greater than or equal to 20 mm/h, stemflow tended to decreased with increasing droplet size. Compared with other morphological parameters, canopy closure significantly affected the generation of stemflow. Funneling ratio was not significantly affected by plant morphology. Based on the results of different sprinkler intensities, we developed stemflow depth versus canopy closure and stemflow rate versus canopy closure power function regression models with a high predictive accuracy. The research findings will contribute to the understanding of the processes of stemflow involving the hydro-geochemical cycle of agro-ecosystems and the implementation of cropland management practices.  相似文献   

15.
喷灌与地面灌溉冬小麦干物质积累、分配和运转的比较研究   总被引:15,自引:0,他引:15  
以中优9507为材料,采用大田试验的方法,研究了喷灌和地面灌溉条件下冬小麦干物质积累、分配和运转状况。试验结果表明:与对照地面灌溉相比,在冬小麦生长的中前期(分蘖期~拔节期),喷灌条件下冬小麦地上部干物质总量较小,但是在冬小麦生长的中后期(抽穗期~成熟期),喷灌有利于植株对干物质的积累,其干物质总量明显高于地面灌溉条件下;在抽穗前,喷灌和地面灌溉条件下各器官干物质的分配率差异不显著,在抽穗后的灌浆期,喷灌条件下叶片、籽粒中的干物质分配率提高,其茎鞘的干物质分配率则降低;喷灌条件下叶片、颖壳、茎鞘贮藏物质的转化率均低于地面灌溉,其抽穗后生产的干物质对籽粒的贡献率较地面灌溉显著提高;喷灌条件下冬小麦的结实率、千粒重、产量分别较地面灌溉提高了5.9%1、.23 g、491.4 kg/hm2,差异在处理间均显著;喷灌条件下冬小麦的耗水量小于地面灌溉,水分利用效率高于地面灌溉。  相似文献   

16.
[目的]比较常用新型除草剂防除直播晚稻抗药性稗草的效果.[方法]选择常用新型茎叶除草剂及组合用药,在播后苗前实施了封闭控草的直播晚稻田间稻苗3叶期,进行茎叶喷施防除抗药性稗草示范试验.[结果]参试药剂对稗草具有很高的株防效、鲜重防效,但药后田间残存稗草仍能对水稻造成危害:10%口恶唑酰草胺EC 100~130 mL/6...  相似文献   

17.
为解决微生物生防制剂在实际应用过程中防效不稳定的问题,本研究通过在不同微生物生防产品中添加有机物料,分析了添加有机物料对草莓灰霉病防治和土壤微生物数目的影响。本试验共设15个处理。微生物生防制剂(BCA)包括枯草芽胞杆菌Bacillus subtilis(Bs),木霉菌Trichoderma(Tr),EM菌(effective microorganisms,EM),半量枯草芽胞杆菌+木霉菌(1/2BT),以及无菌剂对照(CK);有机物料用量(米糠+豆粕粉,RB)设3个水平,分别为不添加,1/2RB(15 g/m2米糠+60 g/m2豆粕粉)和RB(30 g/m2米糠+120 g/m2豆粕粉)。移栽55 d后将各处理组分均匀撒施至根周,随后覆盖地膜并滴灌保湿。结果表明,木霉菌和EM菌能够有效降低灰霉病发病率,有机物添加量一致时,微生物生防制剂的防效规律为EM > Tr > Bs > 1/2BT。木霉菌和EM菌单剂在发病较轻的试验地1中防效为60.00%~68.00%,发病严重的试验地2中防效为16.39%~29.01%。各处理中EM+RB防效最高,最高可达90.00%。添加全量米糠和豆粕粉能够显著提高生防制剂的防效。生防制剂添加有机物料的防效规律为BCA+RB > BCA+1/2RB > BCA,Tr+RB防效比Tr单剂施用提高0.17~1.1倍,EM+RB防效比EM单剂提高0.32~1.84倍。同时土壤微生物的数目随有机物料的增加而增加,1/2RB和RB可使数目分别增长0.43~8.86倍和0.93~32.72倍。以上结果表明,实际生产中施用木霉菌或EM菌能够有效防治草莓灰霉病,添加足量的有机物料可以增加土壤微生物丰度从而提高防治效果。  相似文献   

18.
探究不同矿化度咸淡水混合喷灌对冬小麦、夏玉米生长及产量的影响,并通过监测土壤水盐分布状况来选择适宜矿化度的咸淡水灌溉方式。在河北低平原地区开展大田灌溉试验,研究了淡水畦灌、淡水喷灌、2 g·L-1和3 g·L-1咸水与淡水混合喷灌对小麦、玉米生长及土壤水盐运移的影响。结果表明:与淡水喷灌相比,连续两年灌溉后,小麦收获时2 g·L-1和3 g·L-1矿化度咸淡混合水喷灌处理的根层(0~40 cm)土体含盐量平均分别增加了17.8%和42.7%,0~100 cm土体含盐量平均分别增加了32.9%和74.3%,玉米收获时根层土体含盐量平均分别增加了40.3%和86.9%,0~100 cm土体含盐量平均分别增加了39.0%和88.9%,且3 g·L-1矿化度咸淡混合水喷灌处理的盐分累积已超出小麦和玉米生长的盐分阈值。2 g·L-1矿化度处理的冬小麦产量较淡水喷灌处理降低了9.8%~11.4%(差异不显著),但3 g·L-1矿化度处理比淡水喷灌处理的产量显著降低了25.0%~25.9%(P<0.05);2 g·L-1矿化度处理的夏玉米单株穗粒质量和产量较淡水喷灌处理分别降低了5.1%~10.4%和6.6%~10.5%(差异不显著),3 g·L-1矿化度比淡水喷灌处理的百粒重、单株穗粒质量和产量分别降低了18.6%~22.4%、18.2%~25.9%和14.7%~15.3%(P<0.05),3 g·L-1矿化度对冬小麦和夏玉米的产量构成因素影响显著。因此,咸淡混合水矿化度不大于2 g·L-1的喷灌模式用于该地区冬小麦-夏玉米田间灌溉是可行的。  相似文献   

19.
Field experiments were conducted during 2003 and 2004 at four locations in northern Greece to evaluate the effects of tillage implements and herbicide treatments on the weed control and yield of cotton grown under a mobile sprinkler or drip irrigation system. The tillage implements consisted of three seedbed preparation tillage implements: a field cultivator with a double rolling basket, a disk harrow or a rotary harrow. The herbicide treatments consisted of a broadcast preplant-incorporated (PPI) application of trifluralin or S-metolachlor followed by pre-emergence (PRE)-applied prometryn, a PRE 38 cm band application of S-metolachlor plus fluometuron or a broadcast PPI application of S-metolachlor followed by early postemergence-applied trifloxysulfuron-sodium. In most cases, the PPI applications followed by the PRE application of prometryn resulted in the greatest control of black nightshade ( Solanum nigrum L.), redroot pigweed ( Amaranthus retroflexus L.), and common lambsquarters ( Chenopodium album L.). The control of black nightshade and common lambsquarters was slightly reduced when the herbicides were incorporated by rotary harrow. The cotton yield was not affected in most cases by the tillage implements, while the drip irrigation system provided a greater or similar cotton yield as compared with the sprinklers. The PPI application of trifluralin followed by the PRE-applied prometryn in the cotton grown under drip irrigation provided the greatest lint yield in most cases. Therefore, a drip irrigation system and disk harrow or field cultivator implement could be used as the first choice of cotton growers in integrated crop management production systems.  相似文献   

20.
水分胁迫对覆膜滴灌棉花根系活力和叶片生理的影响   总被引:15,自引:0,他引:15  
采用田间试验法,分析不同程度水分胁迫条件下棉花花铃期根尖根系活力、叶片叶绿素、脯氨酸和丙二醛含量变化,并对叶片脯氨酸、丙二醛含量和根系活力与土壤含水率进行相关性分析。试验以60 cm土层田间持水量的105%、100%、95%、90%、85%、80%为灌溉上限,共设6个灌水梯度,即5 400、4 950、4 500、3 750、2 850 m3/hm2和2 550 m3/hm2。结果表明:单株叶片干重及叶面积、地上部干生物量、株高、叶绿素含量随灌水量的减少而降低,根冠比随灌水量的减少而增加。脯氨酸及丙二醛含量随灌水量的降低而升高,且与土壤含水率呈负相关关系,相关系数(r)分别为-0.704和-0.667;根系活力随灌水量的降低而降低,与土壤含水率呈正相关关系,其相关系数为0.67。当灌水上限为95%,即灌水量为4 500 m3/hm2时,作物表现出轻微的水分胁迫,随灌溉量的继续降低,胁迫加重。植物体内脯氨酸、丙二醛含量及根系活力与土壤含水率的相关关系在一定程度上可以用来表征棉花受干旱程度,可为棉花的灌溉管理提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号