首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Cereal Chemistry》2017,94(2):251-261
The objective for this study was to investigate the effectiveness of scaled‐up infrared (IR) heating followed by tempering steps to dry freshly harvested rough rice. An industrial‐type, pilot‐scale, IR heating system designed to dry rough rice was used in this study. The heating zone of the equipment had catalytic IR emitters that provided heat energy to the sample as it was conveyed on a vibrating belt. The sample comprised freshly harvested rough rice of long‐grain pureline (Cheniere), long‐grain hybrid (6XP 756), and medium‐grain (CL 271) cultivars at initial moisture contents of 23, 23.5, and 24% wb, respectively. Samples at a loading rate of 1.61 kg/m2 were heated with IR of radiation intensity 5.55 kW/m2 for 30, 50, 90, and 180 s followed by tempering at 60°C for 4 h, at a product‐to‐emitter‐gap size of 450 mm, in one‐ and two‐pass drying operations. Control samples were gently natural air dried in an equilibrium moisture content chamber set at relative humidity of 65% and temperature of 26°C to moisture content of 12.5% wb. The effects of IR treatments followed by tempering on percentage points of moisture removed, head rice yield, energy use, rice color, and pasting characteristics were evaluated. For all cultivars, percentage point moisture removed increased with increase in IR drying duration. For all rice cultivars, one‐pass IR treatments for 180 s resulted in head rice yield significantly lower than that of rice dried with natural air in the controlled‐environment conditions (P < 0.05). Energy required to dry rice increased with increase in drying duration. Viscosity values of all the experimental samples were significantly greater (P value < 0.05) than that of the control samples for all the cultivars, except those treated with IR for 180 s. There was a significant difference (P < 0.05) in the color index (ΔE ) of treated milled samples and the controls. In conclusion, the study provided information crucial to understanding the effects of scaled‐up radiant heating and tempering of rough rice on drying rates and rice quality for long‐grain pureline, long‐grain hybrid, and medium‐grain rice cultivars.  相似文献   

2.
The effects of drying conditions, final moisture content, and degree of milling on the texture of cooked rice varieties, as measured by texture profile analysis, were investigated. Instrumentally measured textural properties were not significantly (α = 0.05) affected by drying conditions, with the exception of cohesiveness. Cohesiveness was lower in rice dried at lower temperatures (18°C or ambient) than in that dried at the higher commercial temperatures. Final moisture content and degree of milling significantly (α = 0.05) affected textural property values for adhesiveness, cohesiveness, hardness, and springiness; their effects were interdependent. The effects of deep milling were more pronounced in the rice dried to 15% moisture than that dried to 12%. In general, textural property values for hardness were higher and those for cohesiveness, adhesiveness, and springiness were lower in regular-milled rice dried to 15% moisture than in that dried to 12%. In contrast, hardness values were lower and cohesiveness, adhesiveness, and springiness values were higher in deep-milled rice dried to 15% moisture than in that dried to 12% moisture. Deep milling resulted in rice with lower hardness values and higher cohesiveness, adhesiveness, and springiness values.  相似文献   

3.
Rapid drying with high‐temperature air has gained interest in the rice industry, but the effects of elevated‐temperature exposure on physicochemical properties of rice are of concern. This study investigated the effects of exposing rough rice to elevated temperatures for various durations without removing moisture. Physicochemical property response was evaluated in terms of head rice yield (HRY), germination rate (GR), milled‐rice yellowing, pasting properties, and gelatinization temperatures. Two long‐grain cultivars (pure‐line Wells and hybrid CL XL729) at initial moisture contents (IMCs) of 17.9 and 18.6%, respectively, and dried moisture content (DMC) of 12.5%, were hermetically sealed and exposed to 40, 60, and 80°C for various durations. Exposure to 80°C of IMC samples of Wells and CL XL729 resulted in a significant (2.3–2.5 percentage point) reduction in the HRYs. A 2 hr exposure of both cultivars at IMC level to 60°C completely inhibited GR, and exposure to 80°C of the cultivars at both moisture content (MC) levels immediately inhibited GR. Exposure to 80°C for almost all durations and 60°C for durations over 4 hr produced significant yellowing in both cultivars at IMC. Significant yellowing in both cultivars at DMC was also observed during a 28 day storage following 80°C exposure. In general, peak viscosities of both cultivars at IMC increased only after extended exposure to 40 and 60°C, but peak viscosities of the cultivars exposed to 80°C increased sharply and immediately upon exposure. No significant differences were observed in gelatinization temperatures of either cultivar at either MC level from elevated‐temperature exposure. Results from this study suggest that extreme‐temperature exposure of rough rice affects HRY, GRs, yellowing, and pasting properties of rice, but the extent of impact is MC dependent.  相似文献   

4.
Flours and starches from rough rice dried using different treatment combinations of air temperature (T) and relative humidity (RH) were studied to better understand the effect of drying regime on rice functionality. Rough rice from cultivars Bengal and Cypress were dried to a moisture content of ≈12% by three drying regimes: low temperature (T 20°C, RH 50%), medium temperature (T 40°C, RH 12%), and high temperature (T 60, RH 17%). Head rice grains were processed into flour and starch and evaluated for pasting characteristics with a Brabender Viscoamylograph, thermal properties with differential scanning calorimetry, starch molecular‐size distribution with high‐performance size‐exclusion chromatography (HPSEC), and amylopectin chain‐length distribution with high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). Lower head rice and starch yields were obtained from the batch dried at 60°C which were accompanied by an increase in total soluble solids and total carbohydrates in the pooled alkaline supernatant and wash water used in extracting the starch. Drying regime caused no apparent changes on starch molecular‐size distribution and amylopectin chain‐length distribution. Starch fine structure differences were due to cultivar. The pasting properties of flour were affected by the drying treatments while those of starch were not, suggesting that the grain components removed in the isolation of starch by alkaline‐steeping were important to the observed drying‐related changes in rice functionality.  相似文献   

5.
The effects of degree of milling on pasting properties of medium‐grain (cv. Bengal and Orion) and long‐grain rice (cv. Cypress and Kaybonnet) were quantified using a Brabender ViscoAmylograph and a Rapid Visco Analyser. For all the cultivars tested, surface and total lipid contents decreased as the degree of milling increased. The peak viscosities for all rice increased with the degree of milling and the rates of increase were higher for medium‐grain than long‐grain cultivars. Degree of milling did not have a consistent effect on final viscosity for all the cultivars tested.  相似文献   

6.
The effects of extruding temperatures and subsequent drying conditions on X‐ray diffraction patterns (XRD) and differential scanning calorimetry (DSC) of long grain (LG) and short grain (SG) rice flours were investigated. The rice flours were extruded in a twin‐screw extruder at 70–120°C and 22% moisture, and either dried at room temperature, transferred to 4°C for 60 hr, or frozen and then dried at room temperature until the moisture was 10–11%. The dried materials were milled without the temperature increasing above 32°C. XRD studies were conducted on pellets made from extruded and milled flours with particle sizes of 149–248 μm; DSC studies were conducted from the same material. DSC studies showed that frozen materials retrograded more than the flours dried at room temperature. The LG and SG samples had two distinct XRD patterns. The LG gradually lost its A pattern at >100°C, while acquiring V patterns at higher temperatures. SG gradually lost its A pattern at 100°C but stayed amorphous at the higher extruding temperatures. DSC analysis showed that retrograded flours did not produce any new XRD 2θ peaks, although a difference in 2θ peak intensities between the LG and SG rice flours was observed. DSC analysis may be very sensitive in detecting changes due to drying conditions, but XRD data showed gradual changes due to processing conditions. The gradual changes in XRD pattern and DSC data suggest that physicochemical properties of the extruded rice flours can be related to functional properties.  相似文献   

7.
The objective of this research was to determine the influence on drying characteristics and resultant milling quality of storing high moisture content (MC) rough rice (Oryza sativa L. ‘Bengal’ and ‘Cypress’) under various conditions and durations before drying. Immediately after harvest, drying experiments were performed with samples of both cultivars using two drying air conditions: 52°C with 25% rh and 60°C with 17% rh. Rough rice from each cultivar also was stored for 27 and 76 days at ‐9 or 4°C. After storage, all samples were dried under the same two drying air conditions as at harvest. Head rice yields (HRY) were determined for all dried samples. There were no significant differences between the drying rates or resultant HRY of Bengal or Cypress rice samples stored for either 27 or 76 days at both storage temperatures and then dried compared with the HRY of samples dried immediately after harvest. This research shows that it may be possible to store high MC rice for extended periods of time without detrimental effects on HRY.  相似文献   

8.
9.
The surface lipids and free fatty acids (FFA) content of head and broken rice samples generated through milling after various drying treatments were studied. Long grain cultivars Francis, Wells, and Cypress, and medium grain cultivar Bengal were dried under three air conditions (mild 25°C, 50% rh; moderate 45°C, 40% rh; and stressed 65°C, 20% rh) for two durations (10 and 30 min). Immediately after drying, the rough rice samples were placed in a conditioning chamber to continue drying slowly to ⋍12.5% moisture content (MC), which occurred within three to five days. After dehulling, a McGill No. 2 mill was used to mill the samples for 30 sec. The head rice yield (HRY) for all rice samples were within the range of 40–68%. Rice surface lipid was extracted with isopropanol (IPA) and the lipid and FFA content of the IPA extracts were determined. Broken rice kernels had significantly greater surface lipid and FFA content than head rice kernels. The surface FFA contents of broken kernels were within the range of 0.045–0.065% of broken rice mass, while that of head rice was 0.027–0.040%. Broken ricehad greater b values indicating greater yellow color than did head rice.  相似文献   

10.
《Cereal Chemistry》2017,94(4):683-692
In‐bin, on‐farm drying systems for rough rice present challenges for maintaining kernel quality when drying fronts stall and the top layer of grain maintains its harvest moisture content (MC) for extended periods. This high MC, in addition to ambient temperatures in early autumn in the Mid‐South United States, creates ideal conditions for quality losses to occur. This study evaluated the effects of rough rice storage at MCs of 12.5, 16, 19, and 21% for up to 16 weeks at temperatures of 20, 27, and 40°C on milling yields, kernel color, and functionality of three long‐grain cultivars. Head rice yield was negatively impacted only after other reductions in quality had occurred. Temperature‐specific discoloration patterns were observed at 27 and 40°C in 2014; the uniquely discolored kernels seen in 2014 at 27°C were absent from samples in 2015 under identical conditions. Peak viscosity, breakdown, and final viscosity tended to increase over storage duration at 20 and 27°C and all storage MCs but plateaued after 8 weeks. Storage of rice at 40°C and all MCs greatly reduced peak viscosity after 6 weeks. To prevent quality losses, in‐bin dryers should be monitored closely to avoid exceeding the thresholds of storage MC, temperature, and duration identified here.  相似文献   

11.
Germinated brown rice is considered a more nutritious and palatable cooked product than conventional brown rice. However, germination usually decreases rice milling yield and alters some physicochemical properties. Parboiling is commonly used to increase milling yield and retain nutrients, but it also changes rice color and texture. The objective of this study was to investigate the effect of parboiling on milling, physicochemical, and textural properties of a medium‐grain and a long‐grain rice after germination at varying durations. Germinated rice samples of three germination durations were prepared with one germination time before the optimum time at which 70% of rice revealed hull protrusion, the optimum time, and one time after. Germinated rice was then immediately parboiled at 120°C for 20 min and was then immediately dried. The milling, physicochemical, and textural properties of parboiled germinated rice from both cultivars were determined. Parboiling significantly decreased the percentage of brokens, whiteness, and the apparent amylose content and increased γ‐aminobutyric acid content (GABA) in the nongerminated rice and rice at the first germination duration for both cultivars. Parboiling reduced pasting viscosities for both cultivars, but Jupiter still exhibited higher pasting viscosities than Wells. Cooked parboiled germinated rice was overall softer than nonparboiled rice because of kernel splitting, but Wells remained harder and less sticky than Jupiter. In conclusion, it is beneficial to combine parboiling with germination to enhance nutritional values and improve milling properties without affecting textural properties for both rice cultivars.  相似文献   

12.
The expansion of value‐added uses for rice has created a demand for quantitative models of functional changes during postharvest handling. Consequently, this study evaluated the effects of postharvest parameters on the functional properties of long‐grain (cvs. Cypress and Kaybonnet) and medium‐grain (cv. Bengal) rice. The experimental treatments included rough rice drying conditions (low vs. high temperature drying), storage moisture content (10, 12, and 14%), storage temperature (4, 21, and 38°C), and storage duration (up to 36 weeks). Milling, cooking, and amylograph pasting properties were analyzed. Polynomial models (up to third‐order) were developed to describe the effects of postharvest factors on the functional properties. Drying treatments, storage moisture content, and storage duration affected (P < 0.05) all of the functional properties. Storage temperature influenced (P < 0.01) cooking and pasting properties, but not milling properties. Overall, there were significant interactions among the postharvest parameters. Additionally, these factors were related to the functional properties by higher‐order relationships.  相似文献   

13.
The structural features of rice starch that may contribute to differences in the functionality of three long‐grain rice cultivars were studied. Dried rough rice samples of cultivars Cypress, Drew, and Wells were analyzed for milling quality, grain physical attributes, and starch structures and physicochemical properties. Drew was lower in head rice yield and translucency and higher in percentage of chalky grains compared with Cypress and Wells. Apparent amylose content (21.3–23.1%), crude protein (8.3–8.6%), and crude fat (0.48–0.64%) of milled rice flours were comparable, but pasting properties of rice flours as measured by viscoamylography, as well as starch iodine affinity and thermal properties determined by differential scanning calorimetry were different for the three cultivars. Drew had higher peak, hot paste, and breakdown viscosities, and gelatinization temperature and enthalpy. Molecular size distribution of starch fractions determined by high‐performance size‐exclusion chromatography showed that the three samples were similar in amylose content (AM) (20.0–21.8%) but differed in amylopectin (AP) (64.7–68.3%) and intermediate material (IM) (10.9–13.5%). Drew had highest AP and lowest IM contents, whereas Cypress had the lowest AP and highest IM contents. High‐performance anion‐exchange chromatography of isoamylase‐debranched starch indicated that the AP of Drew was lower in A and B1 chains but higher in B2, B3, and longer chains.  相似文献   

14.
《Cereal Chemistry》2017,94(3):539-545
Fissuring caused by rapid moisture adsorption generates broken kernels upon milling; brokens are often ground to flour. The recent increase in demand for rice flour has promoted interest in brokens. This study investigated the physical and functional characteristics of brokens resulting from milling lots with various levels of moisture adsorption‐induced fissuring. Two long‐grain (LG) cultivars and one medium‐grain (MG) cultivar were conditioned to five initial moisture contents (IMCs), rewetted, and then reconditioned to 12% moisture content. Brown rice fissure enumeration and milling analyses as well as size distribution and functionality analyses of brokens were conducted. As IMC decreased, the percentage of fissured kernels increased and, consequently, the amount of brokens generated increased. Although the number of fissures/kernel also increased with decreasing IMC, the mass distribution of the resultant brokens was not affected by IMC. Across all IMC levels, the mass percentage of the medium‐sized brokens was greatest for the LG cultivars, whereas that of the large‐sized brokens was greatest for the MG cultivar. Regardless of IMC, peak, setback, and final viscosities were greatest for head rice and decreased significantly with decreasing size of brokens. Thus, brokens of different sizes have different functional properties and, hence, may be fractionated for different end‐use applications.  相似文献   

15.
Elevated nighttime air temperatures (NTATs) occurring during critical grain‐filling stages affected rice physicochemical properties, which impacted functional quality. Six cultivars were grown at multiple field locations from northern to southern Arkansas during 2007 to 2010. Nighttime temperatures were recorded throughout production at each of the locations, and 95th percentiles of NTATs were calculated for each cultivar's reproductive (R) stages. Amylose content and crude protein content decreased linearly, whereas total lipid content increased linearly, with increasing NTATs occurring during the grain‐filling stages (R6–R8). Effects of NTAT on proximate composition influenced functional properties. Peak viscosities increased linearly as NTAT increased, whereas setback viscosities decreased. Setback viscosities were linearly correlated to NTATs for medium‐grain cultivars, but correlations were quadratic for the long‐grain cultivars. Gelatinization temperatures increased linearly with increasing NTAT. The R stages in which correlations were strongest varied by cultivar and by property, hypothesized to result from differences in kernel development patterns among cultivars. These findings have significant implications for rice production scientists and processors, in that understanding the effects of NTAT on physicochemical and functional properties may help explain and reduce quality variation.  相似文献   

16.
Tempering has been shown in literature to preserve head rice yield after heated air drying. Most reported tempering work was done adiabatically at a temperature below that for rice drying. In this study, the effect of a tempering temperature above that for rice drying on the whole kernel percentage was investigated. High‐temperature tempering is an effective way to preserve the whole kernel percentage for rice dried at a raised temperature (e.g., 60°C) at which head rice yield would otherwise incur a pronounced reduction without tempering. Tempering helped relax the strains inside a rice kernel induced by internal stresses developed during the drying process. The strains had two components (elastic component and viscous component) due to the viscoelasticity of rice kernels. The reduction of moisture content gradients inside a rice kernel during tempering helped eliminate the elastic component of the strains due to the elasticity of the rice kernel. Results showed that to effectively eliminate the viscous component of the strains due to the viscosity of the rice kernel, tempering temperatures must be kept well above the glass transition temperature of the rice kernel. A tempering temperature below the glass transition temperature failed to preserve the whole kernel percentage. For example, with a tempering temperature of 80°C and a tempering duration of 80 min, the whole kernel percentage for the rice with an initial moisture content of 20.4% wb dried at 60°C and 17% rh for 120 min down to 10.2% wb (10.2 percentage points of moisture content removal in one drying pass) was preserved to a level close to that of the control sample.  相似文献   

17.
Eight U.S. long‐grain rice cultivars were studied for chemical compositions, physicochemical properties, and leaching characteristics in relation to hardness and stickiness of rice flour paste and cooked rice. There were differences in the chemical composition of rice kernels among the eight rice cultivars, including crude protein (6.6–9.3%), crude fat (0.18–0.51%), and apparent amylose content by iodine colorimetry (19.6–27.0%). Differences were also observed in gelatinization temperatures and enthalpies, pasting temperatures and viscosities, leached/insoluble amylose, soluble solids, and hardness and stickiness of rice flour pastes and cooked rice kernels. The quantity and molecular size distribution of the leached starch molecules varied greatly among the samples. Protein and crude lipid contents negatively correlated with hardness of rice flour paste and cooked rice, but positively correlated with stickiness. Apparent amylose content correlated with gel properties but not cooked rice texture, whereas the ratio of A and short B chains to long B chains of amylopectin correlated significantly with cooked rice texture.  相似文献   

18.
Milling data of four long-grain rice cultivars were analyzed to determine the uniformity in the slope of their curves for head rice yield (HRY) versus the corresponding degree of milling (DOM). The data set for each cultivar comprised samples that had been subjected to various drying air conditions and durations and milled over a range of moisture contents. All treatment combinations were split and milled for either 15, 30, 45, or 60 sec in a McGill no. 2 laboratory mill to obtain HRY versus DOM data. Linear relationships between HRY and DOM, as observed in past research, were confirmed. This implies that as rice is milled to greater extents (higher DOM), the HRY decreases linearly. Within the bounds of the experimental levels tested, neither the drying air condition nor drying duration affected the rate at which HRY changed with DOM. However, the cultivar and the moisture content at which the rice was milled significantly (P < 0.05) influenced this rate. At higher milling moisture contents, the decrease in HRY per unit of increase in the DOM was greater than at lower moisture contents. While not conclusive, there was an indication of a relationship between the average kernel thickness of a cultivar and the HRY versus DOM slope.  相似文献   

19.
High temperature during grain filling has been identified as a major factor in the end-use properties of bread wheat (Triticum aestivum L.). Our objectives were to assess the effect of high temperature during maturation on the grain characteristics, milling quality, and flour quality of hard red winter wheat. In three separate experiments, plants of wheat cultivar Karl 92 were subjected to regimes (day-night) of 20–20, 25–20, 30–20, and 35–20°C from 10 and 15 days after anthesis (DAA) until ripeness, and 25–20, 30–20, and 35–20°C from 20 DAA until ripeness. In other experiments, plants of wheat cultivars Karl 92 and TAM 107 were dried at 20 and 40°C, and spikes of Karl 92 were dried at different temperature and humidity conditions to asses the effects on quality of high temperature and drying rates during grain ripening. Flour yield correlated positively with kernel weight and diameter, test weight, and proportion of large kernels. Flour yield decreased as temperature increased and correlated negatively with hardness index and proportion of small grains. High growth temperatures and rapid grain desiccation decreased mixing time and tolerance of the flours. The greatest damage occurred when high temperature was maintained continuously from early grain filling until ripeness. Weakening of dough properties by rapid desiccation during ripening suggest that temperature, humidity, and possibly soil moisture all contribute to the final quality of bread wheat.  相似文献   

20.
Three sample geometries, two different instrument types, and two spectral collection modes (reflectance and transmission) were used to assess rice quality and develop chemometric models for composition and sensory characteristics. Rice samples (120) including three cultivars, two growing locations, five drying treatments, two moisture levels, and two levels of milling were scanned in two locations. Data collected for modeling included amylose, protein, moisture, whiteness, transparency, and milling degree. Taste and texture were determined with the use of separate trained sensory panels. The NIR models show that composition is best modeled in the 1,100–2,500 nm range, while the physical properties of whiteness, transparency and milling degree are best modeled in the 750–1,050 nm range. Additional models were developed using limited data subsets of the spectral data points. In some cases, adequate models were generated with as few as 20 wavelength data points. Results show that no one spectroscopic protocol is best for all analytes in rice and that for any complex food matrix more than one preprocessing or spectral range protocol is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号