首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the fastest growing industries in the United States is the fuel ethanol industry. In terms of ethanol production capability, the industry has grown by more than 600% since the year 2000. The major coproducts from corn‐based ethanol include distillers dried grains with solubles (DDGS) and carbon dioxide. DDGS is used as a livestock feed because it contains high quantities of protein, fiber, amino acids, and other nutrients. The goal of this study was to quantify various chemical and physical properties of DDGS, distillers wet grains (DWG), and distillers dried grain (DDG) from several plants in South Dakota. Chemical properties of the DDGS included crude ash (5.0–21.93%), neutral detergent fiber (NDF) (26.32–43.50%), acid detergent fiber (ADF) (10.82–20.05%), crude fiber (CF) (8.14–12.82%), crude protein (27.4–31.7%), crude fat (7.4–11.6%), and total starch (9.19–14.04%). Physical properties of the DDGS included moisture content (3.54–8.21%), Aw (0.42–0.53), bulk density (467.7–509.38 kg/m3), thermal conductivity (0.05–0.07 W/m·°C), thermal diffusivity (0.1–0.17 mm2/sec), color L* (36.56–50.17), a* (5.2–10.79), b* (12.53–23.36), and angle of repose (25.7–47.04°). These properties were also determined for DWG and DDG. We also conducted image analysis and size determination of the DDGS particles. Carbon group characterization in the DDGS and DDG samples were determined using NMR spectroscopy; O‐alkyl comprised >50% of all DDGS samples. Results from this study showed several possibilities for using DDGS in applications other than animal feed. Possibilities include harvesting residual sugars, producing additional ethanol, producing value‐added compounds, using as food‐grade additives, or even using as inert fillers for biocomposites.  相似文献   

2.
3.
Whole sorghum flour was fermented (a five‐day natural lactic acid fermentation) and dried under forced draught at 60°C, and evaluated for its effect on sorghum and wheat composite bread quality. In comparison with unfermented sorghum flour, fermentation decreased the flour pH from 6.2 to 3.4, decreased total starch and water‐soluble proteins, and increased enzyme‐susceptible starch, total protein, and the in vitro protein digestibility (IVPD). Fermentation and drying did not decrease the pasting temperature of sorghum flour, but slightly increased its peak and final viscosity. In comparison with composite bread dough containing unfermented sorghum flour, fermented and dried sorghum flour decreased the pH of the dough from 5.8 to 4.9, increased bread volume by ≈4%, improved crumb structure, and slightly decreased crumb firmness. IVPD of the composite bread was also improved. Mixing wet fermented sorghum flour directly with wheat flour (sourdough‐type process) further increased loaf volume and weight and reduced crumb firmness, and simplified the breadmaking process. It appears that the low pH of fermented sorghum flour inactivated amylases and increased the viscosity of sorghum flour, thus improving the gas‐holding capacity of sorghum and wheat composite dough. Fermentation of sorghum flour, particularly in a sourdough breadmaking process, appears to have considerable potential for increasing sorghum utilization in bread.  相似文献   

4.
To alleviate the adverse effects (grittiness and high crumb firmness) caused by the inclusion of sorghum flour in composite breads, sorghum grain was malted with the aim of decreasing the gelatinization temperature and increasing the water‐holding capacity of sorghum flour. Four different heat treatments were investigated: drying the malt at high temperatures (50–150°C), stewing, steaming, and boiling before drying the malt at 80°C. Malting decreased the pasting temperature of sorghum to values approaching those of wheat flour, but the paste viscosity was very low. Increasing the malt drying temperature inactivated the amylases but gave malts of darker color and bitter taste. Stewing, steaming, and boiling the malt before drying almost completely inactivated the amylases and increased the enzyme‐susceptible starch content and the paste viscosity of malt flours. Bread made with boiled malt flour (30%) had an improved crumb structure, crumb softness, water‐holding capacity, and resistance to staling, as well as a fine malt flavor compared with the bread made with grain sorghum flour (30%). Consumers preferred the malted sorghum bread over the bread made with plain sorghum flour.  相似文献   

5.
The aim of the current study was to identify factors influencing the technological functionality of fermented bran. The influences of fermentation type and type of wheat bran on the microbial community, bioactivity, arabinoxylans (AX), and activity of xylanases were studied in the bran ferments. Furthermore, technological quality of ferments was established by using them to replace wheat in baking with a 20% substitution level. Solubilization of AX and endogenous xylanase activity of bran were influenced by the type of bran, fermentation type, and conditions. Peeled bran had a clearly reduced microbial load and different microbial community in comparison to native bran. Bran from peeled kernels contained 10‐fold lower activities of endogenous xylanases in comparison to native bran. Yeast fermentation of bran from peeled kernels increased the level of folates (+40%), free phenolic acids (+500%), and soluble AX (+60%). Bread containing yeast‐fermented peeled bran had improved volume (+10–15%) and crumb softness (25–35% softer) in comparison to unfermented counterparts. Solubilization of AX during the 20 hr fermentation and decreased endogenous xylanase activity are proposed as the main reasons for the improved technological functionality of fermented bran.  相似文献   

6.
The digestibility and hydration properties of wet‐ground submicron‐scale rice flour were compared with those of dry‐ground coarser microscale flours. The submicron flour (mean size 0.6 µm) was produced in a wet‐media mill with 0.3 mm zirconia beads by continuous 24 h pulverization. The solubility, water absorption index, and swelling power increased as the mean particle size decreased, reaching maximum values in the submicron flour. Starch damage was high in the submicron flour, with the absence of intact starch granules. The digestibility also increased as the particle size decreased, and it was highest in the submicron flour. These results show that wet‐ground submicron rice flour has different functional properties from dry‐ground coarser flour. The digestibility was more strongly influenced by starch damage and the water absorption index than by the mean particle size.  相似文献   

7.
In this study, attempts were made to improve the characteristics of starch‐based plastic foams by blending starch with polylactic acid (PLA), a biodegradable polymer made from renewable sources. Formulations of the foams (types of starch, ratio of starch to polymer, and moisture content) were optimized. Physical and mechanical properties of the foams, including expansion, unit density, bulk density, water solubility index (WSI), spring index, and compressibility on both single piece and bulk samples were determined. The addition of the PLA polymer to regular (25% amylose) and waxy corn starches significantly improved the physical and mechanical properties of the extruded foams. Foams made from waxy starch had better radial expansions, higher WSI, higher compressibilities, and lower spring indices than those of regular starch foams. Both regular and waxy starches produced foams with similar unit and bulk densities, bulk compressibilities, and bulk spring indices. Increasing PLA polymer contents increased the radial expansions and spring indices and significantly reduced the unit and bulk densities and bulk compressibilities. Changing the PLA content had no significant effect on WSI, compressibilities, and bulk spring indices. Increasing the moisture content adversely affected foam characteristics. The formulation containing waxy starch, 40% PLA, and 19% moisture produced a loose fill foam with the best physical characteristics and mechanical properties.  相似文献   

8.
《Cereal Chemistry》2017,94(3):369-376
The by‐product of rice milling (BRM), known as commercial rice bran, is the coproduct of rice processing. It is a mixture of outer layers of the grain, the embryo, and some of the starchy endosperm, and these are separated from brown rice to produce white, milled rice. This mixture contains a high concentration of protein (12–20%) in comparison with that of brown rice (7.1–8.3%) or white rice (6.3–7.1%) and is therefore an abundant and cheap protein source. Nearly 70% of the proteins in BRM are albumins and globulins, which are high in solubility, digestibility, and nutritional value. The BRM proteins are hypoallergenic and gluten‐free. With these properties, this type protein has many advantages as a unique and valuable protein source in markets such as protein supplements. The BRM protein can be extracted by physical, alkali, and enzymatic methods, which give yields ranging from 13% to more than 90%. This review highlights the opportunities and challenges in processing of BRM protein as a food ingredient.  相似文献   

9.
The addition of exogenous xylanases (EX‐XYL) to wheat‐based poultry feeds is a common practice today. Wheat contains xylanase inhibitors (XI) and grain‐associated xylanases (GA‐XYL), which could affect the action of the EX‐XYL. In this study, both GA‐XYL and XI activity in feeding‐quality wheat were assessed. In addition, the effect of the conditions during digestion in monogastrics and the effects of pelleting at different conditioning temperatures on GA‐XYL and XI were investigated. The GA‐XYL activity varied between no activity and 0.821 XU/g. In contrast, the XI activity was consistently high in all wheat samples and ranged between 259 and 331 IU/g. Simulating the digestive process did not affect the activities of GA‐XYL or XI. Pelleting at 85°C or higher reduced the XI activity up to 46%. GA‐XYL, however, were more heat‐sensitive, and their activity was reduced to 67% at 60°C. The extract viscosity increased and the release of reducing sugars decreased at higher conditioning temperatures. In addition, the net effect of EX‐XYL on extract viscosity increased at higher temperatures, whereas the release of reducing sugars was not affected. In conclusion, XI affected the action of EX‐XYL during the digestive process, and pelleting did not eliminate their negative effects.  相似文献   

10.
《Cereal Chemistry》2017,94(2):161-169
An improved wet method was developed to process barley into fractions concentrated in protein, (1‐3)(1‐4)‐β‐d ‐glucan (BG), starch, or other carbohydrates (CHO). Alkaline concentration, solvent to barley flour ratio (SFR), and extraction temperature were evaluated for their effects on concentration and recovery of protein, BG, starch, oil, ash, and other CHO in each fraction type. Results show that the three parameters and their interactions all had significant effects, resulting in varying nutrient concentrations and recovery rates in each type of fractions. For protein fractions, protein content varied from 37.7 to 75.2%, protein recovery from 8.5 to 75.7%, and increasing alkaline concentration and SFR improved nutrient recovery. For BG fractions, BG content ranged from 21.5 to 87.0%, BG recovery from 28.6 to 78.0%, and increasing alkaline concentration decreased BG content but increased its recovery significantly. For starch fractions, starch content varied from 76.9 to 93.9%, starch recovery from 33.6 to 63.9%, and all parameters had little effect on the nutrient concentrations, but alkaline concentration and SFR improved recovery of starch, other CHO, and mass. Overall, the improved wet method was effective in concentrating the major nutrients from barley into their respective fractions, but process optimization through manipulating the three parameters is necessary to achieve a maximum concentration or recovery rate of a nutrient of interest in a specific fraction.  相似文献   

11.
Effect of added asparagine and glycine on acrylamide content in yeast‐leavened bread was studied in a designed experiment. Added asparagine strongly increased acrylamide content in the breads, while added glycine decreased the content. The more asparagine in the dough, the stronger was the reducing effect of glycine. When glycine was applied on the surface of the fermented dough, there was also a significant reduction of acrylamide content in the bread. Addition of glycine but not asparagine caused an increased browning reaction during baking.  相似文献   

12.
Glutenins, which form the network of gluten protein, are of great importance for the quality of flour products. Glutenins can be divided into HMW and LMW subunits according to molecular weight. Three genes for LMW glutenin subunits (LMW‐GS), named lmw‐cnd1, lmw‐cnd2, and lmw‐cnd3 with open reading frames of 1,053, 903, and 969 bp, respectively, were cloned from wheat cultivar Cheyenne. Heterologous expression vectors of the three LMW‐GS were constructed, and the recombinant proteins LMW‐CND1, LMW‐CND2, and LMW‐CND3 were overexpressed in Escherichia coli. After cell disruption with ultrasound, target proteins of high purity were obtained by using Ni2+ affinity chromatography. Farinograph and TAPlus measurements were used to investigate the effects of the three LMW‐GS on the characteristics of flour and dough. The results showed that the addition of each LMW‐GS can lead to an increase in the elasticity of the dough. Moreover, LMW‐CND2 and LMW‐CND3 promoted the strength of the dough. All three LMW‐GS caused a decrease of hardness and increase of springiness and cohesiveness of dough according to texture profiling results. Consequently, all three LMW‐GS have positive effects on the processing characteristics of dough and can improve bread quality to different extents.  相似文献   

13.
《Cereal Chemistry》2017,94(3):400-408
The chemical composition, functional properties, starch digestibility, and cookie‐baking performance of bean powders from 25 edible dry bean varieties grown in Michigan were evaluated. The beans were ground into coarse (particle size ≤1.0 mm) or fine (≤0.5 mm) powders. Starch and protein contents of the bean powders varied between 34.4 and 44.5% and between 19.1 and 26.6% (dry basis [db]), respectively. Thermal properties, pasting properties, and water‐holding and oil‐binding capacities of the bean powders differed and were affected by particle size. After blending the bean powders with corn starch (bean/starch = 7:3, db), the blends were used for cookie baking following a standard method ( 1 Approved Method 10‐54.01). Generally, the cookies baked from the fine bean powders had smaller diameters, greater thicknesses, and greater hardness values than those from the coarse counterparts. Differences in the cookie‐baking performances of the bean powders were observed among the 25 varieties. Larger proportions of resistant starch (RS) were retained in the bean‐based cookies (54.7–126.7%) than in the wheat‐flour‐based cookies (10.4–19.7%) after baking. With higher contents of RS and protein, the bean‐based cookies had more desirable nutritional profiles than those baked from wheat flour alone.  相似文献   

14.
Degradation of added folic acid and native folates in micronutrient‐fortified corn masa and tortillas was evaluated using masa prepared from either nixtamalized corn flour or fresh nixtamal. Variations in masa pH, masa holding time at an elevated temperature, and iron source failed to show significant differences in folate loss in corn flour masa prepared in the laboratory. Masa was subsequently prepared from fresh nixtamal in a commercial mill in Mexico, and fortified with one of two different micronutrient premixes containing iron, zinc, B‐vitamins, and either unencapsulated or lipid‐encapsulated folic acid. Folate loss in commercial masa increased significantly with prebake masa holding time for both premixes. Unencapsulated folic acid showed a 73% loss after 4 hr of holding, compared to 60% loss for encapsulated. The difference was statistically significant, indicating a protective effect from the lipid coating. No significant differences in folate levels were found between prebake masa and baked tortillas. Holding baked tortillas for up to 12 hr also had no effect on folate levels. Native folate showed no significant losses throughout the process. Results from the commercial tortilla mill indicate that most of the loss in added folic acid occurs during prebake holding of masa, possibly from microbial degradation.  相似文献   

15.
Studies were conducted with two newly developed gluten‐free bread recipes. One was based on corn starch (relative amount 54), brown rice (25), soya (12.5), and buckwheat flour (8.5), while the other contained brown rice flour (50), skim milk powder (37.5), whole egg (30), potato (25), and corn starch (12.5), and soya flour (12.5). The hydrocolloids used were xanthan gum (1.25) and xanthan (0.9) plus konjac gum (1.5), respectively. Wheat bread and gluten‐free bread made from commercial flour mix were included for comparison. Baking tests showed that wheat and the bread made from the commercial flour mix yielded significantly higher loaf volumes (P < 0.01). All the gluten‐free breads were brittle after two days of storage, detectable by the occurrence of fracture, and the decrease in springiness (P < 0.01), cohesiveness (P < 0.01), and resilience (P < 0.01) derived from texture profile analysis. However, these changes were generally less pronounced for the dairy‐based gluten‐free bread, indicating a better keeping quality. Confocal laser‐scanning microscopy showed that the dairy‐based gluten‐free bread crumb contained network‐like structures resembling the gluten network in wheat bread crumb. It was concluded that the formation of a continuous protein phase is critical for an improved keeping quality of gluten‐free bread.  相似文献   

16.
Surface‐fouling tendencies of raw light steepwater (LSW) and membrane‐filtered light steepwater (FSW) from corn wet‐milling were studied using an annular fouling probe. The probe contained a heated surface to simulate the surface temperature of an evaporator. The heated region caused a fraction of solids in the steepwater to adhere to the surface, thus fouling the probe over time. FSW samples were prepared by filtering LSW using a microfiltration membrane with a nominal pore size of 0.1 μm. Fouling tendencies of both samples were established at an initial probe wall temperature of 99°C. Batches (30 L) were circulated through the fouling probe until the inner surface temperature of the probe reached 200°C. Temperature and power supplied to the probe were measured over time and used to calculate fouling resistance and rate of fouling. Measurement of maximum fouling resistance and fouling rate had a coefficient of variation (COV) of 5.1 and 7.4%, respectively. Maximum fouling resistances attained over a 12‐hr period were 0.36 and 0.049 m2 °C/kW for LSW and FSW, respectively. Average rates of fouling were 4.53 × 10‐4 and 0.82 × 10‐4 m2 °C/kW/min for LSW and FSW, respectively, showing an 80% decrease in fouling rate using microfiltration to remove 19% of solids.  相似文献   

17.
《Cereal Chemistry》2017,94(1):124-127
Two gluten‐free snacks containing chickpea, plantain, and maize flours at different concentrations were prepared. The impact of chickpea or plantain flour level on weight gain, insulin resistance, and serum lipid profile of rats fed a high‐fructose diet was evaluated. A dose of 0.93 g/kg was used in the experiments to simulate the snack consumption level by humans (average content of a small package, which is twice the portion recommended by the U.S. Department of Agriculture). Compared with a high‐fructose reference diet, consumption of both snacks decreased weight gain, fasting serum glucose, and triglycerides. The effect was more pronounced for snack B, with higher chickpea content. Consumption of these snacks may also have beneficial effects against obesity and cardiometabolic complications. Chickpea flour is a promising functional ingredient for the development of antiobesity foods.  相似文献   

18.
19.
Most studies implicitly consider soil carbon dioxide (CO2) efflux as the instantaneous soil respiration and thereby neglect possible changes in the amount of CO2 stored in the soil pore‐space. We measured the CO2 concentration profile of a well‐aerated soil continuously to evaluate the dynamics of the stored CO2 and to analyse the influence of environmental factors. For 25% of the observation period, changes in the amount of stored CO2 accounted for more than 15% of the soil‐CO2 efflux. The following factors were identified to interfere with steady‐state CO2 storage: (i) the fluctuating groundwater table altered the volume of the vadose zone, causing viscous airflow in air‐filled soil pores, (ii) atmospheric turbulence caused pressure‐pumping at the soil–atmosphere interface and (iii) intense rain greatly reduced the diffusivity of the uppermost soil layer. The friction velocity above the canopy was strongly correlated with fluctuations in the differential pressure between soil air and atmosphere, but no static pressure gradient could be detected because of the permeable nature of the soil. Unexpected short‐term declines in the soil CO2 concentration were observed during intense rainfall events. These declines were explained by the intensified CO2 saturation deficit of the infiltrating rainwater caused by the carbonate chemistry of the soil solution.  相似文献   

20.
The sum of wheat flour and corn starch was replaced by 10, 20, or 30% whole amaranth flour in both conventional (C) and reduced fat (RF) pound cakes, and the effects on physical and sensory properties of the cakes were investigated. RF presented 33% fat reduction. The increasing amaranth levels darkened crust and crumb of cakes, which decreased color acceptability. Fresh amaranth‐containing cakes had similar texture characteristics to the controls, evaluated both instrumentally and sensorially. Sensory evaluation revealed that replacement by 30% amaranth flour decreased C cakes overall acceptability scores, due to its lower specific volume and darker color. Amaranth flour levels had no significant effect on overall acceptability of RF cakes. Hence, the sum of wheat flour and corn starch could be successfully replaced by up to 20% amaranth flour in C and up to 30% in RF pound cakes without negatively affecting sensory quality in fresh cakes. Moisture losses for all the cakes were similar, ≈1% per day during storage. After six days of storage, both C and RF amaranth‐containing cakes had higher hardness and chewiness values than control cakes. Further experiments involving sensory evaluation during storage are necessary to determine the exact limit of amaranth flour replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号