首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To determine hemodynamic effects of 3 concentrations of sevoflurane in cats. ANIMALS: 6 cats. PROCEDURE: Cats were anesthetized with sevoflurane in oxygen. After instruments were inserted, end-tidal sevoflurane concentration was set at 1.25, 1.5, or 1.75 times the individual minimum alveolar concentration (MAC), which was determined in another study. Twenty-five minutes were allowed after each change of concentration. Heart rate; systemic and pulmonary arterial pressures; central venous pressure; pulmonary artery occlusion pressure; cardiac output; body temperature; arterial and mixed-venous pH, PCO2, PO2, oxygen saturation, and hemoglobin concentrations; PCV; and total protein and lactate concentrations were measured for each sevoflurane concentration before and during noxious stimulation. Arterial and mixed-venous bicarbonate concentrations, cardiac index, stroke index, rate-pressure product, systemic and pulmonary vascular resistance indices, left and right ventricular stroke work indices, PaO2, mixed-venous partial pressure of oxygen (PVO2), oxygen delivery, oxygen consumption, oxygen-extraction ratio, alveolar-to-arterial oxygen difference, and venous admixture were calculated. Spontaneous and mechanical ventilations were studied during separate experiments. RESULTS: Mode of ventilation did not significantly influence any of the variables examined. Therefore, data from both ventilation modes were pooled for analysis. Mean arterial pressure, cardiac index, stroke index, rate-pressure product, left ventricular stroke work index, arterial and mixed-venous pH, PaO2, and oxygen delivery decreased, whereas PaCO2, PVO2, and mixed-venous partial pressure of CO2 increased significantly with increasing doses of sevoflurane. Noxious stimulation caused a significant increase in most cardiovascular variables. CONCLUSIONS AND CLINICAL RELEVANCE: Sevoflurane induces dose-dependent cardiovascular depression in cats that is mainly attributable to myocardial depression.  相似文献   

2.
Objective The purpose of this study was to determine the cardiovascular effects of sevoflurane in calves. Study design Prospective experimental study. Animals Six, healthy, 8–12‐week‐old Holstein calves weighing 80 ± 4.5 (mean ± SEM) kg were studied. Methods Anesthesia was induced by face‐mask administration of 7% sevoflurane in O2. Calves tracheae were intubated, placed in right lateral recumbency, and maintained with 3.7% end‐tidal concentration sevoflurane for 30 minutes to allow catheterization of the auricular artery and placement of a Swan‐Ganz thermodilution catheter into the pulmonary artery. After instrumentation, administration of sevoflurane was temporarily discontinued until mean arterial pressure was > 100 mm Hg. Baseline values were recorded and the vaporizer output increased to administer 3.7% end‐tidal sevoflurane concentration. Ventilation was controlled to maintain normocapnia. The following were recorded at 5, 10, 15, 30 and 45 minutes after collection of baseline data and expressed as the mean value (± SEM): direct systolic, diastolic, and mean arterial blood pressures; cardiac output; mean pulmonary arterial pressure; pulmonary arterial occlusion pressure, heart rate; and pulmonary arterial temperature. Cardiac index and systemic and pulmonary vascular resistance values were calculated using standard formulae. Arterial blood gases were analyzed at baseline, and at 15 and 45 minutes. Differences from baseline values were determined using one‐way analysis of variance for repeated measures with post‐hoc differences between mean values identified using Dunnet's test (p < 0.05). Results Mean time from beginning sevoflurane administration to intubation of the trachea was 224 ± 9 seconds. The mean end‐tidal sevoflurane concentration at baseline was 0.7 (± 0.11)%. Sevoflurane anesthesia was associated with decreased arterial blood pressure at all sampling times. Mean arterial blood pressure decreased from a baseline value of 112 ± 7 mm Hg to a minimum value of 88 ± 4 mm Hg at 5 minutes. Compared with baseline, arterial pH was decreased at 15 minutes. Pulmonary arterial blood temperature was decreased at 15, 30 and 45 minutes. Arterial CO2 tension increased from a baseline value of 43 ± 3 to 54 ± 4 mm Hg (5.7 ± 0.4 to 7.2 ± 0.3 kPa) at 15 minutes. Mean pulmonary arterial pressure was increased at 30 and 45 minutes. Pulmonary arterial occlusion pressure increased from a baseline value of 18 ± 2 to 23 ± 2 mm Hg at 45 minutes. There were no significant changes in other measured variables. All calves recovered from anesthesia uneventfully. Conclusion We conclude that sevoflurane for induction and maintenance of anesthesia was effective and reliable in these calves and that neither hypotension nor decreased cardiac output was a clinical concern. Clinical relevance Use of sevoflurane for mask induction and maintenance of anesthesia in young calves is a suitable alternative to injectable and other inhalant anesthetics.  相似文献   

3.
Sevoflurane has recently been introduced in feline anesthesia. However, its cardiovascular effects have not, to our knowledge, been reported in this species. Six healthy cats, aged 1.81 ± 0.31 years (mean ± SEM) and weighing 3.47 ± 0.11 kg, were studied. Anesthesia was induced and maintained with sevoflurane in oxygen. Body temperature was maintained between 38.5 and 39.55 °C. After instrumentation, end‐tidal sevoflurane concentration was randomly set at 1.25, 1.5, and 1.75 times the individual minimum alveolar concentration (MAC), determined in a previous study, according to a Latin Square Design. Thirty minutes of stabilization was allowed after each change of concentration. ECG and heart rate, systemic and pulmonary arterial pressures, central venous pressure (CVP), and core body temperature were continuously monitored and recorded. Inspired and end‐tidal oxygen, carbon dioxide, and sevoflurane concentrations were measured using a Raman spectrometer, calibrated every 80 minutes with three calibration gases of known sevoflurane concentration (1, 2, and 5%). Moreover, at selected times, pulmonary artery occlusion pressure and cardiac output (thermodilution) were measured, and arterial and mixed venous blood samples were collected for pH and blood gas analysis, hemoglobin concentration, hemoglobin oxygen saturation, packed cell volume (PCV) and total protein determination, and lactate concentration measurement. Cardiac index (CI), stroke index (SI), systemic and pulmonary vascular resistance indices, rate‐pressure product, left and right ventricular stroke work indices (LVSWI and RVSWI, respectively), arterial and mixed venous oxygen contents, oxygen delivery, oxygen consumption, and oxygen utilization ratio were calculated. Data were analyzed by a Repeated Measure Latin Square Design followed by a Tukey's test for 2 × 2 comparisons. Arterial pH significantly decreased from 7.40 ± 0.05 to 7.29 ± 0.07 with the administration of increasing concentrations of sevoflurane. Similarly, LVSWI decreased from 3.72 ± 0.60 to 2.60 ± 0.46 g m?2. Mean arterial pressure, PaO2, mixed venous pH, CI, SI, and oxygen delivery tended to decrease dose‐dependently, whereas CVP, PaCO2, Pv CO2, PCV, and arterial and mixed venous hemoglobin concentrations tended to increase dose‐dependently with the administration of sevoflurane. However, these trends did not reach statistical significance, possibly because of the limited number of animals studied. Sevoflurane seemed to induce dose‐dependent cardiovascular depression in cats.  相似文献   

4.
Objective To compare isoflurane and sevoflurane in lambs undergoing prolonged anaesthesia for spinal surgery. Study design Prospective randomised clinical study. Animals Eighteen Scottish blackface lambs 3–6 weeks of age and weighing 10–17 kg. Methods After intramuscular medetomidine, anaesthesia was induced and maintained with either isoflurane (group I) or sevoflurane (group S) delivered in oxygen. Meloxicam, morphine, a constant rate infusion of ketamine and atracurium were given intravenously (IV) during surgery. Lungs were ventilated to maintain normocapnia. with peak inspiratory pressures of 20–25 cmH2O. Ephedrine or dextran 40% was administered when mean arterial pressure (MAP) was <55 mmHg. Intrathecal morphine, and IV meloxicam and edrophonium were injected before recovery. Time to loss of palpebral reflex (TLPR) upon induction, cardiorespiratory variables, time at first swallowing and other movement, tracheal extubation, vocalisation, spontaneous head lifting (>1 minute), reunion with the ewe, and the number of MAP treatments were recorded. Statistical analysis utilised anova , Mann–Whitney, t‐test or Pearson’s correlation test as relevant. p < 0.05 was considered significant. Results End‐tidal carbon dioxide (mean ± SD) was significantly lower in group S (5.5 ± 0.6 kPa) than in group I (5.8 ± 0.5 kPa) while MAP (70 ± 11 mmHg) and diastolic arterial blood pressure (60 ± 11 mmHg) were higher in group S than in group I (65 ± 12 and 54 ± 11 mmHg, respectively). No differences were found with TLPR and MAP treatments. Time (median, range) from end of anaesthesia to ewe‐lamb reunion was briefer (p = 0.018) in group S (48, 20–63 minutes). Conclusion Isoflurane and sevoflurane are both suitable for maintaining general anaesthesia in lambs although sevoflurane, as used in this study, allows a more rapid reunion with the ewe. Clinical relevance The principal advantage of sevoflurane over isoflurane during prolonged anaesthesia in lambs is a more rapid recovery.  相似文献   

5.
6.
OBJECTIVE: To evaluate effects of infusion of guaifenesin, ketamine, and medetomidine in combination with inhalation of sevoflurane versus inhalation of sevoflurane alone for anesthesia of horses. DESIGN: Randomized clinical trial. ANIMALS: 40 horses. PROCEDURE: Horses were premedicated with xylazine and anesthetized with diazepam and ketamine. Anesthesia was maintained by infusion of guaifenesin, ketamine, and medetomidine and inhalation of sevoflurane (20 horses) or by inhalation of sevoflurane (20 horses). A surgical plane of anesthesia was maintained by controlling the inhaled concentration of sevoflurane. Sodium pentothal was administered as necessary to prevent movement in response to surgical stimulation. Hypotension was treated with dobutamine; hypoxemia and hypercarbia were treated with intermittent positive-pressure ventilation. The quality of anesthetic induction, maintenance, and recovery and the quality of the transition to inhalation anesthesia were scored. RESULTS: The delivered concentration of sevoflurane (ie, the vaporizer dial setting) was significantly lower and the quality of transition to inhalation anesthesia and of anesthetic maintenance were significantly better in horses that received the guaifenesin-ketamine-medetomidine infusion than in horses that did not. Five horses, all of which received sevoflurane alone, required administration of pentothal. Recovery time and quality of recovery were not significantly different between groups, but horses that received the guaifenesin-ketamine-medetomidine infusion required fewer attempts to stand. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in horses, the combination of a guaifenesin-ketamine-medetomidine infusion and inhalation of sevoflurane resulted in better transition and maintenance phases while improving cardiovascular function and reducing the number of attempts needed to stand after the completion of anesthesia, compared with inhalation of sevoflurane.  相似文献   

7.
Cardiovascular effects of tramadol were evaluated in dogs anesthetized with sevoflurane. Six beagle dogs were anesthetized twice at 7 days interval. The minimum alveolar concentration (MAC) of sevoflurane was earlier determined in each dog. The dogs were then anesthetized with sevoflurane at 1.3 times of predetermined individual MAC and cardiovascular parameters were evaluated before (baseline) and after an intravenous injection of tramadol (4 mg/kg). The administration of tramadol produced a transient and mild increase in arterial blood pressure (ABP) (P=0.004) with prolonged increase in systemic vascular resistance (SVR) (P<0.0001). Compared with baseline value, mean ABP increased significantly at 5 min (119% of baseline value, P=0.003), 10 min (113%, P=0.027), and 15 min (111%, P=0.022). SVR also increased significantly at 5 min (128%, P<0.0001), 10 min (121%, P=0.026), 30 min (114%, P=0.025), 45 min (113%, P=0.025) and 60 min (112%, P=0.048). Plasma concentrations of tramadol were weakly correlated with the percentage changes in mean ABP (r=0.642, P<0.0001) and SVR (r=0.646, P<0.0001). There was no significant change in heart rate, cardiac output, cardiac index, stroke volume, pulmonary arterial pressure, right atrial pressure and pulmonary capillary wedge pressure. In conclusion, the administration of tramadol produces a prolonged peripheral vascular constriction in dogs anesthetized with sevoflurane, which is accompanied with a transient and mild increase in arterial blood pressure. It also indicated that the degree of vasoconstriction might depend on the plasma concentration of tramadol.  相似文献   

8.
OBJECTIVE: To compare the anesthetic index of sevoflurane with that of isoflurane in unpremedicated dogs. DESIGN: Randomized complete-block crossover design. ANIMALS: 8 healthy adult dogs. PROCEDURE: Anesthesia was induced by administering sevoflurane or isoflurane through a face mask. Time to intubation was recorded. After induction of anesthesia, minimal alveolar concentration (MAC) was determined with a tail clamp method while dogs were mechanically ventilated. Apneic concentration was determined while dogs were breathing spontaneously by increasing the anesthetic concentration until dogs became apneic. Anesthetic index was calculated as apneic concentration divided by MAC. RESULTS: Anesthetic index of sevoflurane (mean +/- SEM, 3.45 +/- 0.22) was significantly higher than that of isoflurane (2.61 +/- 0.14). No clinically important differences in heart rate; systolic, mean, and diastolic blood pressures; oxygen saturation; and respiratory rate were detected when dogs were anesthetized with sevoflurane versus isoflurane. There was a significant linear trend toward lower values for end-tidal partial pressure of carbon dioxide during anesthesia with sevoflurane, compared with isoflurane, at increasing equipotent anesthetic doses. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that sevoflurane has a higher anesthetic index in dogs than isoflurane. Sevoflurane and isoflurane caused similar dose-related cardiovascular depression, but although both agents caused dose-related respiratory depression, sevoflurane caused less respiratory depression at higher equipotent anesthetic doses.  相似文献   

9.
10.
Pigs are important animal models in veterinary and medical research and have been widely used in experiments requiring surgical anesthesia. Sevoflurane is an inhalant anesthetic with unique properties that make it an ideal anesthetic for mask induction and anesthesia maintenance. However, there are relatively few studies reporting the anesthetic requirements for sevoflurane in juvenile swine, an age group that is commonly used in research experiments. Therefore the objective of this study was to determine the Minimum Alveolar Concentration (MAC) for sevoflurane in juvenile swine. Sevoflurane anesthesia was induced in six Yorkshire-cross pigs of approximately 9 weeks-of-age and MAC for sevoflurane was determined. The sevoflurane MAC value was determined to be 3.5+/-0.1% which is notably higher than values reported in the literature for pigs. This discrepancy in MAC values may represent changes in anesthetic requirements between different age groups of pigs and differences in the type of stimulus used to determine MAC.  相似文献   

11.
OBJECTIVE: To evaluate sevoflurane as an inhalation anesthetic for thoracotomy in horses. ANIMALS: 18 horses between 2 and 15 years old. PROCEDURE: 4 horses were used to develop surgical techniques and were euthanatized at the end of the procedure. The remaining 14 horses were selected, because they had an episode of bleeding from their lungs during strenuous exercise. General anesthesia was induced with xylazine (1.0 mg/kg of body weight, IV) followed by ketamine (2.0 mg/kg, IV). Anesthesia was maintained with sevoflurane in oxygen delivered via a circle anesthetic breathing circuit. Ventilation was controlled to maintain PaCO2 at approximately 45 mm Hg. Neuromuscular blocking drugs (succinylcholine or atracurium) were administered to eliminate spontaneous breathing efforts and to facilitate surgery. Cardiovascular performance was monitored and supported as indicated. RESULTS: 2 of the 14 horses not euthanatized died as a result of ventricular fibrillation. Mean (+/- SD) duration of anesthesia was 304.9 +/- 64.1 minutes for horses that survived and 216.7 +/- 85.5 minutes for horses that were euthanatized or died. Our subjective opinion was that sevoflurane afforded good control of anesthetic depth during induction, maintenance, and recovery. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of sevoflurane together with neuromuscular blocking drugs provides stable and easily controllable anesthetic management of horses for elective thoracotomy and cardiac manipulation.  相似文献   

12.
ObjectiveTo determine the magnitude and duration of sevoflurane minimum alveolar concentration (MAC) reduction following a single intravenous (IV) dose of methadone in cats.Study designProspective experimental study.AnimalsEight (four females and four males) healthy mixed-breed adult (1–2 years) cats weighing 5.82 ± 0.42 kg.MethodsAnesthesia was induced and maintained with sevoflurane. Intravenous catheters facilitated administration of methadone and lactated Ringer’s solution. After baseline MAC determination in triplicate using a tail clamp technique, 0.3 mg kg?1 of methadone was administered IV. End-tidal sevoflurane concentration (e′SEVO) was reduced and MAC was redetermined. In an effort to determine the duration of MAC reduction, measurements were repeated in a stepwise manner until MAC values returned to baseline. After the last stimulation, the e′SEVO was increased to 1.2 individual MAC for 15 minutes, then sevoflurane was discontinued and cats were allowed to recover from anesthesia.ResultsBaseline sevoflurane MAC was 3.18 ± 0.06%. When compared with baseline the sevoflurane MAC after methadone administration was significantly reduced by 25, 15 and 7% at 26, 76 and 122 minutes, respectively. The final MAC value (3.09 ± 0.07%) determined 156 minutes after methadone administration was not significantly different from baseline.Conclusions and clinical relevanceIntravenous methadone (0.3 mg kg?1) significantly decreased MAC of sevoflurane in cats but the effect was short-lived.  相似文献   

13.
OBJECTIVES: To compare isoflurane (ISO) and sevoflurane (SEVO) short-term anesthesia in piglets during castration. STUDY DESIGN: Prospective, randomized study. ANIMALS: A total of 114 male piglets aged 6-10 days, body weight 1.3-5.0 kg. METHODS: Piglets were randomly selected from multiple litters and randomly assigned to being anesthetized with ISO or SEVO prior to castration. To calculate appropriate doses for induction and maintenance of anesthesia, a square root of time model was used, with calculations based on metabolic size and attainment of 1.3x minimum alveolar concentration. The equipotent target alveolar concentration of ISO was 1.82% and for SEVO 4.03%. After doses were calculated, a table listing piglet weights and agent requirements was produced. Anesthetics were delivered via liquid anesthetic injection into a previously developed rebreathing inhaler that was filled with oxygen prior to use. Piglets were anesthetized, castrated and allowed to recover prior to return to the sow. Times for induction, recovery and total time to standing were recorded, and end-tidal carbon dioxide (Pe'CO2) tensions were measured by capnography immediately after mask removal. Each response variable was analyzed in sas using the Proc Mixed procedure, with piglet weight and days of age as covariates. Castration problems and mortality were assessed relative to unanesthetized littermates. RESULTS: There were no statistically significant differences in age, weight or total anesthetic time between the anesthetics. Induction time was shorter, recovery time longer, and Pe'CO2 lower with ISO. No morbidity or mortality was associated with either group. CONCLUSION AND CLINICAL RELEVANCE: Isoflurane and SEVO, delivered in a novel inhaler, provided economical, safe, rapid anesthetic induction and maintenance. Optimal conditions were provided for castration and recoveries were brief and smooth. Statistically significant differences in times would be of minor clinical importance. The cost of anesthesia was much less with ISO than with SEVO.  相似文献   

14.
Anesthetic respiratory effects of sevoflurane (SEVO) were compared with isoflurane (ISO) in unpremedicated dogs. Minimum alveolar concentration (MAC), apneic concentration (AC), and anesthetic index (AI) of SEVO and ISO were determined in eight 1‐year‐old healthy dogs, weighing 19 ± 3 kg (mean ± SEM) in a randomized complete block multiple cross‐over design. Dogs were mask‐induced with either SEVO or ISO in 100% oxygen. Following endotracheal intubation, dogs were instrumented, mechanically ventilated, and MAC was determined using a tail‐clamp method. Next, spontaneous ventilation was re‐established, and anesthetic concentration was increased to determine the AC. Throughout the anesthetic event, heart rate (HR), systolic blood pressure (SAP), mean blood pressure (MAP), diastolic blood pressure (DAP), respiratory rate (RR), end‐tidal carbon dioxide (Pe ′CO2), and oxyhemoglobin saturation (SpO2) were recorded at 3‐minute intervals. Following AC determination, AI was calculated as AC/MAC, and dogs were allowed to recover. Each dog was anesthetized four times (twice with ISO and SEVO each) at 1‐week intervals. All data were analyzed using the two‐way anova . Multiple comparisons were performed between ISO and SEVO treatments. Statistical significance was set at p < 0.05. Significant differences were noted between agents for MAC (SEVO, 2.13 ± 0.10%; ISO, 1.38 ± 0.14%; p < 0.0001), AC (SEVO, 7.34 ± 0.13%; ISO, 3.60 ± 0.13%; p < 0.0001), and AI (SEVO, 3.46 ± 0.22; ISO, 2.63 ± 0.14; p = 0.0002). Physiologic parameters were compared between SEVO and ISO at 1MAC, 2MAC, 3MAC, and AC. No differences were noted between SEVO and ISO treatments for cardiovascular parameters (HR, SAP, MAP, DAP). Significant differences were noted, favoring SEVO, for all respiratory parameters (RR, Pe ′CO2, SpO2) at increasing MAC multiples. Additionally, regression analysis was conducted for physiologic variable data points. Analysis of Pe ′CO2 data points demonstrated a significant slope difference of ?6.47 ± 1.02 (BSEVO ? BISO; p < 0.0001; r2 = 0.6042) favoring SEVO. While expected dose‐related ventilatory depression was noted for both agents, all the respiratory parameters for SEVO demonstrated less respiratory depression than ISO at equipotent doses. These results indicated that SEVO caused less dose‐dependent ventilatory depression than ISO, having a significantly higher AI and causing less detrimental change in pulmonary parameters at increasing levels of MAC.  相似文献   

15.
ObjectiveTo investigate the sevoflurane concentrations produced within the Stephens anaesthetic machine circuit (vaporizer in-circle system) at different fresh gas flow rates (FGFRs), temperatures, vaporizer settings and vaporizer sleeve positions when used to anaesthetize dogs of different body sizes.Study designExperimental non-blinded studies.AnimalsEighteen mixed breed dogs, weights 4–39 kg.MethodsAnaesthetic induction with propofol was followed by maintenance with sevoflurane in oxygen via the Stephens anaesthetic machine. In study 1, the vaporizer setting, temperature and circuit FGFRs were altered with the vaporizer sleeve down (n = 3), or in separate experiments, up (n = 3). Delivered (Fi’SEVO) and expired sevoflurane concentrations were recorded. Study 2 determined the vaporizer settings (sleeve up) required to achieve predetermined multiples of minimal alveolar concentration (MAC) of Fi’SEVO when sevoflurane was delivered to dogs (n = 12) of different bodyweights and at different FGFRs.ResultsDelivered concentrations of sevoflurane were sufficient to maintain anaesthesia in all dogs, regardless of bodyweight, FGFR, vaporizer temperature and sleeve position. Fi’SEVO increased with increasing temperature, when the vaporizer sleeve was down, when vaporizer setting was increased and when FGFR was decreased. As the FGFR increased or the dog’s bodyweight decreased, higher vaporizer settings were required to produce the same Fi’SEVO. The median Stephens vaporizer settings to achieve an Fi’SEVO of 1.3 MAC ranged from 4.3 to 5.0 for a small dog (1–10 kg), 2.5 to 5.6 for a medium dog (15–25 kg) and 2.5 to 3.5 for a large dog (30–40 kg), depending on the FGFR.Conclusion and clinical relevanceThe Stephens anaesthetic machine can deliver to dogs, weighing 4 kg and above, concentrations of sevoflurane sufficient or in excess of that required to maintain anaesthesia, at temperatures from 10 to 35 °C, FGFRs of 1 to 5 times the patient’s estimated metabolic oxygen requirement and at any vaporizer sleeve position.  相似文献   

16.
17.
OBJECTIVE: To characterize halothane and sevoflurane anesthesia in spontaneously breathing rats. ANIMALS: 16 healthy male Sprague-Dawley rats. PROCEDURE: 8 rats were anesthetized with halothane and 8 with sevoflurane. Minimum alveolar concentration (MAC) was determined. Variables were recorded at anesthetic concentrations of 0.8, 1.0, 1.25, and 1.5 times the MAC of halothane and 1.0, 1.25, 1.5, and 1.75 times the MAC of sevoflurane. RESULTS: Mean (+/- SEM) MAC for halothane was 1.02 +/- 0.02% and for sevoflurane was 2.99 +/- 0.19%. As sevoflurane dose increased from 1.0 to 1.75 MAC, mean arterial pressure (MAP) decreased from 103.1 +/- 5.3 to 67.9 +/- 4.6 mm Hg, and PaCO2 increased from 58.8 +/- 3.1 to 92.2 +/- 9.2 mm Hg. As halothane dose increased from 0.8 to 1.5 MAC, MAP decreased from 99 +/- 6.2 to 69.8 +/- 4.5 mm Hg, and PaCO2 increased from 59.1 +/- 2.1 to 75.9 +/- 5.2 mm Hg. Respiratory rate decreased in a dose-dependent fashion from 88.5 +/- 4.5 to 58.5 +/- 2.7 breaths/min during halothane anesthesia and from 42.3 +/- 1.8 to 30.5 +/- 4.5 breaths/min during sevoflurane anesthesia. Both groups of rats had an increase in eyelid and pupillary aperture with an increase in anesthetic dose. CONCLUSIONS AND CLINICAL RELEVANCE: An increase in PaCO2 and a decrease in MAP are clinical indicators of an increasing halothane and sevoflurane dose in unstimulated spontaneously breathing rats. Increases in eyelid aperture and pupil diameter are reliable signs of increasing depth of halothane and sevoflurane anesthesia. Decreasing respiratory rate is a clinical indicator of an increasing dose of halothane.  相似文献   

18.
Objective To quantify the vapour output of the Komesaroff machine when using sevoflurane and to determine its performance for inducing and maintaining sevoflurane anaesthesia in dogs. Study design Prospective experimental study. Animals Six clinically normal beagles, aged 3–6 years and weighing 20 ± 1.65 kg (mean ± SEM). Methods The first study was performed using five Komesaroff vaporizers to measure the sevoflurane concentration delivered at each tap setting (I to IV) at 5, 10, 15, 20, 25, 30 and 35 minutes. For this study a ventilator was connected to the Komesaroff machine and set to deliver a tidal volume of 250 mL at 10 cycles minute?1; oxygen flow was 100 mL minute?1. A three‐litre reservoir bag was attached to the Y‐piece connector to act as a lung model. In the second study anaesthesia was induced in dogs with sevoflurane delivered by face‐mask mask and carried in 2 L minute?1 100% oxygen and with the vaporizer set at the fully open position. The quality and speed of induction were recorded. After orotracheal intubation, anaesthesia was maintained for 60 minutes with sevoflurane using an oxygen flow of 100 mL minute?1. The dogs were allowed to breathe spontaneously. The respiratory rate (RR), heart rate (HR), oesophageal temperature, systolic (SAP) mean (MAP) and diastolic (DAP) arterial pressure, end‐tidal CO2 concentration (Fe ′CO2) end‐tidal (Fe ′SEVO) and peak‐inspired (Fi SEVO) percentages of sevoflurane, and vaporizer tap setting were recorded every 5 minutes during anaesthesia. Results The delivery of sevoflurane was constant for each vaporizer setting. The mean output of sevoflurane was 0.44 ± 0.01% for setting I, 2.59 ± 0.18% for setting II, 3.28 ± 0.22% for setting III and 3.1 ± 0.5% for setting IV. In the second study, the mean induction time was 7.72 ± 0.60 minutes and the quality of the induction was good in all dogs. The mean vaporizer tap setting for the maintenance of anaesthesia was 3.48 ± 0.12 and the mean values for Fe ′SEVO and Fi SEVO were 2.42 ± 0.04% and 2.87 ± 0.06%, respectively. The pedal withdrawal reflex persisted throughout anaesthesia. Conclusions It proved impossible to produce surgical anaesthesia with sevoflurane delivered by the Komesaroff machine despite the highest possible sevoflurane concentration being delivered. Clinical relevance Sevoflurane delivered from the Komesaroff machine cannot be relied upon to maintain surgical anaesthesia in spontaneously breathing dogs.  相似文献   

19.
20.
ObjectiveTo determine the minimum alveolar concentration (MAC) of sevoflurane in Holstein steers using electric stimulation.Study designProspective experimental study.AnimalsA total of 15 Holstein steers aged 7.3 ± 1.2 months and weighing 121 ± 25 kg.MethodsAnimals were anesthetized with sevoflurane at 8% in oxygen at 5 L minute–1 via facemask and were intubated with an orotracheal tube of a compatible size. After 15 minutes of stabilization of the initial expired concentration of sevoflurane (Fe′Sevo) at 2.6%, electrical stimulation on the thoracic limb was initiated with a sequence of 2 × 10 ms followed by 2 × 3 second electrical currents of 50 V and 50 Hz, 5 seconds apart. Following each stimulus with a negative response, the Fe′Sevo was decreased by 0.2% and a 15 minute interval was awaited before the next stimulus. The procedure was repeated until the first Fe′Sevo value with a positive motor response was obtained. The Fe′Sevo was then increased by 0.1%, followed by a new stimulus, until a negative response was obtained. The value of MAC was calculated as the arithmetic mean between the lowest Fe′Sevo associated with a negative motor response and the highest Fe′Sevo associated with a positive response.ResultsThe mean MAC for the 15 steers was 2.0 ± 0.3%, which corresponds to 2.1 ± 0.3% at sea level.ConclusionsBased on the proposed methodology, the MAC of sevoflurane for healthy Holstein steers is 2.1 ± 0.3% at sea level.Clinical relevanceThis Fe′Sevo value can be used to guide depth of anesthesia in steers weighing approximately 120 kg in clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号