首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cereal Chemistry》2017,94(3):485-490
Proteins from wheat and egg are important for pound cake texture, but their exact role is insufficiently understood. A clear, analytical distinction between proteins from wheat flour, egg white, or egg yolk has been a main challenge. However, this can be addressed by using egg proteins carrying 15N. Therefore, egg white and yolk protein were enriched in 15N by mixing 15N‐labeled leucine into hen feed. Incorporation of egg and flour proteins in the protein network was monitored based on changes in their extractability during cake making. The relative contribution of different noncovalent and covalent bonds could be determined by using different extraction media. We for the first time distinguished between the contribution of egg white, egg yolk, and wheat protein in network formation during pound cake making. Our results show that during batter mixing hardly any intermolecular disulfide bonds are formed and that baking induces tremendous changes in protein extractability. A protein network based on both disulfide bonds and hydrophobic interactions is formed during baking. This covalent network includes almost all egg white protein and most of the yolk and wheat flour protein. The remaining protein fraction most probably lacks sulfhydryl groups and/or intramolecular disulfide bonds.  相似文献   

2.
The effect of different protein sources (soy flour, lupin flour, egg albumin, gelatin powder, protein‐rich beer yeast flour) on wheat dough functionality was tested by determining gluten index, texture properties, and thermomechanical parameters. Transglutaminase (TG) was also added to improve the dough functionality by forming cross‐links. The presence of protein sources had a significant effect on the gluten index, with the exception of lupin flour. Gelatin and the presence of TG resulted in significant single effects on the texture properties of the wheat‐protein dough. All the protein sources significantly modified the mixing characteristics of the dough or the thermal behavior. Capillary electrophoresis studies of the water‐soluble, salt‐soluble, and glutenin proteins indicated that interactions were mainly within proteins, thus homologous polymers. Scanning electron microscopy studies of the doughs made from blends of wheat and protein sources doughs supported the formation of heterologous structures in the wheat‐lupin blends. The combination of TG and lupin would be a promising method to be used on the treatment of insect‐damaged or weak flours, to increase the gluten strength.  相似文献   

3.
The impact of varying levels of endoxylanase activity in wheat flour on arabinoxylan (AX) in mixed and rested dough was studied using eight industrially milled wheat flour fractions with varying endoxylanase activity levels. Analysis of the levels of reducing end xylose (RX) and solubilized AX (S-AX) formed during mixing and resting and their correlation with the endoxylanase activity in the flour milling fractions showed that solubilization of AX during the mixing phase is mainly due to mechanical forces, while solubilization of AX during resting is caused by endoxylanase activity. Moreover, solubilization of AX during the dough resting phase is more outspoken than that during the mixing phase. Besides endoxylanase activity, there were significant xylosidase and arabinofuranosidase activities during the dough resting phase. The results indicate that wheat flour-associated endoxylanases can alter part of the AX in dough, thereby changing their functionality in bread making and potentially affecting dough and end product properties.  相似文献   

4.
An attempt was made to evaluate gluten structural changes in refined and whole wheat pasta from hard white winter wheat to elucidate the impact of whole wheat components on the formation and structure of the gluten network in pasta. Attenuated total reflectance–FTIR spectroscopy was used to track gluten secondary structure through most of the major steps in pasta processing: raw material, mixing, drying, and cooking. Protein solubility, accessible thiols, and SDS‐PAGE data were also collected to provide additional information on the nature of protein interactions and network composition. Few secondary structural differences were observed between refined and whole wheat flours from hard white wheat. However, mixing induced a significant shift to β‐sheet structures in refined dough that was not equally matched by whole wheat dough. Drying under both high temperature, short time (HT) and low temperature, long time (LT) conditions resulted in a reversion to structural distributions similar to those for flour in both pastas. However, greater protein denaturation in HT samples was indicated by lower protein solubility also in the presence of denaturants and disulfide reducing agents. Cooking generated a substantial increase in β‐sheet structures for both pasta systems. This structure was greatest in refined and LT samples. Thiol accessibility data indicate the presence of a highly aggregated, compact gluten network in refined pasta, mostly driven by hydrophobic association. Conversely, the network in whole wheat pasta was more loosely associated and dependent on disulfide bonding, both of which fit well with the secondary structural data.  相似文献   

5.
The effects of whole grain wheat (WGW) flour on the quality attributes of instant fried noodles were characterized in terms of mixing and oil‐resisting properties as well as in vitro starch digestibility. Higher water absorption and shorter kneading time were required to obtain the optimally mixed dough from WGW flour, and the presence of nonstarch components in the WGW flour lowered the thermal conductivity of the noodles. The use of WGW flour produced instant fried noodles with oil uptake reduced by 30%, which could be correlated with the less porous structure confirmed by the surface and cross‐sectional scanning electron microscope images. When the instant fried noodles were subjected to in vitro starch digestion, the use of WGW flour was effective in suppressing the hydrolysis of starch in the noodles, and the predicted glycemic index of the WGW noodles (80.6) was significantly lower than that of the white wheat noodles (83.3).  相似文献   

6.
The antigenic and allergenic activities of ovomucoid (OM) remaining in soluble fractions of pasta-like model samples of wheat flour mixed with egg white were investigated by ELISA competitive inhibition and immunoblotting analyses using a rabbit anti-OM IgG and the serum IgE specific for OM in patients allergic to egg white. The mixture of egg white and wheat flour of soft, hard, and durum varieties was kneaded for 10-50 min and benched for 1 h at RT, and then small pieces of the dough were heated in boiling 1% NaCl solution for 15 min. Even before heating, only after the kneading for 30 min or more, but not after kneading for only 20 min, followed by the benching, the antigenic activity of OM which remained in the phosphate-buffered saline extract from the dough markedly decreased. Almost no antigenic activity of OM was detected in the extracts of heated samples. Furthermore, in the extracts of heated durum samples, only a trace of or almost no IgE-reactive OM was detected against the five patients' sera. These reductive effects of wheat on the OM antigenicity and allergenicity were more remarkable in the durum variety than in the others. No detectable proteins were extracted with 1% SDS from the heated samples, whereas OM was extracted with 1% SDS containing 10% 2-mercaptoethanol, suggesting heat-induced polymerization through intermolecular disulfide bonds among OM and wheat.  相似文献   

7.
含盐量是衡量咸鸭蛋品质的重要指标。为了利用机器视觉技术实现高压脉动腌制咸鸭蛋含盐量的无损检测。该研究采用工业相机和透射光源搭建咸鸭蛋的透射图像采集装置。采用图像整体特征和长轴截面光强度特征两种特征提取方法,利用多元线性回归、支持向量机回归两种算法,建立对蛋清、蛋黄及全蛋含盐量以及蛋黄指数的定量预测模型。结果表明,随着咸鸭蛋腌制时间的增加,其透光性显著提高。同时,透射图像蛋黄的所在视野区域会随着含盐量的增加而呈现规律性的变化。基于图像整体特征建立的蛋清、蛋黄、全蛋含盐量模型较优,在蛋黄指数预测下基于长轴截面光强度特征所建模型较优。其中,基于图像整体特征所建立的蛋黄含盐量支持向量机回归(support vector regression, SVR)模型最优,测试集相关系数(test set correlation coefficient, Rp)、测试集均方根误差(root mean square error of prediction, RMSEp)、相对分析误差(residual predictive deviation, RPD)分别达到0.8460、0.3416、1.898;基于长轴截面光强度特征建立的蛋黄指数多元线性回归(multiple linear regression, MLR)模型最优,测试集相关系数Rp、均方根误差RMSEp、相对分析误差RPD分别为0.8318、0.0743、1.916。该研究结果为咸鸭蛋含盐量的快速检测提供理论依据和技术支持。  相似文献   

8.
Dried egg white protein was heated at 120°C for 1 hr, added to a fresh wheat flour (protein 8.6%), and the protein and wheat flour were subjected to acetic acid (pH 3.5) fractionation. The results showed that egg white protein increased the binding between prime starch (PS) and tailings (T) fractions in wheat flour. Several conditions for heating of egg white protein were examined to determine 1) the effect of the amount of water added to the protein before heating; 2) the effect of heating time (hr) on protein at 120°C; and 3) the effect of heating temperature on the binding between PS and T fractions. The amount of protein per 50.0 g of wheat flour was further examined for the maximum binding between PS and T fractions. The heated egg white protein was analyzed by Fourier transform infrared (FT‐IR) spectroscopy, and the changes in the secondary structures (α‐helix, β‐sheets, and others) of the protein caused by heating were studied. When egg white protein was heated at 120°C for 8 hr, 9.0% of the α‐helix structures of egg white protein decreased to 3.0%, and 37.0% of the β‐sheet structures increased to 41.0%. The decrease of α‐helix and increase of β‐sheet structures of heated egg white protein were related to the increase in the binding between PS and T fractions in the same heated egg white protein and wheat flour sample. A relationship between the structural changes in heated egg white protein (180°C, 1 hr) and the binding between PS and T fractions in the heated egg white protein and wheat flour was also observed.  相似文献   

9.
The effect on O2 uptake during the mixing of yeasted dough, either unsupplemented or supplemented with glucose oxidase (GOX), horsebean flour (HB), soybean flour (SB), or combinations thereof, was studied using an airtight mixer. Two wheat flours with a low (flour A) and a high (flour B) content of free polyunsaturated fatty acids were used. Addition of HB or SB provokes a similar increase of O2 uptake for both wheat flours, whereas addition of GOX causes a larger increase for flour A than for flour B. When the wheat flours were supplemented with HB or SB, addition of GOX caused a small but significant increase of O2 uptake for flour A. This increase was not observed for flour B. The mixing tolerance of dough A, determined with the Chopin Consistograph, is increased by GOX addition. However, this effect is less pronounced when flour A is supplemented with HB or SB. Similarly, the relaxation index of dough B is decreased by GOX addition, but the decrease is less distinct in the presence of HB or SB. These results can be explained by a competition among yeast, GOX, and lipoxygenases (present in wheat, HB, and SB flours) for the O2 uptake by dough, which likely decreases the amount of hydrogen peroxide produced by GOX during dough mixing. This competition for O2 consequently also modifies the rheological properties of dough.  相似文献   

10.
The Rheo Extrusion Meter (REM) measures the time for vertical upward extrusion of wheat flour dough (subsequently referred to as extrusion time, ET) as a measure of its consistency. ET evidently increases with dough consistency. ETs are highly reproducible and sensitive to differences in dough moisture content. A single REM analysis takes 20 min, and the measured ET can be converted into the correct baking absorption at a given temperature. The heights of the extruded dough pieces are negatively correlated with straight‐dough bread loaf specific volume, both when comparing different flour samples and when adjusting moisture content of dough prepared from a given flour sample. The REM also allows determination of the consistency of complex wheat flour based systems and the impact of vital wheat gluten or ascorbic acid thereupon. Furthermore, in contrast to the farinograph, it detects the impact of endoxylanases hydrolyzing water‐extractable arabinoxylan on dough consistency.  相似文献   

11.
The influence of bran particle size on bread‐baking quality of whole grain wheat flour (WWF) and starch retrogradation was studied. Higher water absorption of dough prepared from WWF with added gluten to attain 18% protein was observed for WWFs of fine bran than those of coarse bran, whereas no significant difference in dough mixing time was detected for WWFs of varying bran particle size. The effects of bran particle size on loaf volume of WWF bread and crumb firmness during storage were more evident in hard white wheat than in hard red wheat. A greater degree of starch retrogradation in bread crumb stored for seven days at 4°C was observed in WWFs of fine bran than those of coarse bran. The gels prepared from starch–fine bran blends were harder than those prepared from starch–unground bran blends when stored for one and seven days at 4°C. Furthermore, a greater degree of starch retrogradation was observed in gelatinized starch containing fine bran than that containing unground bran after storage for seven days at 4°C. It is probable that finely ground bran takes away more water from gelatinized starch than coarsely ground bran, increasing the extent of starch retrogradation in bread and gels during storage.  相似文献   

12.
Sensory evaluation showed panelists could detect small differences in gloss and translucency in boiled white salted noodles (WSN) but sensory evaluation requires significant resources. Methods for the measurement of noodle gloss and translucency in boiled WSN were developed and the effects of hardness, protein, water addition, and vacuum mixing on these visual sensory characteristics and color (as measured by CIE L*, a*, and b*) were investigated. Noodles derived from hard wheats at low flour protein contents were more translucent than noodles from soft wheat flour at low protein. This trend changed at the highest flour protein contents observed. Translucency of the soft wheat noodles increased to levels equal to or exceeding the translucency of high protein hard wheat noodles. Translucency of all noodle varieties increased as flour protein increased. CIE L* decreased, a* increased, and b* increased when water addition to dough increased from 30 to 35%, but there was no further effect on color when water addition was increased to >35% for raw soft and hard WSN. Boiled noodle translucency was significantly increased when water addition to the dough was increased from 35 to 38% and when noodles made from soft wheat flour were mixed under vacuum. Vacuum mixing significantly increased gloss of boiled noodles made from soft wheat flours.  相似文献   

13.
This study evaluated the blending of flours made from an Ontario hard red winter wheat (HWF) and an Ontario soft red winter wheat (SWF) and compared it with a commercial standard noodle flour (control) made from Canadian Western Hard Red Spring wheat to assess the impact on white salted noodle‐making performance and texture of cooked noodles. Flour characteristics, gluten aggregation, and starch pasting properties were assessed with a farinograph, GlutoPeak tester, and Rapid Visco Analyzer, respectively. The machinability of dough was evaluated with an SMS/Kieffer rig attached to a TA.XT Plus texture analyzer. Tensile and bite tests of cooked noodles were also conducted. Blending HWF with standard noodle flour decreased gluten strength and dough extensibility linearly proportional to the blend ratio, whereas a curvilinear response from blending SWF with standard noodle flour was observed. HWF demonstrated more favorable pasting properties except for lower peak viscosity for noodle making than standard noodle flour. Below a 20% blend ratio with HWF, no significant changes were seen on dough extensibility, cooking loss, tensile properties, and bite testing parameters of cooked noodles. It can be concluded that blending HWF up to a 20% level caused no significant change in the processing properties of dough and cooked noodle quality. The results also showed that the GlutoPeak tester is a sensitive tool for evaluating gluten strength in wheat flour.  相似文献   

14.
Bread was prepared from wheat flour and wheat flour fortified with either 3, 5, and 7% legume hulls or insoluble cotyledon fibers, or with 1, 3, and 5% soluble cotyledon fibers isolated from pea, lentil, and chickpea flours. Incorporation of hulls or insoluble fibers resulted in increases in dough water absorption by 2–16% and increases in mixing time of dough by 22–147 sec. Addition of soluble fiber resulted in decreases in water absorption as the substitution rate increased and similar mixing times to the control dough. Loaf weights of breads containing hulls or insoluble fibers were generally higher than that of control bread at 149.4–166.5 g. However, the loaf volume of breads fortified with legume hulls and fibers (685–1,010 mL) was lower than that of the control bread (1,021 mL). Breads containing soluble fibers were more attractive in terms of crumb uniformity and color than breads containing either hulls or insoluble fibers. Breads fortified with legume hulls and fibers were higher in moisture content than control bread regardless of the type, source, or fortification rate. Bread fortified with up to 7% hulls or insoluble cotyledon fibers or up to 3% soluble cotyledon fibers, with the exception of 7% insoluble pea fiber, exhibited similar firmness after seven days of storage compared with the control bread, despite their smaller loaf volume. Breads containing hull fibers exhibited the lowest starch transition enthalpies as determined by DSC after seven days of storage, while the starch transition enthalpies of breads containing added soluble or insoluble fiber were not significantly different from the control bread.  相似文献   

15.
Breadmaking is a complex process that involves a series of parameters that must be controlled. Rheological measurements are often used to predict the behavior of wheat dough during processing and the quality of the final product. There are many different dietary fiber sources that can be used to enhance the nutritional quality of bread. However, they will affect processing and final product quality. Response surface methodology (RSM) was employed to study the effects of adding different dietary fiber sources (wheat bran, resistant starch, and locust bean gum) on farinographic parameters of wheat flour. The experiments were conducted according to a 23 central composite rotational design (CCRD). With the experimental results or responses (farinographic parameters), the effect of each variable was calculated and the interactions between them were determined. Models that explain the effects of the different fiber sources on water absorption, arrival time, dough development time, and mixing tolerance index of wheat flour were established. The fiber sources interacted for some of the parameters analyzed, demonstrating that if two or more sources of dietary fiber are present in the mix, they might act different to what would be expected of the sum of them. It was also noticed that for most parameters, wheat bran and locust bean gum had a greater influence on farinographic parameters than resistant starch. The simultaneous presence of the three fibers, within the ranges studied, contributed to an increase in water absorption, arrival time, and mixing tolerance index, and to a reduction in departure time and dough stability.  相似文献   

16.
Hydrothermal treatments, which are routine in oat processing, have profound effects on oat flour dough rheological properties. The influence of roasting and steam treatments of oat grain on dough mixing and breadbaking properties was investigated when hydrothermally treated oat flour was blended with wheat flour. Roasting of oat grain (105°C, 2 hr) resulted in oat flours that were highly detrimental to wheat flour dough mixing properties and breadbaking quality. Steaming (105°C, 20 min) or a combination of roasting and steaming of oat grain significantly improved the breadbaking potential of the oat flours. The addition of oat flours increased water absorption and mixing requirements of the wheat flour dough and also decreased bread loaf volume. However, at the 10% substitution level, steamed oat flours exhibited only a gluten dilution effect on bread loaf volume when wheat starch was used as a reference. Oat flour in the breadbaking system decreased the retrogradation rate of bread crumb starch. The results indicate that adequate hydrothermal treatments of oat grain are necessary for oat flour breadbaking applications. Steamed oat flours used at a 10% level retarded bread staling without adversely affecting the loaf volume.  相似文献   

17.
《Cereal Chemistry》2017,94(6):991-1000
Wheat, an important crop in North Dakota and the United States, is often used for bread. Health concerns related to chronic diseases have caused a shift toward consumption of whole wheat bread. There has been some indication that the rate and amount of starch digestibility of whole wheat breads may be lower than for their refined flour counterparts. This research investigated the components of whole wheat bread that may reduce starch digestibility and impact nutritional quality. Six formulations of flour were used, which included two refined flours, two whole wheat flours, and two whole wheat flours with added starch. The starch was added to whole wheat flours to increase the starch level to that of the refined flour so that we can determine whether or not the dilution of the starch in whole wheat bread was a factor in lowering the estimated glycemic index (eGI) of whole wheat bread. White and whole wheat flours and breads were evaluated for chemical composition, baking quality by 1 , and eGI by the Englyst assay. Whole wheat breads had significantly (P < 0.05) higher mineral, protein, arabinoxylan, and phenolic acid contents, as well as significantly (P < 0.05) lower eGI. The starch molecular weight was also significantly (P < 0.05) higher for whole wheat and whole wheat + starch breads compared with white breads. The eGIs of refined flour breads were 93.1 and 92.7, whereas the eGIs of whole wheat and whole wheat + starch breads ranged from 83.5 to 85.1. Overall, several factors in the whole wheat bread composition can be found to affect the quality and starch hydrolysis.  相似文献   

18.
Two field trials using four New Zealand wheat cultivars were undertaken to observe the effects of nitrogen and sulfur fertilization on protein composition, mixing requirements, and dough strength and to compare the results with that observed with a single cultivar, Otane. The results confirmed that adequate sulfur fertilization was necessary to ensure lower dough mixing requirements. The existence of a nexus between mixing requirements and dough strength was confirmed and genotype has significant effects on it. Variation in the content of HMW‐GS in the protein corresponded to changes in dough mixing requirement of Otane. Across the four cultivars, dough mixing requirements (mechanical dough development work input and mixograph development time) and dough strength (Extensigraph resistance to extension) depended on different aspects of protein composition. As the content of polymeric proteins increased, MDD work input increased, but mixograph development time decreased, while the effect on Rmax was small. Rmax, however, was more affected by either the content of small monomerics in the flour or the ratio between HMW‐GS peak area to total gliadin peak area. The ratio of MDD work input to Rmax was largely explained by the gliadin content of the flour. Thus, depending on the genetic background, it should be possible to adjust dough mixing requirements by modifying overall HMW‐GS, LMW‐GS, or gliadin content while maintaining dough strength.  相似文献   

19.
This study evaluated the influence of calcium and magnesium ions on the empirical rheological properties of wheat flour to verify possible effects of these ions on processing because, in addition to their nutritional importance, they are also responsible for water hardness. Calcium (0–1.30 g/100 g) and magnesium (0–0.34 g/100 g) ions from sulfate salts were added to wheat flour, according to a central composite rotatable design. The farinograph and extensigraph properties of wheat flour and its mixtures were evaluated. The results were analyzed by response surface methodology. Calcium ions stood out for increasing water absorption, decreasing mixing stability, and producing a delayed effect on dough extensibility (reduced at 135 min). Magnesium ions influenced most flour rheological properties in a similar manner to oxidizing agents (increased dough stability, increased resistance to extension, and reduced extensibility), thus proving to be a possible replacement agent for these additives. An interaction effect of the combined calcium and magnesium ions was observed on dough development time. The results showed that effects on processing can occur when wheat flour fortification is made, and adaptations on wheat flour specifications, product formulation, and processing parameters may be required.  相似文献   

20.
The network‐forming attributes of gluten have been investigated for decades, but no study has comprehensively addressed the differences in gluten network evolution between strong and weak wheat types (hard and soft wheat). This study monitored changes in SDS protein extractability, SDS‐accessible thiols, protein surface hydrophobicity, molecular weight distribution, and secondary structural features of proteins during mixing to bring out the molecular determinants of protein network formation in hard and soft wheat dough. Soft wheat flour and dough exhibited greater protein extractability and more accessible thiols than hard wheat flour and dough. The addition of the thiol‐blocking agent N‐ethylmaleimide (NEM) resulted in similar results for protein extractability and accessible thiols in hard and soft wheat samples. Soft wheat dough had greater protein surface hydrophobicity than hard wheat and exhibited a larger decrease in surface hydrophobicity in the presence of NEM. Formation of high‐molecular‐weight (HMW) protein in soft wheat dough was primarily because of formation of disulfides among low‐molecular‐weight (LMW) proteins, as indicated by the absence of changes in protein distribution when NEM was present, whereas in hard wheat dough the LMW fraction formed disulfide interaction with the HMW fraction. Fourier transform infrared spectroscopy indicated formation of β‐sheets in dough from either wheat type at peak mixing torque. Formation of β‐sheets in soft wheat dough appears to be driven by hydrophobic interactions, whereas disulfide linkages stabilize secondary structure elements in hard wheat dough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号