首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leaf rust resistance gene Lr19, transferred from Agropyron elongatum into wheat (Triticum aestivum L.) imparts resistance to all pathotypes of leaf rust (Puccinia recondita f.sp. tritici) in South‐east Asia. A segregating F2 population from a cross between the leaf rust resistant parent ‘HW 2046’ carrying Lr19 and a susceptible parent ‘Agra Local’ was screened in the phytotron against a virulent pathotype 77‐5 of leaf rust with the objective of identifying the molecular markers linked to Lr19. The gene was first tagged with a randomly amplified polymorphic DNA (RAPD) marker S73728. The RAPD marker linked to the gene Lr19 which mapped at 6.4 ± 0.035 cM distance, was converted to a sequence characterized amplified region (SCAR) marker. The SCAR marker (SCS73719) was specific to Lr19 and was not amplified in the near‐isogenic lines (NILs) carrying other equally effective alien genes Lr9, Lr28 and Lr32 enabling breeders to pyramid Lr19 with these genes.  相似文献   

2.
Summary An Agropyron elongatum-derived leaf rust resistance gene Lr24 located on chromosome 3DL of wheat was tagged with six random amplified polymorphic DNA (RAPD) markers which co-segregated with the gene. The markers were identified in homozygous resistant F2 plants taken from a population segregating for leaf rust resistance generated from a cross between two near-isogenic lines (NILs) differing only for Lr24. Phenotyping was done by inoculating the plants with pathotype 77-5 of Puccinia triticina. To enable gene-specific selection, three RAPD markers (S1302609, S1326615 and OPAB-1388) were successfully converted to polymorphic sequence characterized amplified region (SCAR) markers, amplifying only the critical DNA fragments co-segregating with Lr24. The SCAR markers were validated for specificity to the gene Lr24 in wheat NILs possessing Lr24 in 10 additional genetic backgrounds including the Thatcher NIL, but not to 43 Thatcher NILs possessing designated leaf rust resistance genes other than Lr24. This indicated the potential usefulness of these SCAR markers in marker assisted selection (MAS) and for pyramiding leaf rust resistance genes in wheat.  相似文献   

3.
小麦品系5R625苗期和田间均对小麦叶锈病有良好抗性,但其所携带的抗病基因还不清楚。利用36个携带已知抗叶锈病基因的对照品系和15个中国小麦叶锈菌小种对5R625携带的抗病基因进行了苗期人工接种鉴定和基因推导,结果 5R625对这15个叶锈菌生理小种的侵染型与Lr9、Lr19、Lr24、Lr28、Lr39、Lr47、Lr51、Lr53相同。利用5R625和感病品种郑州5389的杂交后代F1、F2和F2:3群体对5R625的抗病性进行了遗传分析,苗期和成株期的分析结果均表明5R625对小麦叶锈菌的抗性由1个显性基因控制。进一步利用F2:3家系和分子标记方法将该基因定位在3DL染色体上。与5R625携带的抗病基因连锁的5个分子标记中,STS标记24-16和SCAR标记OP-J09此前已经被证明与已知抗叶锈病基因Lr24共分离,因此,推测5R625携带的抗病基因与Lr24可能为同一基因。  相似文献   

4.
Groundnut rust (Puccinia arachidis Speg.) is an important air borne pathogen, which causes substantial losses in groundnut yield and quality. Although large numbers of accessions were identified as rust resistant in wild, interspecific derivative and cultivated groundnut species, transfer of resistance to well-adapted cultivars is limited due to linkage drag, which worsens yield potential and market acceptance. A F2 mapping population comprising 117 individuals was developed from a cross between the rust resistant parent VG 9514 and rust susceptible parent TAG 24. Rust resistance was governed by single dominant gene in this cross. We identified 11 (out of 160) RAPD primers that exhibited polymorphism between these two parents. Using a modified bulk segregant analysis, primer J7 (5′CCTCTCGACA3′) produced a single coupling phase marker (J71350) and a repulsion phase marker (J71300) linked to rust resistance. Screening of the entire F2 population using primer J7 revealed that the coupling phase marker J71350 was linked with the rust resistance gene at a distance of 18.5 cM. On the other hand, the repulsion phase marker J71300 was completely linked with rust resistance. Additionally, both J71300 (P = 0.00075) and J71350 (P < 0.00001) were significantly associated with the rust resistance. Marker J71300 identified all homozygous rust resistant genotypes in the F2 population and was present in all the eight susceptible genotypes tested for validation. Thus, J71300 should be applicable for marker-assisted selection (MAS) in the groundnut rust resistance breeding programme in India. To the best of our knowledge this is the first report on the identification of RAPD markers linked to rust resistance in groundnut.  相似文献   

5.
中国小麦LB0288中抗叶锈病基因的鉴定   总被引:2,自引:0,他引:2  
明确中国小麦LB0288中所含的抗叶锈病基因,找到与其紧密连锁的DNA分子标记。将小麦LB0288和感病小麦品种Thatcher杂交,获得F1、F2代群体,用叶锈菌小FHTT分别对双亲及其杂交后代进行叶锈鉴定并进行标记分析。抗性鉴定结果表明F2代群体时呈现一对显性基因的抗感分离比例,经过亲本和抗感池间标记筛选以及F2代群体的标记检测,位于5DL的SSR标记barc144与抗病基因连锁,遗传距离为5.3 cM,同时Lr1的STS标记与之共分离,根据该基因的抗性特点和染色体位置推断为Lr1。此实验通过抗性鉴定、遗传分析和分子标记等手段确定LB0288中含有小麦抗叶锈病基因Lr1。  相似文献   

6.
RAPD and SCAR markers for resistance to acochyta blight in lentil   总被引:3,自引:0,他引:3  
Resistance to ascochyta blight of lentil (Lens culinaris Medikus),caused by the fungus Ascochyta lentis, is determined by a single recessive gene, ral 2, in the lentil cultivar Indian head. Sixty F2 individuals from a cross between Eston (susceptible) and Indian head (resistant) lentil were analyzed for the presence of random amplified polymorphic DNA (RAPD) markers linked to the ral 2gene, using bulked segregant analysis (BSA). Out of 800 decanucleotide primers screened, two produced polymorphic markers that co-segregated with the resistance locus. These two RAPD markers, UBC2271290and OPD-10870, flanked and were linked in repulsion phase to the gene ral 2 at 12 cm and 16 cm, respectively. The RAPD fragments were converted to SCAR markers. The SCAR marker developed from UBC2271290 could not detect any polymorphism between the two parents or in the F2. The SCAR marker developed from OPD-10870 retained its polymorphism. The polymorphic RAPD marker UBC2271290 and the SCAR marker developed from OPD-10870 can be used together in a marker assisted selection program for ascochyta blight resistance in lentil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Black rot caused by Xanthomonas campestris pv. campestris (Xcc) (Pam.) is the most devastating disease of cauliflower (Brassica oleracea var. botrytis L.; 2n = 2x = 18), taking a heavy toll of the crop. In this study, a random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) derived sequence characterized amplified region (SCAR) markers linked to the black rot resistance locus Xca1bo were developed and evaluated as a screening tool for resistance. The RAPD marker OPO-04833 and ISSR marker ISSR-11635 were identified as closely linked at 1.6 cM distance to the black rot resistance locus Xca1bo. Both the markers OPO-04833 and ISSR-11635 were cloned, sequenced and converted into SCAR markers and validated in 17 cauliflower breeding lines having different genetic backgrounds. These SCAR markers (ScOPO-04833 and ScPKPS-11635) amplified common locus and showed 100% accuracy in differentiating resistant and susceptible plants of cauliflower breeding lines. The SCAR markers ScOPO-04833 and ScPKPS-11635 are the first genetic markers found to be linked to the black rot resistance locus Xca1bo in cauliflower. These markers will be very useful in black rot resistance marker assisted breeding.  相似文献   

8.
Anthracnose, one of the destructive foliar diseases of sorghum growing in warm humid regions, is incited by the fungus Colletotrichum graminicola.The inheritance of anthracnose resistance was studied using the parental cultivars of Sorghum bicolor (L.) Moench, HC 136 (susceptible to anthracnose) and G 73 (anthracnose resistant). The F1 and F2 plants were inoculated with the local isolates of C. graminicola cultures. The F2 plants showed a segregation ratio of 3 (susceptible): 1(resistant) indicating that the locus for resistance to anthracnose in sorghum accession G 73 segregates as a recessive trait in a cross to susceptible cultivar HC 136. RAPD (random amplified polymorphic DNA) marker OPJ 011437 was identified as marker closely linked to anthracnose resistance gene in sorghum by bulked segregant analysis of HC 136 × G73 derived recombinant inbred lines (RILs) of sorghum. A total of 84 random decamer primers were used to screen polymorphism among the parental genotypes. Among these, only 24 primers were polymorphic. On bulked segregant analysis, primer OPJ 01 amplified a 1437 bp fragment only in resistant parent G 73 and resistant bulk. The marker OPJ 011437 was cloned and sequenced. The sequence of RAPD marker OPJ 011437 was used to generate specific markers called sequence characterized amplified regions (SCARs). A pair of SCAR markers SCJ 01-1 and SCJ 01-2 was developed using Mac Vector program. SCAR amplification of resistant and susceptible parents along with their respective bulks and RILs confirmed that SCAR marker SCJ 01 is at the same loci as that of RAPD marker OPJ 011437 and hence, is linked to anthracnose resistance gene. Resistant parent G 73 and resistant bulk amplified single specific band on PCR amplification using SCAR primer pairs. The RAPD marker OPJ 011437 was mapped at a distance of 3.26 cM apart from the locus governing anthracnose resistance on the sorghum genetic map by the segregation analysis of the RILs. Using BLAST program, it was found that the marker showed 100 per cent alignment with the contig{_}3966 located on the longer arm of chromosome 8 of sorghum genome. Therefore, these identified RAPD and SCAR markers can be used in the resistance-breeding program of sorghum anthracnose by marker-assisted selection.An erratum to this article can be found at  相似文献   

9.
Brown rust or leaf rust is one of the most important diseases of wheat occurring almost in all wheat-producing regions and reduces crop yield. In order to produce resistant cultivars, it is necessary to identify resistance genes in different germplasms and combine them in (a) suitable stock(s). To identify the presence of the leaf rust resistance genes using STS and SCAR markers, 83 Iranian wheat genotypes, Lr near-isogenic lines in Thatcher (positive controls), and the cultivar Thatcher (negative control) were used. After growing plants in the greenhouse, DNA was extracted by SDS method. Following that, polymerse chain reaction was performed for the markers of the resistance genes Lr9, Lr26, Lr28, Lr34, and Lr35 which amplified 1,100, 1,100, 378, 150, and 900 bp bands, respectively. Based on the results, the resistance genes Lr9 and Lr35 were only present in the positive controls. The resistance gene Lr26 was only detected in four cultivars; Arta, Pishtaz, Shiroodi, and Falat, and the gene Lr34 was present in six cultivars (Akbari, Bam, Tajan, Khazar 1, Sistan and Niknezhad). The Lr28 primer amplified a band of the same size in all genotypes even the negative control and therefore the presence/absence of this gene could not be validated. These results indicate the necessity for designing a specific primer for Lr28. In general, only the genes Lr26 and Lr34 were present in some genotypes. The genes Lr9 and Lr35 were not present in this collection and as based on rust surveys, no virulence has been detected for Lr9 and Lr28, so they could be transferred to suitable lines from donor sources.  相似文献   

10.
Pea powdery mildew is one of the major constraints in pea production worldwide, causing severe seed yield and quality loss. The resistance is governed by a single recessive gene er1 in majority of resistant cultivars, but er2 and Er3 have also been reported. The objective of the study was to find out tightly linked sequence characterized amplified regions (SCAR) markers to er1 gene using NILs. A total of 620 random amplified polymorphic DNA (RAPD) markers were screened for length polymorphism between seven sets of NILs. The 880 bp polymorphic band of the tightly linked RAPD marker OPX 04880 was cloned, sequenced and a SCAR marker ScOPX 04880 was developed. In a population of completely classified 208 F2 plants (supported by phenotypic data from 208 F2:3 and 4,390 F3:4 families) ScOPX 04880 was linked at 0.6 cM in coupling phase with er1 gene in the order ScOPX 04880er1–ScOPD 10650. ScOPX 04880 will correctly differentiate homozygous resistant plants from the susceptible accessions with more than 99 % accuracy. In combination with repulsion phase marker ScOPD 10650, ScOPX 04880 can help in an error free marker-assisted selection.  相似文献   

11.
K.V. Prabhu    S. K. Gupta    A. Charpe  S. Koul 《Plant Breeding》2004,123(5):417-420
A sequence characterized amplified region (SCAR) marker tagged to an Agropyron elongatum‐derived leaf rust resistance (Lr) gene Lr19 was validated on 18 known alien Lr gener in near‐isogenic lines (NILs) in the variety ‘Thatcher’, along with three wheat cultivers carrying Lr24 and two carrying Lr19. The marker was expressed only in the Lr24 lines confirming that the marker tagged the geneLr24. The monomorphic expression of the SCAR marker in 10NIL pairs for Lr19 and Lr24 revealed that each NIL pair possessed the same gene, Lr24. The donor parents used in the NIL pairs for Lr19 (‘Sunstar*6/C80‐1′) and Lr24 (‘TR380‐14*7/3Ag#14′) amplified the same fragment. Nonsegregation for leaf rust in the F2 population of the cross between the above donor parents confirmed the presence of the same gene in the two parents. Apparently, a genuine parent stock of ‘Sunstar*6/C80‐1’ was not involved in the development of the NIL pairs for Lr19 due to an improper maintence bredding protocol either at source or destination which went undetected in the absence of signs of virulence for either gene in the region.  相似文献   

12.
用一套分别含有不同抗叶锈基因的53个以Thatcher为遗传背景的近等基因系(near-isogeniclines,NILs)对已报道的分别与抗叶锈基因Lr24和Lr35连锁的STS、SCAR进行特异性验证。结果对于与Lr24连锁的STS标记,在53个NILs中只在TcLr24亲本中扩增出片段大小与报道相同的310bp的条带,在TcLr35中也扩增出了一条片段,但片段大小不同于310bp约为270bp。对于与Lr35连锁的SCAR标记,只在TcLr35亲本中扩增出片段大小为900bp的条带,与报道片段大小一致。验证结果表明与抗病基因Lr24和Lr35连锁的STS、SCAR分子标记在NILs中特异性都较好,进一步证明了这两个分子标记可方便地用于小麦抗叶锈基因Lr24、Lr35的分子标记辅助选择育种。  相似文献   

13.
The resistance genes Lr9, Lr24, Lr25, Lr29, Lr35 and Lr37, which were not previously utilised in Hungary, have been incorporated into four Martonvásár winter wheat cultivars using marker-assisted selection with PCR-based markers. In the course of a backcross programme, the genes were transferred into Martonvásár wheat varieties and various BC generations were produced. Work aimed at pyramiding resistance genes is currently underway in Martonvásár, and plants containing the gene combinations Lr9 + Lr24, Lr9 + Lr25 and Lr9 + Lr29 are now available. From the BC2F4 generation of the ‘Mv Emma’*3/’R.L.6010’ combination (‘R.L.6010’ is the donor of the Lr9 gene) 287 lines were tested for leaf rust resistance in an artificially inoculated nursery. A co-dominant primer combination was designed to identify both resistant and susceptible offsprings. The results of resistance tests and molecular marker detection agreed in most cases. Designated leaf rust resistance genes were identified with molecular markers in wheat varieties and breeding lines. The Lr26 and Lr34 resistance genes occur frequently in the Martonvásár gene pool, and the presence of the Lr37 gene has also been detected in a number of Hungarian genotypes.  相似文献   

14.
C. He  G. R. Hughes 《Plant Breeding》2003,122(4):375-377
Common bunt caused by Tilletia tritici and T. laevis has occurred worldwide and reduces yield and quality in common and durum wheats. The development of DNA markers linked to bunt resistance to race T1 in the cross, ‘Laura’(S) בRL5407’ (R), was carried out in this study based on the single head derived F4:5 and single seed derived F4:6 populations. Bulked segregant analysis was used to identify two random amplified polymorphic DNA (RAPD) markers linked to the gene for resistance to race T1 in the spelt wheat ‘RL5407′. The two markers identified, UBC548590 and UBC274988, flanked the resistance gene with a map distance of 9.1 and 18.2 cM, respectively. The former was linked in repulsion phase to bunt resistance while the later was in coupling phase. The two RAPD markers and the common bunt‐resistance gene all segregated in Mendelian fashion. Use of these two RAPD markers together could assist in incorporating the bunt‐resistance gene from spelt wheat into common wheat cultivars by means of marker‐assisted selection.  相似文献   

15.
Bulked segregant analysis was utilized to identify random amplified polymorphic DNA (RAPD) markers linked to genes for specific resistance to a rust pathotype and indeterminate growth habit in an F2 population from the common bean cross PC-50 (resistant to rust and determinate growth habit) × Chichara 83-109 (susceptible to rust and indeterminate growth habit). Six RAPD markers were mapped in a coupling phase linkage with the gene ( Ur-9) for specific rust resistance. The linkage group spanned a distance of 41 cM. A RAPD marker OA4.1050 was the most closely linked to the Ur-9 gene at a distance of 8.6 cM. Twenty-eight RAPD markers were mapped in a coupling phase linkage with the gene ( Fin) for indeterminate growth habit. The linkage group spanned a distance of 77 cM. RAPD markers OQ3.450 and OA17.600 were linked to the Fin allele as flanking markers at a distance of 1.2 cM and 3.8 cM, respectively. The RAPD markers linked to the gene for specific rust resistance of Andean origin detected here, along with other independent rust resistance genes from other germplasm, could be utilized to pyramid the different genes into a bean cultivar for durable rust resistance.  相似文献   

16.
A. N. Mishra    K. Kaushal    S. R. Yadav    G. S. Shirsekar    H. N. Pandey 《Plant Breeding》2005,124(5):517-519
The gene Lr34 has contributed to durable resistance to leaf rust caused by Puccinia triticina in wheat worldwide. The closely associated leaf tip necrosis is generally used as the gene's marker. Lr34 has been postulated in many Indian bread wheat cultivars including ‘C 306’, based on the associated leaf tip necrosis and a few other field and glasshouse observations. The present study showed monogenic control of adult‐plant resistance in ‘C 306’ to leaf rust pathotype 77‐5 (121R63‐1). The F2 segregation in the crosses between ‘C 306’ and the two known carriers of Lr34, ‘Line 897’ and ‘Jupateco 73’‘R’ fitted a digenic ratio. The F3 families derived from the susceptible F2 segregants were true breeding for susceptibility, proving the absence of Lr34 in ‘C 306’. The cross between ‘Line 897’ and ‘Jupateco 73’‘R’ did not segregate for susceptibility. Resistance in the cross ‘Agra Local’ (susceptible) × ‘C 306’ was associated with leaf tip necrosis, showing that the leaf rust resistance gene in ‘C 306’ was associated with leaf tip necrosis, but was different from Lr34. This gene is being temporarily designated as Lr‘C 306’. Hence, leaf tip necrosis cannot be considered as an exclusive marker for selecting Lr34 in wheat improvement.  相似文献   

17.
小麦品系天95HF2抗叶锈基因定位   总被引:5,自引:1,他引:4  
周悦  李在峰  李星  王龙  张晔  刘大群 《作物学报》2010,36(8):1265-1269
苗期基因推导表明,小麦品系天95HF2高抗我国目前多数叶锈菌生理小种。为了确定这一品系所携带的抗病基因,以天95HF2和感病小麦品种郑州5389杂交,获得F1和F2代群体,用叶锈菌小种FHTT和PHTS分别对双亲及其杂交后代进行叶锈抗性鉴定并进行分子标记分析。结果表明,用叶锈菌小种FHTT接种F2代群体时呈现1对显性基因的抗感分离比例,经过亲本和抗感池间标记筛选以及F2代群体的标记检测,Lr1的STS标记WR003和位于5DL的SSR标记wmc443与该抗病基因连锁,遗传距离分别为2.9cM和3.1cM,根据抗性特点和染色体位置推断该基因可能为Lr1。用叶锈菌小种PHTS接种F2代群体时呈现2对基因的抗感分离,分子标记分析结果表明,其中一个基因为Lr1,另一个基因可能为LrZH84。  相似文献   

18.
The existence of genetic variability for angular leaf spot (ALS) resistance in the common bean germplasm allows the development of breeding lines resistant to this disease. The BAT 332 line is an important resistance source to common bean ALS. In this work we determined the inheritance pattern and identified RAPD markers linked to a resistance gene present in BAT 332. Populations F1, F2,BCs and BCr derived from crosses between BAT 332 and cultivar Rudá were used. Rudá is a commercial cultivar with carioca type grains and susceptible to ALS. The resistance of BAT 332 to race 61.41 of the pathogen was confirmed. Segregation analysis of the plants indicated that a single dominant gene confers resistance. For identification of RAPD markers linked to the resistance gene, bulk segregant analysis (BSA) was used. Two RAPD markers,OPAA07950 and OPAO12950, linked in coupling phase at 5.10 and 5.83 cM of this gene, respectively, were identified. These molecular markers are important for common bean breeders and geneticists as source of genetic information and for marker assisted selection in breeding programs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary Two RAPD markers linked to gene for resistance (assayed as pustule number cm−2 leaf area) to rust [Uromyces fabae (Pers.) de Bary] in pea (Pisum sativum L.) were identified using a mapping population of 31 BC1F1 [HUVP 1 (HUVP 1 × FC 1] plants, FC 1 being the resistant parent. The analysis of genetics of rust resistance was based on the parents, F1, F2, BC1F1 and BC1F2 generations. Rust resistance in pea is of non-hypersensitive type; it appeared to be governed by a single partially dominant gene for which symbol Ruf is proposed. Further, this trait seems to be affected by some polygenes in addition to the proposed oligogene Ruf. A total of 614 decamer primers were used to survey the parental polymorphism with regard to DNA amplification by polymerase chain reaction. The primers that amplified polymorphic bands present in the resistant parent (FC 1) were used for bulked segregant analysis. Those markers that amplified consistently and differentially in the resistant and susceptible bulks were separately tested with the 31 BC1F1 individuals. Two RAPD makers, viz., SC10-82360 (primer, GCCGTGAAGT), and SCRI-711000 (primer, GTGGCGTAGT), flanking the rust resistance gene (Ruf) with a distance of 10.8 cM (0.097 rF and LOD of 5.05) and 24.5 cM (0.194 rF and a LOD of 2.72), respectively, were identified. These RAPD markers were not close enough to Ruf to allow a dependable maker-assisted selection for rust resistance. However, if the two makers flanking Ruf were used together, the effectiveness of MAS would be improved considerably.  相似文献   

20.
J. A. Kolmer    L. M. Oelke    J. Q. Liu 《Plant Breeding》2007,126(2):152-157
A genetic analysis of the landrace‐derived wheat accessions Americano 25e, Americano 26n, and Americano 44d, from Uruguay was conducted to identify the leaf rust resistance genes present in these early wheat cultivars. The three cultivars were crossed with the leaf rust susceptible cultivar ‘Thatcher’ and approximately 80 backcross (BC1) F2 families were derived for each cross. The BC1F2 families and selected BC1F4 lines were tested for seedling and adult plant leaf rust resistance with selected isolates of leaf rust, Puccinia triticina. The segregation and infection type data indicated that Americano 25e had seedling resistance genes Lr3, Lr16, an additional unidentified seedling gene, and one adult plant resistance gene that was neither Lr12 nor Lr13, and did not phenotypically resemble Lr34. Americano 26n was postulated to have genes Lr11, Lr12, Lr13, and Lr14a. Americano 44d appeared to have two possibly unique adult plant leaf rust resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号