首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cereal Chemistry》2017,94(2):357-362
Celiac disease and gluten sensitivities, as well as obesity and overweight‐related disorders, have led to the investigation of gluten‐free grains and development of new food products. To address this, refined proso millet and refined corn (control), both gluten‐free grains, were used to produce four different product types (muffin, couscous, extruded snack, and porridge). The products contained four different grain combinations (100% proso millet, 75% proso millet/25% corn, 25% proso millet/75% corn, and 100% corn). All products were evaluated for their nutritional composition, in vitro starch digestibility, and expected glycemic index (eGI). Products made with refined proso millet had increased protein (7.6–11.3%), lipid (1.2–6.1%), fiber (7.0–8.8%), and phenolic content (323.5–425 μg/g) compared with those incorporating corn flour (2.5–9.0%, 0.8–4.0%, 2.1–4.1%, and 213–315 μg/g, respectively). As the proso millet content increased, the eGI decreased significantly (P < 0.05). Products made from refined proso millet appear to be good candidates for producing low‐GI, gluten‐free foods.  相似文献   

2.
The possibility to identify or develop new rice cultivars with low glycemic response was investigated. Twelve rice cultivars with a narrow range of amylose contents were selected based on their wide variation in rapid viscoanalyzer (RVA) pasting breakdown to study the relationship between starch digestibility and amylopectin fine structure and pasting properties. Rice flour samples were cooked for in vitro digestibility analysis using the standard Englyst assay. RVA was performed for pasting properties of starches. Results showed that rapidly digestible starch (RDS) was highly and negatively correlated (r = -0.86, p < 0.01; r = -0.81, p < 0.01) with FrI long and FrII intermediate/short debranched amylopectin linear chains, respectively, and positively correlated (r = 0.79; p < 0.01) with FrIII very short linear chains. Slowly digestible (SDS) starch was positively correlated (r = 0.80, p < 0.01; 0.76, p < 0.01) with FrI and FrII, respectively, and negatively correlated (r = -0.76, p < 0.01) with FrIII. RVA breakdown viscosity was positively correlated (r = 0.88, p < 0.01) with RDS and negatively correlated (r = -0.89, p < 0.01) with SDS. Thus, the RVA method potentially could be used as a screening tool for starch digestion properties. This study reveals a molecular basis in amylopectin fine structure variability for starch digestion properties in rice cultivars and could have value in identifying slowly digesting cultivars as well as developing a breeding strategy to produce low glycemic rice cultivars. Keywords: Rice; starch; RVA; amylopectin; digestibility.  相似文献   

3.
Eight U.S. long‐grain rice cultivars were studied for chemical compositions, physicochemical properties, and leaching characteristics in relation to hardness and stickiness of rice flour paste and cooked rice. There were differences in the chemical composition of rice kernels among the eight rice cultivars, including crude protein (6.6–9.3%), crude fat (0.18–0.51%), and apparent amylose content by iodine colorimetry (19.6–27.0%). Differences were also observed in gelatinization temperatures and enthalpies, pasting temperatures and viscosities, leached/insoluble amylose, soluble solids, and hardness and stickiness of rice flour pastes and cooked rice kernels. The quantity and molecular size distribution of the leached starch molecules varied greatly among the samples. Protein and crude lipid contents negatively correlated with hardness of rice flour paste and cooked rice, but positively correlated with stickiness. Apparent amylose content correlated with gel properties but not cooked rice texture, whereas the ratio of A and short B chains to long B chains of amylopectin correlated significantly with cooked rice texture.  相似文献   

4.
The objective of this study was to investigate the effects of milling and cooking conditions of cooked rice prepared from cultivar Koshihikari on in vitro starch digestibility and in vivo glucose response in humans. In addition, compression and adhesiveness tests were conducted for texture analysis of the cooked rice. Brown rice (BR) and surface‐abraded BR (SABR, ≥99.5% of the original weight) were digested more slowly than white rice (91% of the original weight) when cooked rice grain was used for the in vitro test, but they were digested more rapidly in the initial stage of the reaction when cooked rice ground by a meat grinder was used. The increase in water added for cooking significantly increased the extent of starch digestion with BR and SABR. The changes in blood glucose levels after the ingestion of cooked rice were dependent on the sample type. The cooking conditions dramatically influenced the glucose response after the ingestion of BR. A significant correlation was found between blood glucose levels at 45 min and the extent of starch digestion with ground samples, whereas no relationship was found with cooked rice grain samples for in vitro digestibility.  相似文献   

5.
Using rice samples derived from normal rice cultivars and endosperm starch mutant, we investigated key factors contributing to the enzyme digestibility of steamed rice grains. The chemical composition of polished rice grains, structural features of endosperm starch, and enzyme digestibility of steamed rice grains were examined. The protein content of polished rice grains was 4.6–9.1%, amylose content was 4–27%, the DPn of purified amylose was 900–1,600, the amylopectin short/long chain ratio was 1.2–5.9, and the enzyme digestibilities of steamed polished rice grains were 0.9–12.6 °Brix. Amylose content and RVA parameters (viscosity, breakdown, and setback) correlated significantly with enzyme digestibility of steamed rice grains. Multiple regression formulas were constructed to predict digestibility of steamed rice grain as a function of the molecular characteristics of the starch. When both amylose content and the short/long chain amylopectin ratio were used as predictor variables, they accounted for >80% of the observed variance in digestibility of steamed rice grains. Multiple regression revealed that the more digestible rice samples had starch with a lower amylose content and more short‐chain amylopectin. Reassociation of amylose‐lipid complex and recrystallization of amylopectin in the stored steamed rice grains was monitored by differential scanning calorimetry (DSC), and the observed retrogradation properties were related to the structural characteristics of starch and to the enzyme digestibility of steamed rice grains.  相似文献   

6.
The physicochemical properties, textural properties, and starch digestibility of rice cultivars grown in Mexico were evaluated. Variations existed in grain dimensions, and the rice grains were classified as medium, long, and extra long. Huimanguillo had the highest amylose content (30.4%), and A06, A92, A98, and Champoton presented the lowest amylose content (24.3–25.2%). The protein content was 7.1–11.0% and the lipid level was 0.47–1.22% among these Mexican cultivars. Champoton showed the highest temperature and enthalpy of gelatinization, and this with A98, Culiacan, and Huimanguillo had the highest enthalpy of retrogradation. Cotaxtla had the highest pasting peak, setback, and final viscosity. The texture assessment in cooked rice showed that A06 had the highest hardness, and A96 and A98 had the highest stickiness. There was little difference in the rapidly digestible starch, slowly digestible starch, and resistant starch content of tested Mexican rice cultivars. The differences in the physicochemical properties could be used to determine the end use of these Mexican rice cultivars.  相似文献   

7.
The digestibility and hydration properties of wet‐ground submicron‐scale rice flour were compared with those of dry‐ground coarser microscale flours. The submicron flour (mean size 0.6 µm) was produced in a wet‐media mill with 0.3 mm zirconia beads by continuous 24 h pulverization. The solubility, water absorption index, and swelling power increased as the mean particle size decreased, reaching maximum values in the submicron flour. Starch damage was high in the submicron flour, with the absence of intact starch granules. The digestibility also increased as the particle size decreased, and it was highest in the submicron flour. These results show that wet‐ground submicron rice flour has different functional properties from dry‐ground coarser flour. The digestibility was more strongly influenced by starch damage and the water absorption index than by the mean particle size.  相似文献   

8.
《Cereal Chemistry》2017,94(6):991-1000
Wheat, an important crop in North Dakota and the United States, is often used for bread. Health concerns related to chronic diseases have caused a shift toward consumption of whole wheat bread. There has been some indication that the rate and amount of starch digestibility of whole wheat breads may be lower than for their refined flour counterparts. This research investigated the components of whole wheat bread that may reduce starch digestibility and impact nutritional quality. Six formulations of flour were used, which included two refined flours, two whole wheat flours, and two whole wheat flours with added starch. The starch was added to whole wheat flours to increase the starch level to that of the refined flour so that we can determine whether or not the dilution of the starch in whole wheat bread was a factor in lowering the estimated glycemic index (eGI) of whole wheat bread. White and whole wheat flours and breads were evaluated for chemical composition, baking quality by 1 , and eGI by the Englyst assay. Whole wheat breads had significantly (P < 0.05) higher mineral, protein, arabinoxylan, and phenolic acid contents, as well as significantly (P < 0.05) lower eGI. The starch molecular weight was also significantly (P < 0.05) higher for whole wheat and whole wheat + starch breads compared with white breads. The eGIs of refined flour breads were 93.1 and 92.7, whereas the eGIs of whole wheat and whole wheat + starch breads ranged from 83.5 to 85.1. Overall, several factors in the whole wheat bread composition can be found to affect the quality and starch hydrolysis.  相似文献   

9.
The comparably low starch digestibility of cooked sorghum flours was studied with reference to normal maize. Four sorghum cultivars that represent different types of endosperm were used. Starch digestibilities of 4% cooked sorghum flour suspensions, measured as reducing sugars liberated following α-amylase digestion, were 15–25% lower than for cooked maize flour, but there were no differences among the cooked pure starches. After the flours were predigested with pepsin to remove some proteins, the starch digestibility of cooked sorghum flours increased 7–14%, while there was only 2% increase in normal maize; however, there was no effect of pepsin treatment on starch digestibility if the flours were first cooked and then digested. After cooking with reducing agent, 100 mM sodium metabisulfite, starch digestibility of sorghum flours increased significantly while no significant effect was observed for maize. Also, starch solubility of sorghum flours at 85 and 100°C was lower than in maize, and sodium metabisulfite increased solubility much more in sorghum than in maize. Differential scanning calorimetry results of the flour residue after α-amylase digestion did not show any peaks over a temperature range of 20–120°C, indicating that sorghum starches had all undergone gelatinization. These findings indicate that the protein in cooked sorghum flour pastes plays an important role in making a slowly digesting starch.  相似文献   

10.
Grain sorghum has been documented to have low protein digestibility relative to other cereal grains. Low protein digestibility of sorghum is most pronounced in cooked foods and is ranked slightly lower than corn as a feed grain. In this article, sorghum germ plasm is identified that has substantially higher uncooked and cooked flour in vitro protein digestibility than normal cultivars. Sorghum lines were found within a high-lysine opulation derived from the mutant P721Q that have ≈10–15% higher uncooked and ≈25% higher cooked protein digestibilities using a pepsin assay. Highly digestible sorghum grain showed little reduction in digestibility after cooking, compared to the large reduction that is typical of normal sorghum cultivars. Using the three-enzyme pH-stat method, we showed that the highly digestible lines had the same degree of peptide bond hydrolysis in ≈5 min, as was found in 60 min in the normal cultivar, P721N. Differences in protein digestibility were related to enyzme susceptibility of the major storage prolamin, α-kafirin, that comprises ≈50–60% of the total sorghum grain protein. Using the enzyme-linked immunosorbent assay (ELISA) technique to track the pepsin digestion of α-kafirin, the highly digestible lines had ≈90–95% α-kafirin digested in 60 min compared to 45–60% for two normal cultivars. γ-Kafirin, a minor structural prolamin found mainly at the periphery of protein bodies, was also somewhat more digestible in the highly digestible sorghums. Highly digestible grain was of a floury kernel type, though recently this trait has been found in a modified background. More digestible protein from sorghum grain, that additionally is high in lysine content and has a fairly hard endosperm, could be of important benefit to populations who lack adequate protein in their diets, and may, pending further studies, prove to increase the value of sorghum as a feed grain.  相似文献   

11.
An in vitro protein digestion study, using pepsin, was carried out in uncooked and cooked sorghum and maize flour samples. The digestibility values from the uncooked samples showed that sorghum presents digestibility values similar to those of maize. In the case of the cooked samples, it was found that a wet cooking procedure promotes a decrease in sorghum protein digestibility when compared to maize. Electrophoresis was used to follow the in vitro pepsin sequential digestion procedure, and infrared spectroscopy was applied to establish its efficiency. SDS-PAGE results showed that both uncooked samples (sorghum and maize) behave in a similar way. The wet cooking procedure increases the amount of high molecular weight aggregates and promotes the appearance of two nonreducible and nondigestible 45 and 47 kDa proteins. These two protein fractions are directly related to the loss of digestibility. It was also shown that in cooked sorghum the monomers (gamma-, alpha-, and beta-) are more resistant to digestion than the corresponding uncooked samples.  相似文献   

12.
The influence of albumin on the pasting and rheological properties of rice flour was investigated. Albumin was removed from the flour of three rice cultivars (Amaroo, Opus, and Langi) by water extraction and the pasting profile of the albumin‐depleted flour was analyzed using the Rapid ViscoAnalyser (RVA). Removal of albumin resulted in a significant (P < 0.5) decline in all the pasting parameters measured. When the extracted albumin was added to pure rice starch, exactly opposite trends occurred. The concentration of albumin in rice starch had a positive linear relationship with all pasting parameters measured. When the gels formed after RVA analyses were analyzed using the TA‐TX2 texture analyzer, the concentration of albumin had a positive linear relationship with hardness, but a near linear negative relationship with adhesiveness. The presence of albumin in rice starch slowed the uptake of water by starch in the initial stages of cooking, but the water uptake accelerated in later stages, and the final water absorption was higher in the samples containing albumin than in pure starch. The water‐soluble nature of albumin suggests that protein‐water‐starch interactions could be responsible for its effect on the physical properties of rice.  相似文献   

13.
The influence of the cold‐water‐soluble fraction on gelatinization and pasting properties of rice flour was investigated. The cold‐water‐soluble fraction was removed by water extraction under room temperature. The gelatinization properties of untreated and treated flour were analyzed with a differential scanning calorimeter, and pasting profiles were measured with a rapid viscosity analyzer. The removal of the cold‐water‐soluble fraction resulted in the formation of a loosened starch granule structure, a morphological alteration of protein bodies, a markedly lower gelatinization temperature, and a significantly higher pasting enthalpy. The impact on paste viscosity followed different trends. In some cultivars that had lower endogenous amylase activity, the paste viscosity was greatly reduced by the removal of the cold‐water‐soluble fraction. In others, the higher level of endogenous amylase activity led to more soluble saccharides being released through starch hydrolysis. Removing the soluble fraction caused a remarkable increase in peak viscosity. The overall effect on paste viscosity of removing the cold‐water‐soluble fraction was attributed to multiple factors, involving loosening of the starch granule structure, alteration of morphology of protein bodies, and the release of saccharides by endogenous amylase activity.  相似文献   

14.
In search of a way to improve the nutritional profile of noodles, we prepared them with various mixtures of durum wheat flour and isolated plantain starch, and tested their proximal composition. Cooked noodles were assessed for in vitro starch digestibility, indigestible fraction content, and predicted glycemic index. The protein content declined with the addition of plantain starch. Both total starch (TS) level and the content of starch available for digestible enzymes (AS) decreased as the plantain starch level increased, a pattern that may be related to increased starch lixiviation during cooking of noodles containing plantain starch. There was an inverse pattern for resistant starch (RS). RS content in control (durum wheat flour) noodles was ≈50% lower than in the samples containing plantain starch. The soluble indigestible fraction (SIF) content in all samples was higher than the insoluble counterpart (IIF). The total indigestible fraction varied according to the wheat substitution level. Although the hydrolysis index (HI) and predicted glycemic index (pGI) of plantain starch noodles were moderate and decreased as the plantain starch proportion rose. These composite noodles exhibited higher indices than the control sample, a phenomenon that may also be dependent on the product physical structure. Results indicate that in spite of the increased starch digestion rate, plantain starch noodles are a better source of indigestible carbohydrates than pure wheat starch pasta. This might have dietetic applications.  相似文献   

15.
Long‐grain nonparboiled, long‐grain parboiled, and American basmati‐type brown rice were bombarded with parboiled rice flour particles to create microperforations on the water‐resistant outer layer of the kernels. These microperforations in the treated rice significantly increased the rate of hydration. Optimum conditions to produce microperforations without removal of the bran included air pressure maintained at 413 kPa and a parboiled rice flour average particle size of 124 μm. The optimum blasting time was 40–60 sec, depending on the type of rice. The relative hardness of the fully cooked flour‐blasted rice was the same at half the cooking time of the untreated brown rice but % water absorption of the untreated flour‐blasted brown rice was higher because it required longer time to cook. Overall, untreated brown rice was ≈4.7% higher in % water absorption due to longer cooking time in comparison with the treated counterpart. The blasting treatment resulted in shorter cooking time and firmer and less gummy cooked rice as compared to freshly cooked untreated brown rice.  相似文献   

16.
Gluten‐free and high indigestible carbohydrate food development is a topic that deserves investigation because of an increased focus on gluten intolerance and celiac disease and on metabolic disorders caused by overweight and obesity. Here, chickpea and maize flours were used as sources of protein and carbohydrate (because of the level used in the mixture) and unripe plantain as an indigestible carbohydrate source in composite gluten‐free spaghetti elaboration. The mixture of unripe plantain, chickpea, and maize was used at different levels to prepare spaghetti (samples S15Pla and S25Pla); control pasta was made of 100% semolina (S100Sem), and a 100% unripe plantain flour (S100Pla) pasta was also evaluated. In vitro amylolysis rate of fresh and stored (three and five days) spaghetti was assessed. The spaghetti with 100% unripe plantain (S100Pla) had higher resistant starch (RS) content than the control sample and the two cooked composite gluten‐free spaghettis (S15Pla, S25Pla), and RS further increased with the storage time. The plantain spaghetti (S100Pla) also had the highest rapidly digestible starch and the lowest slowly digestible starch contents; this pattern agrees with the hydrolysis rate, especially after cold storage. The stored S25Pla spaghetti showed the lowest hydrolysis rate and predicted glycemic index. Blending chickpea, maize, and unripe plantain flours represents a way to obtain gluten‐free spaghetti with high nondigestible carbohydrate content and slow digestion properties.  相似文献   

17.
Rice samples were taken from a study of rice milling properties that affect quality. The spectra of milled and cooked samples were taken in the near‐infrared, mid‐infrared, and Raman region. These spectra, two regions at a time, were regressed by a two‐dimensional technique to develop contour maps that indicated the correlation of two spectral regions. These relationships demonstrate that it is possible to recognize the hydration effects caused by gelatinization (cooked samples vs. milled rice). Three water (O‐H stretch) spectral bands (960, 1445, 1,930 nm) in the near‐infrared (NIR) show marked differences between milled and cooked rice. The difference spectra indicated that there were additional phenomena occurring besides the addition of water. These differences are apparent in both C‐O‐H and N‐H bands, which indicate that water is interacting with both starch and protein. The two‐dimensional technique developed in this laboratory was used to get a better interpretation of what occurs during cooking. The Raman spectrum, which is relatively insensitive to water (O‐H stretch), revealed only changes in protein that could be associated with denaturization.  相似文献   

18.
The influence of amylose content, cooking, and storage on starch structure, thermal behaviors, pasting properties, and rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) in different commercial rice cultivars was investigated. Long grain rice with high‐amylose content had a higher gelatinization temperature and a lower gelatinization enthalpy than the other rice cultivars with intermediate amylose content (Arborio and Calrose) and waxy type (glutinous). The intensity ratio of 1047/1022 cm–1 determined by Fourier Transform Infrared (FT‐IR), which indicated the ordered structure in starch granules, was the highest in glutinous and the lowest in long grain. Results from Rapid ViscoAnalyser (RVA) showed that the rice cultivar with higher amylose content had lower peak viscosity and breakdown, but higher pasting temperature, setback, and final viscosity. The RDS content was 28.1, 38.6, 41.5, and 57.5% in long grain, Arborio, Calrose, and glutinous rice, respectively, which was inversely related to amylose content. However, the SDS and RS contents were positively correlated with amylose content. During storage of cooked rice, long grain showed a continuous increase in pasting viscosity, while glutinous exhibited the sharp cold‐water swelling peak. The retrogradation rate was greater in rice cultivars with high amylose content. The ratio of 1047/1022 cm–1 was substantially decreased by cooking and then increased during storage of cooked rice due to the crystalline structure, newly formed by retrogradation. Storage of cooked rice decreased RDS content and increased SDS content in all rice cultivars. However, no increase in RS content during storage was observed. The enthalpy for retrogradation and the intensity ratio 1047/1022 cm–1 during storage were correlated negatively with RDS and positively with SDS (P ≤ 0.01).  相似文献   

19.
A second unusually high viscosity peak appeared at the cooling stage (50°C) of a Rapid Visco‐Analyser (RVA) profile of short‐term stored (two months at room temperature) whole grain sorghum flour, while freshly ground flour had a typical pasting curve with one viscosity peak at the 95°C holding period. The formation of the second viscosity peak was caused by liberation of free fatty acids (FFA), mainly palmitic (15.6%), oleic (41.9%), and linoleic (37.9%) acids from stored flour. After the flour samples were pretreated with pepsin or the protease thermolysin, the second peak disappeared in the presence of FFA while the high viscosity was partially retained, indicating that flour protein was another essential component to the production of the actual peak. Effects of dithiothreitol (DTT), pH, and NaCl on RVA profiles of stored flour suggested that disulfide‐linked protein and electrostatic interaction are required for the peak production. In the presence of sufficient FFA, similar cooling stage viscosity peaks appeared in the RVA profiles of flour samples from maize, rice, millet, and wheat; thus, the effect was not unique to sorghum flour. Coinciding with previously reported findings from our laboratory of a three‐component interaction and discernable complex in a model system, a similar three‐component (starch, protein, and FFA) interaction was revealed in natural flour systems resulting in formation of an unusual and notably high cooling stage viscosity peak. Practical applications and an interaction mechanism are discussed.  相似文献   

20.
Banana starch was chemically modified using single (esterification or cross-linking) and dual modification (esterification-cross-linking and cross-linking-esterification), with the objective to increase the slowly digestible starch (SDS) and resistant starch (RS) concentrations. Physicochemical properties and in vitro digestibility were analyzed. The degree of substitution of the esterified samples ranged from 0.006 to 0.020. The X-ray diffraction pattern of the modified samples did not show change; however, an increase in crystallinity level was determined (from 23.79 to 32.76%). The ungelatinized samples had low rapidly digestible starch (RDS) (4.23-9.19%), whereas the modified starches showed an increase in SDS (from 10.79 to 16.79%) and had high RS content (74.07-85.07%). In the cooked samples, the esterified starch increased the SDS content (21.32%), followed by cross-linked starch (15.13%). Dual modified starch (cross-linked-esterified) had the lowest SDS content, but the highest RS amount. The esterified and cross-linked-esterified samples had higher peak viscosity than cross-linked and esterified-cross-linked. This characteristic is due to the fact that in dual modification, the groups introduced in the first modification are replaced by the functional group of the second modification. Temperature and enthalpy of gelatinization decreased in modified starches (from 75.37 to 74.02 °C and from 10.42 to 8.68 J/g, respectively), compared with their unmodified starch (76.15 °C and 11.05 J/g). Cross-linked-esterified starch showed the lowest enthalpy of gelatinization (8.68 J/g). Retrogradation temperature decreased in modified starches compared with unmodified (59.04-57.47 °C), but no significant differences were found among the modified samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号