首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Shenandoah National Park: Fish in Sensitive Habitats (SNP:FISH) project is a response to declining pH and acid neutralizing capacity in Shenandoah National Park (SNP) streams. SNP receives more atmospheric sulfate than any other USA national park, and pH had decreased to the point where early negative effects on fish were expected. SNP provides the opportunity to study the early stages of acidification effects on fish. Three different classes of geological formations yield streams with low-ANC (0 Eq/L), intermediate-ANC (60–100 Eq/L) or high-ANC (150–200 Eq/L) waters in SNP. This allows a comparison of responses across a water quality gradient in a small geographic area receiving similar deposition. Both chronic and episodic acidification occur in SNP streams. Biological effects are apparent in fish species richness, population density, condition factor, age, size, and bioassay survival. A primary project objective was to provide the necessary data for development and testing models for forecasting changes in fish communities resulting from changes in stream chemistry. Monitored variables include several which are predictive of acidification effects on SNP fish communities.  相似文献   

2.
The Lysina catchment in the Czech Republic was studied to investigate the biogeochemical response of Al to high loadings of acidic deposition. The catchment supports Norway spruce plantations and is underlain by granite and podzolic soil. Atmospheric deposition to the site was characterized by high H+ and SO4 2– fluxes in throughfall. The volume-weighted average concentration of total Al (Alt) was 28 mol L–1 in the O horizon soil solution. About 50% of Alt in the O horizon was in the form of potentially-toxic inorganic monomeric Al (Ali). In the E horizon, Alt increased to 71 mol L–1, and Ali comprised 80% of Alt. The concentration of Alt (120 mol L–1) and the fraction of Ali (85%) increased in the lower mineral soil due to increases in Ali and decreases in organic monomeric Al (Alo). Shallow ground water was less acidic and had lower Alt concentration (29 mol L–1). The volume-weighted average concentration of Alt was extremely high in stream water (60 mol L–1) with Ali accounting for about 60% of Alt. The major species of Ali in stream water were fluorocomplexes (Al-F) and aquo Al3+. Soil solutions in the root zone were undersaturated with respect to all Al-bearing mineral phases. However, stream water exhibited Ali concentrations close to solubility with jurbanite. Acidic waters and elevated Al concentrations reflected the limited supply of basic cations on the soil exchange complex and slow weathering, which was unable to neutralize atmospheric inputs of strong acids.  相似文献   

3.
High-elevation red spruce-Fraser fir forests in the Southern Appalachian mountains: 1) receive among the highest rates of atmospheric deposition measured in North America, 2) contain old-growth forests, 3) have shown declines in forest health, 4) have sustained high insect-caused fir mortality, and 5) contain poorly buffered soils and stream systems. High rates of nitrogen and sulphur deposition (1900 and 2200 Eq·ha–1·yr–1, respectively) are dominated by dry and cloud deposition processes. Large leaching fluxes of nitrate-nitrogen (100–1400 Eq·ha–1·yr–1) occur within the soil profile. We have expanded the study to the watershed scale with monitoring of: precipitation, throughfall, stream hydrology, and stream chemistry. Two streamlets drain the 17.4 ha Noland Divide Watershed (1676–1920m) located in the Great Smoky Mountains National Park. A network of 50 20x20 m plots is being used to assess stand structure, biomass, and soil nutrient pools. Nitrate is the predominant anion in the streamlets (weighted concentrations: 47 and 54 eq·L–1 NO3 ; 31 and 43 eq·L–1 SO4 2–). Watershed nitrate export is extremely high (1000 Eq·ha–1 yr–1), facilitating significant base cation exports. Stream acid neutralizing capacity values are extremely low (–10 to 20 eq·L–1) and episodic acidifications (pH declines of a full unit in days or weeks time) occur. Annual streamwater sulfate export is on the order of 770 Eq·ha–1yr–1 or about one-third of total annual inputs, indicating there is net watershed sulfate retention. The system is highly nitrogen saturated (Stage 2, Stoddard, 1994) and this condition promotes both chronic and episodic stream acidification.  相似文献   

4.
Condition factor, K, was measured for 1202 blacknose dace (Rhinichthys atratulus) from three streams in Shenandoah National Park (USA) of different acid neutralizing capacities (ANCs). K is a ratio of weight standardized to length; it is an indication of the health of the individuals in a population. R. atratulus condition factor in the low-ANC stream was found to be significantly lower (11%) than that of dace measured for fish from the intermediate- and high-ANC streams. This difference, according to the results of related investigations, is likely to be biologically significant. Whole-body sodium concentrations were measured as an additional test of sublethal stress in these streams. During summer base flow conditions, mean whole-body sodium concentrations of adult R. atratulus maintained in cages were found to be highest in the low-ANC stream and lowest in the high-ANC stream. The lower condition factor of dace in the low-ANC stream may be related to whole-body sodium concentration and ion regulation. Ion regulation in the low-ANC stream may be more metabolically costly because of chronic sublethal pH stress. R. atratulus may maintain high body Na+ concentrations in low ANC- and ionic strength waters in order to provide a buffer against large episodic pH depressions. The metabolic cost of this ionoregulatory over-compensation may necessitate the diversion of energy from somatic growth and explain the poorer condition of fish from such waters.  相似文献   

5.
One of the major threats to the structure and the functioning of natural and semi-natural ecosystems is the recent increase in air-borne nitrogen pollution (NHy and NOx). Ecological effects of increased N supply are reviewed with respect to changes in vegetation and fauna in terrestrial and aquatic natural and semi-natural ecosystems. Observed and validated changes using data of field surveys, experimental studies or, of dynamic ecosystem models (the empirical approach), are used as an indication for the impacts of N deposition. Based upon these data N critical loads are set with an indication of the reliability. Critical loads are given within a range per ecosystem, because of spatial differences in ecosystems. The following groups of ecosystems have been treated: softwater lakes, wetlands & bogs, species-rich grasslands, heathlands and forests. In this paper the effects of N deposition on softwater lakes have been discussed in detail and a summary of the N critical loads for all groups of ecosystems is presented. The nitrogen critical load for the most sensitive ecosystems (softwater lakes, ombrotrophic bogs) is between 5–10 kg N ha–1 yr–1, whereas a more average value for the range of studied ecosystems is 15–20 kg N ha–1 yr–1. Finally, major gaps in knowledge with respect to N critical loads are identified.  相似文献   

6.
A case history is presented describing the ecosystem changes that accompanied the nearly 90% reduction of SO2 and metal particulate emissions from Sudbury smelters during the past 25 years. The instances of severe ground-level fumigations that caused acute damage to vegetation in an area of approximately 1,000 km2 have been nearly completely eliminated. Significant improvements in water quality have also occurred in many of the estimated 7,000 acid-damaged lakes. Several species of acid-sensitive phytoplankton, Zooplankton and insects have invaded lakes where improvements have occurred. Epiphytic lichens have reinvaded the former lichen desert that once extended out 7 km from the smelters. Sensitive species such as Evernia mesomorpha and Usnea hirta now exist throughout the area. The vascular plant communities have been relatively slow to recover in the most severely damaged terrestrial areas. Metal-tolerant grasses (e.g. Agrostis scabra. Deschampsia caespitosa) were the first species to invade the barrens. Acid- and metal-contamination of soil, severe microclimate conditions, and the damaging effects of insect pests appear to delay recovery of terrestrial ecosystems. Recovery rates of aquatic ecosystems are also affected by a suite of physical, chemical and biotic interactions and many lakes remain severely damaged.  相似文献   

7.
Recolonization of soils by organisms is dependent not only on biological factors but also on site factors including soil and vegetation. The total nematode populations in soil sterilized 52 months earlier with methyl bromide ranged from 77 to 123% of those in untreated soil; both vegetation and rainfall appear to have been important factors in the recolonization. In a high-rainfall pasture the dominant plant-feeding nematode Helicotylenchus did not recolonize and was replaced by Paratylenchus. Under high rainfall, Iotonchus failed to recolonize either pasture or forest, but Clarkus recolonized well. While indices such as the maturity index, the summed maturity index, PPI, the ratio of fungal: bacterial feeding nematodes, species richness, the Shannon-Weaver index, and indices of evenness, dominance, and diversity showed various effects, none gave consistent trends; rainfall and vegetation probably exerted too much influence. In the light of trends in our data, in data for other ecosystems, and the reality of r-K strategies in animals, it may not be reasonable to expect a global nematode index of soil health or ecosystem condition. While a nematode index may be useful in local or regional studies, research efforts may be better directed towards elucidating key populations of nematodes for investigating the impact of particular land management practices on ecosystem sustainability.  相似文献   

8.
Summary Relationships between soil physicochemical characteristics and soil microbial C, N, and P in Indian dry tropical ecosystems are discussed. The major ecosystem studies were on forest, savanna, cropped fields, and mine spoils. The highest microbial C, N, and P levels were recorded from the mixed forest and the lowest levels in 5-year-old mine spoil. Across the sites, microbial C ranged from 226 to 643 g g-1, microbial N from 19 to 71 g g-1, and microbial P from 9 to 28 g g-1 soil. The proportion of soil organic C contained in the microbial biomass ranged from 2.2 to 5.0%. The microbial C: N ratio in these soils ranged from 7.4. to 13.1 and the microbial C: P ratio from 16.6 to 30.6. The concentrations of microbial C, N, and P were correlated with several soil properties and among themselves. The soil properties, in various linear combinations, explained 90–99% of the variability in the microbial nutrients. Grazing of the savanna had some effect on the level of microbial biomass, and as the mine spoil aged, the level of microbial C, N, and P also increased.  相似文献   

9.
The effect of high nitrogen (N) depositions on forest ecosystems is an important concern in North America and may lead to N saturation of forest ecosystems and contribute to soils and surface water acidification. In this study, nitrogen dynamics in the FH layers of a sugar maple (SM), a balsam fir (BF) and a black spruce (BS) forest was characterized using a short term 15N isotopic pool dilutions approach and mid-term FH material incubation both in situ and in the laboratory. The short term dilutions approach indicated that the mean residence times of and in the FH material of the three sites were low (<1 d). The amount of inorganic nitrogen () recycled annually within the exchangeable forest floor reservoir was between one and two orders of magnitude larger than the annual atmospheric N deposition found at each of the sites. The BS site was clearly distinct than the two other forest types in that net N mineralization was negligible, even in absence of root uptake, suggesting that soil microorganisms were severely N limited. While net nitrification was not observed within the FH material of the BF site, did accumulate in the FH of the SM despite a low pH of 3.72 presumably because of heterotrophic nitrification or as a result of acid-tolerant autotrophic nitrification. The difference in N dynamics between the sites were most probably caused by dominant tree species. Transformation rates of inorganic N were higher in SM, followed by BF and BS stands. Given that the potential to mineralize inorganic N matches with a superimposed N atmospheric deposition gradient in Québec, the sugar maple forest is more likely to be affected by N saturation than coniferous forests.  相似文献   

10.
Precipitation falling on the Kola North of Russia is severely polluted by strong acids and heavy metals emitted from large local smelters operated by the Severonickel and Pechenganickel companies. Large areas in the affected region are considered sensitive to acid precipitation due to geological and climatological conditions. Extensive surface water acidification has taken place, particularly, in the mountain and remote tundra regions. Critical loads and their cxceedances have been calculated for 370 lakes sampled in the Kola peninsula. These data indicate that the surface waters in the Kola North are highly sensitive to acidic deposition. Using the minimum values determined for each NILU grid cell, critical loads of less than 20 meq/m2yr occur in about 50 percent of the area.  相似文献   

11.
The SO2 emissions from the Kola Peninsula in Arctic Russia (totalling around 600 Gg(SO2) yr–1 at the beginning of the 1990s) produce an atmospheric SO2 concentration gradient to the northernmost Europe. This gradient covers the range from >50 g m–3 in the vicinity of the sources to 1 g m–3 in Finnish Lapland. In the present study, the measured sulphur concentrations in Scots pine needles were compared with the estimated distribution of atmospheric SO2. The total sulphur concentrations in the needles ranged from 741 to 2017 mg kg–1. Strongly elevated concentrations (> 1200 mg kg–1) were found within 40 km from the smelters corresponding to an area where the annual mean atmospheric SO2 concentration exceeded 10 g m–3. The foliar sulphur concentrations (total, organic and inorganic) show a high correlation with the estimated mean SO2 concentration distribution in the air. Consequently the foliar sulphur concentrations reflected the atmospheric sulphur load well. The data presented here show that uptake via stomata is an important deposition pathway also in the arctic conditions with a short growing season.  相似文献   

12.
The critical load concept is now accepted throughout Europe as a means of estimating the sensitivity of key components of aquatic and terrestrial ecosystems to atmospheric inputs of sulphur (S) and nitrogen (N). Current UK freshwater maps, based on steady-state water chemistry, are derived using a critical acid neutralising capacity (ANCLIM) value of zero eql–1, which is based on the probability of occurrence of salmonid fish in lakes. In practice most acidification damage to salmonid fish occurs in nursery streams at the emergence and first feeding stages. In general a clear relationship exists between salmon (Salmo salar L.) and trout (S. trutta L.) densities in Scottish streams and ANC values. However, differences between sites depend on which ANC value is used (eg maximum, minimum or mean). By contrast, when the exceedance of critical loads is compared with salmonid densities the relationship is less clear because many exceeded sites have good salmonid densities. Many of these latter sites are found in north-west Scotland where sea-salt inputs are high and ANC is usually greater than zero eql–1, although diatom-based studies indicated slight acidification of these waters, with a point of change in diatom flora close to ANC=20 eql–1. These false exceedances are probably due to preferential adsorption of acidic SO4 deposition which results in an overestimate of exceedance values. All sites with a mean ANC 0 are fishless but some sites with negative minimum ANC values had normal salmonid densities. Consequently a mean ANCLIM value of zero in the critical load equations for UK freshwaters appears to be too low to protect salmonid stocks. Values between 20–50 eql–1 represent a more realistic range if prevention of long term damage to salmonid stocks is to be achieved.  相似文献   

13.
Simultaneous soil acidification and deposition of heavy metals is a major concern for forest and agricultural soils of the Black Triangle region of East Central Europe including southern former East Germany, northern Bohemia of the Czech Republic, and southern Poland. The objective of this project was to develop historical and future projections of acid and heavy metal deposition to soils (As, Cd, Pb, Zn) and to produce a preliminary map of soil sensitivity to cadmium pollution and uptake by crops. Ultimately, we wish to assess the relative hazard and recovery times of soils to metals deposition in the region. Emission and deposition data bases obtained from several models developed at IIASA were linked using the Geographical Information System ARC/INFO to produce soil maps of sensitivity to cadmium mobility based on metals deposition, soil type, soil texture, organic matter content, and acid deposition. RAINS 6.1 (Alcamo et al., 1990) was utilized to produce maps of acid deposition for EMEP grids (150 km x 150 km). The largest amount of acid load is deposited in southern East Germany. Sulfur deposition in that area was 10–12 gS/m2/yr in 1990, and S+N deposition exceeded 8000 eq/ha/yr. But the hot spot for metals deposition is further to the east, in the Silesia area of southern Poland. The TRACE2 trajectory model of Alcamo, Bartnicki, and Olendrzynski (1992) was used to estimate cumulative metals deposition since 1955 with scenarios to 2010. Pb has improved over Europe since 1970 when depositions in the Ruhr River Valley of West Germany exceeded 60 mg/m2/yr. But cadmium deposition in southern Poland (Katowice and Krakow) has now accumulated to 60–70 mg/m2 by atmospheric deposition alone. During base case simulations from 1955–87, approximately 1.8 mg/kg Pb and 0.12 mg/kg Cd have been added to the mixed plow-layer of 30 cm. If these emissions continue indefinitely, the accumulation of metals will become problematic for agriculture and the food chain.  相似文献   

14.
The availability of national maps of critical loads for soils, vegetation and freshwaters helpsenable the assessment of the effects of large point sources of pollution in the UK. The deposition footprint of most major sources has been modelled and combined in a GIS with a national critical loads database. As part of an integrated pollution control strategy (IPC) it may be helpful to rank point sources in order of their effects on the environment. A comparison of the discriminating power and effectiveness of several ranking schemes has been carried out. A variety of ranking schemes were investigated, such as; total area where sulphur deposition exceeds the critical load or average mass deposited on areas where the critical load is exceeded. Their relative merits were compared for several current and future scenarios, such as, actual 1993 emissions or predicted emissions for 2001. Rankings for the unit emissions provided a measure of the pollution potential of each source and were a complex function of the location of sensitive areas and meteorological conditions. Rankings under other scenarios tended to be dominated by the relative magnitude of the emissions. Comparison between the ranking schemes was made using non-parametric statistics. The comparisons reveal complex interactions between different schemes. The approach is providing practical solutions to a pollution control strategy based on maximising environmental benefits.  相似文献   

15.
Snail grazing and feces production have been shown to be major components of the nitrogen (N) budget of Negev Desert ecosystems. However, the movement of N from feces into soil N cycling processes has not been studied. In this study, we measured immediate N release from different types of snail feces following wetting of dry desert soils, and characterized potential net N mineralization and nitrification and soil respiration over a 12-day incubation under laboratory conditions. The dynamics of morganic N exhibited two distinct phases during the 12-day incubation: (1) immediate release of inorganic N following wetting of the soil and (2) decline of inorganic N from day 1 today 12 of the incubation. The immediate pulse of N release from this one wetting event (6–25 mg N m-2) was larger than annual atmospheric inputs of N to Negev Desert ecosystems (<2 mg N m-2); however, from 50 to 80% of the N released upon wetting was consumed by the end of the incubation. There were differences in inorganic N release and respiration from feces from different kinds of snails, and from feces from the same species of snail fed different plants. The results suggest that while snail feces contribute significant amounts of plant available N to Negev ecosystems, plants must compete with other sinks for this N.  相似文献   

16.
Computer assessments of the atmospheric chemistry and air quality of the past, present, and future rely in part on inventories of emissions constructed on appropriate spatial and temporal scales and with appropriate chemical species. Accurate inventories are also of substantial utility to field measurement scientists and the regulatory and policy communities. The production of global emissions inventories is the task of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry Project (IGAC). This paper presents a summary of recent emissions inventories from GEIA and other programs for reference year 1985, with special attention directed to emissions of the acid-related compounds CO2 (6.2 Pg C yr–1 anthropogenic), SOx (65 Tg S yr–1 anthropogenic and 15 Tg S yr–1 natural), NOx (21 Tg N yr–1 anthropogenic and 15–20 Tg N yr–1 natural), HCl (55 Tg Cl yr–1 total), and NH3 (45 Tg N yr–1 total). The global acid-equivalent flux of about 4.2 Teq H+yr–1 is about equally attributable to SOx and NOx emissions. For some of the acid-related species, historic inventories are available for a century or more; all show dramatic emissions increases over that period. IPCC scenario IS92a is used here as the basis for constructing global acid-related emissions estimates for selected years to 2100; among the results are that acid equivalent emissions are expected to more than double in the coming century.  相似文献   

17.
Soil and stream water responses to clean rain treatments at three roof covered forest ecosystems in Norway, Sweden and Denmark were modelled by the MAGIC model. The model outputs were compared with measured responses. Over the wide span in site conditions among the three sites MAGIC successfully reproduced the observed effects in the clean rain treatments. Seasalt influence caused single year discrepancies but the long term trends were well reproduced. In particular the significant decreases in SO4 output were well reproduced. A simultaneous change in base cation leaching was observed, which in the long run will be the basis for the recovery of these acidified systems. The rate of recovery at the 3 studied sites was very slow.  相似文献   

18.
The surface ozone (O3) data show an increase by 2.6 % per year during the period 1982–1994 at the rural site of Lithuania. WHO (World Health Organization), UN-ECE (United Nations Economic Commission for Europe), CES (Commission of the European Communities) guideline values for the protection of vegetation from adverse effects are exceeded during the growing season at the Preila coastal station. Ozone exposures for different concentration threshold are estimated during daylight hours in April-September. These values above 60 g/m3 varied between 10 000 and 43 000 (g/m3) ·h, above 80 g/m3 — between 1700 and 15 000 (g/m3) ·h, above 100 g/m3 — between 130 and 3700 (g/m3) ·h during separate years. Maximum hourly ozone values were observed from 116 to 228 g/m3 during this period.  相似文献   

19.
Summary An experiment was carried out to investigate how straw, cellulose and lignin affect the turnover and availability of inorganic labelled N in soil. The experiment comprised an incubation period in which the soil was incubated with 15NH4 15NO3 and organic materials followed by drying and by cropping the soil with Lolium perenne. The incubation period lasted 148 days during which soil samples were taken 36 and 148 days after the beginning of incubation. Addition of organic materials to the soil promoted the incorporation of inorganic N into organic matter and decreased apparent N denitrification losses during the first period of incubation (0–36 days after beginning of incubation). In this respect straw and cellulose were more effective than lignin. The organic materials also promoted the fixation of NH4 + by clay minerals. In all treatments highest fixation of labelled NH4 + by clay minerals was found at the end of the incubation period. During the cropping period high apparent denitrification losses were observed particularly in the straw and cellulose treatment. Hence the recovery of labelled N by Lolium was particularly low in these treatments while in the control treatment the 15N recovery was about twice as high.  相似文献   

20.
The degree to which floating aquatic plants concentrate Se in tissues was determined for four species grown in solutions containing various levels of Se. Results of this greenhouse study showed that all four plant species, Azolla caroliniana, Eichhornia crassipes, Salvinia rotundi folia, and Lemna minor absorbed Se quickly upon exposure to Se in water as concentrated as 2.5 g Se mL–1, and attained maximum tissue concentrations within 1 to 2 weeks. Azolla absorbed Se to the highest tissue concentration (about 1000 g Se g–1 dry matter) from the 2.5 g Se mL–1 solution, followed by Salvinia (700 g Se g–1), Lemna (500 g Se g–1),and Eichhornia (300 g Se g–1). Plant growth appeared unaffected by solution Se concentrations lower than about 1.25 g mL–1. These results indicate potential for rapid Se movement from water into aquatic food chains, and for use of aquatic plants for Se removal in wastewater treatment systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号