首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Takenaka A 《Tree physiology》1997,17(3):205-210
Stem length and leaf area of current-year shoots were measured in saplings of eight broad-leaved evergreen tree species growing under a forest canopy. Stem length varied over a range of one to two orders of magnitude within each species. In all species, both the number of leaves and the mean stem length between successive leaves were greater in longer shoots. Mean leaf size and stem length were not correlated in six of eight species, and only weakly positively correlated in the other two species. Thus, total leaf area per stem increased with stem length, but not in direct proportion: leaf area per stem length was smaller in shoots with long stems and larger in shoots with short stems. I conclude that the within-species variation in the leaf-stem balance of current-year shoots is related to variation in shoot functional roles, as has been observed for long and short shoots in many deciduous tree species: shoots with long stems are extension oriented and contribute to the framework of the crown, whereas shoots with short stems serve mainly for leaf display. Among species, large differences were found in the leaf area per stem length ratio. In the species with larger leaf area per stem length ratios, leaves had narrower blades or longer petioles, or both, resulting in a reduction of mutual shading among the leaves on the shoot.  相似文献   

2.
Takahashi K  Okada J  Urata E 《Tree physiology》2006,26(8):1035-1042
Effects of relative shoot height and irradiance on shoot and leaf properties of Quercus serrata Thunb. saplings growing in the understory and in gaps were investigated. Photosynthetic photon flux (PPF) at the location of the shoot relative to that in the open (relative PPF; rPPF) and the height of the shoot base relative to tree height (relative height; rHeight) were measured for all current-year shoots of each sapling. Current-year shoot properties (length, leaf area, number of daughter shoots) and mortality, and leaf properties (mass per area (LMA) and nitrogen content per area (N(area))) were examined in relation to rPPF and rHeight. N(area) was used as a proxy for area-based assimilative capacity. Shoot length, leaf area per shoot and number of daughter shoots increased with increasing rHeight, especially in well-lit conditions. Shoot mortality decreased with increasing rHeight and rPPF. Both LMA and N(area) were positively correlated with rPPF, but not rHeight.  相似文献   

3.
Umeki K  Seino T  Lim EM  Honjo T 《Tree physiology》2006,26(5):623-632
To understand the development of crown structure in Betula platyphylla Sukatch., mortality patterns of long shoots were analyzed quantitatively. We selected 25 saplings growing under various light conditions and measured the relative photosynthetically active radiation (rPAR) at, and the three-dimensional position of, first-order branches. A long shoot was assigned "no buds" (NB) status if it lacked buds at the end of the growing season, including at the tips of short shoots. A long shoot was classified as dead if it was NB and all the offspring long shoots issuing from it were NB. The probability that a leafy long shoot (a current-year long shoot with leaves or an older long shoot with short shoots with leaves) would become NB by the end of the season was positively dependent on shoot age and branch age, and negatively dependent on shoot length, centripetal shoot order, branch height and rPAR at the branch. Randomization tests revealed that shoots became NB and dead in clusters of connected shoots. In particular, shoot clusters originating from 3-year-old shoots were more likely to die than expected if each shoot was assumed to become NB regardless of the connection. Stepwise logistic regression revealed that the maximum rPAR within the crown of an individual tree had a significant effect on the mortality rate of 3-year-old shoot clusters, together with the rPAR at the level of the branch and other structural entities. Correlative inhibition is an important mechanism for determining shoot mortality patterns.  相似文献   

4.
Patterns of shoot development and the production of different types of shoots were compared with scion leaf area index (LAI) to identify how eight clonal Actinidia rootstocks influence scion development. Rootstocks selected from seven Actinidia species (A. chrysantha Merri., A. deliciosa (A. Chev.) C. F. Liang et A.R. Ferguson, A. eriantha Benth., A. hemsleyana Dunn, A. kolomikta (Maxim. et Rupr.) Maxim., A. kolomikta C.F. Liang and A. polygama (Sieb. et Zucc.) Maxim.) were grafted with the scion Actinidia chinensis Planch. var. chinensis 'Hort16A' (yellow kiwifruit). Based on an earlier architectural analysis of A. chinensis, axillary shoot types produced by the scion were classified as short, medium or long. Short and medium shoots produced a restricted number of preformed leaves before the shoot apex ceased growth and aborted, resulting in a 'terminated' shoot. The apex of long shoots continued growth and produced more nodes throughout the growing seasons. Mid-season LAI of the scion was related to the proportion of shoots that ceased growth early in the season. Scions on low-vigor rootstocks had 50% or less leaf area than scions on the most vigorous rootstocks and had a higher proportion of short and medium shoots. On low-vigor rootstocks, a higher proportion of short shoots was retained during pruning to form the parent structure of the following year. Short parent shoots produced a higher proportion of short daughter shoots than long parent shoots, thus reinforcing the effect of the low-vigor rootstocks. However, overall effects of rootstock on shoot development were consistent regardless of parent shoot type and nodal position within the parent shoot. Slower-growing shoots were more likely to terminate and scions on low-vigor rootstocks produced a higher proportion of slow-growing shoots. Shoot termination also occurred earlier on low-vigor rootstocks. The slower growth of terminating shoots was detectable from about 20 days after bud burst. Removal of a proportion of shoots at the end of bud burst increased the growth rate and decreased the frequency of termination of the remaining shoots on all rootstocks, indicating that the fate of a shoot was linked to competitive interactions among shoots during initial growth immediately after bud burst. Rootstock influenced the process of shoot termination independently of its effect on final leaf size. Scions on low-vigor rootstocks had a higher proportion of short shoots and short shoots on all rootstocks had smaller final leaf sizes at equivalent nodes than medium or long shoots. Only later in the development of long shoots was final leaf size directly related to rootstock, with smaller leaves on low-vigor rootstocks. Thus, the most important effect of these Actinidia rootstocks on scion development occurred during the initial period of shoot growth immediately after bud burst.  相似文献   

5.
We estimated the amount of nitrogen (N) remobilized from 1-year-old leaves at various positions in the crowns of mature Quercus glauca Thunb. ex Murray trees and related this to the production of new shoots. Leaf N concentration on an area basis (Na) and total N (Nt= Na x lamina area of all leaves on a shoot) were related to photosynthetic photon flux (PPF) on the leaves of current-year and 1-year-old shoots. When new shoots (S02 shoots; flushed in 2002) flushed, only a portion of the leaves on the previous year's shoots (S01 shoots; flushed in 2001) were shed. After the S02 shoots flushed, S01 shoots were defined as 1-year-old shoots (S01* shoots). Both Na and Nt were positively correlated with PPF for S01 shoots, but not for S01* shoots. The fraction of remobilized N (% of the maximum Na in S01 leaves) from remaining leaves was 5-35%, with the fraction size being positively correlated with the number of S02 shoots on an S01* shoot (new shoot number). However, the mean fraction of remobilized N from fallen leaves was 45% and was unrelated to new shoot number. The total amount of N remobilized from both fallen and remaining leaves was 1-20 mg per S01* shoot. Total remobilized N was positively correlated with new shoot number. There was a statistically significant positive relationship between the light-saturated net photosynthetic rate on a leaf area basis (Amax) and Na for both S01* and S02 leaves. However, when we compared leaves with similar Na, Amax of S01* leaves was only half that of S02 leaves, indicating that 1-year-old leaves had lower instantaneous N-use efficiency (Amax per unit Na) than current-year leaves. Ratios of chlorophyll a:b and Rubisco:chlorophyll were lower in S01* leaves than in S02 leaves, indicating that 1-year-old leaves were acclimatized to lower light environments. Thus, in Q. glauca, the N allocation theory (i.e., that N is distributed according to local PPF) applied only to the current-year shoots. Although the amount of foliar N in 1-year-old shoots was not strongly affected by the PPF on 1-year-old leaves, it was affected by interactions with current-year shoots.  相似文献   

6.
We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overall, we found that leaf-level net photosynthetic rates were enhanced by atmospheric CO2 enrichment throughout the season until early November; however, sun leaves showed a greater response to atmospheric CO2 enrichment than shade leaves. Elevated [CO2] did not affect leaf longevity, emergence date or abscission date of sun leaves or shade leaves. Leaf number and leaf area per shoot were unaffected by CO2 treatment. A simple shoot photosynthesis model indicated that elevated [CO2] stimulated photosynthesis by 60% in sun shoots, but by only 3% in shade shoots. Whole-shoot photosynthetic rate was more than 12 times greater in sun shoots than in shade shoots. In senescent leaves, elevated [CO2] did not affect residual leaf nitrogen, and nitrogen resorption was largely unaffected by atmospheric CO2 enrichment, except for a small decrease in shade leaves. Overall, elevated [CO2] had little effect on the number of leaves per shoot at any time during the season and, therefore, did not change seasonal carbon gain by extending or shortening the growing season. Stimulation of carbon gain by atmospheric CO2 enrichment in sweetgum trees growing in the Duke Forest FACE experiment was the result of a strong stimulation of photosynthesis throughout the growing season.  相似文献   

7.
Leaf nitrogen distribution pattern was studied four times during the growing season in a 2-year-old Salix viminalis L. and Salix dasyclados Wimm. plantation in Estonia. We measured the vertical distributions of leaf nitrogen concentration, dry mass, leaf area and light environment (as fractional transmission of diffuse irradiance, a(d)) in the canopy. The light-independent nitrogen pool was evaluated as the intercept of the leaf nitrogen concentration versus a(d) relationship, and the nondegradable nitrogen pool was evaluated as the nitrogen remaining in abscised leaves. A strong vertical gradient of mass-based leaf nitrogen concentration was detected at the beginning of the growing season, and decreased steadily during canopy development. This decline had at least three causes: (1) the amount of nitrogen in the foliage was larger at the beginning of the growing season than at the end of the growing season, probably because of pre-existing root systems; (2) with increasing leaf area index (LAI) during the growing season, the proportion of leaf nitrogen in total canopy nitrogen that could be redistributed (light-dependent nitrogen pool) decreased; and (3) the photosynthetic photon flux density gradient inside the canopy changed during the season, most probably because of changes in leaf area and leaf angle distributions. Total canopy nitrogen increased almost proportionally to LAI, whereas the light-dependent nitrogen pool had a maximum in August. Also, the proportion of the light-dependent nitrogen pool in the total canopy nitrogen decreased steadily from 65.2% in June to 17.2% in September in S. dasyclados and from 63.3 to 15.1% in S. viminalis. The degradable nitrogen pool was always bigger than the light-dependent nitrogen pool.  相似文献   

8.
9.
Bud-burst on first order lateral branches of Abies bafsamea L. (balsam fir) was delayed when the branches were rotated 180 degrees about their long axis. This was not a consequence of injury caused by the treatment because buds rotated 180 degrees on inverted plants flushed at the same time as the controls, whereas flushing of all other buds was delayed. Buds thus appear to be more vigorous when maintained in the same orientation to gravity in which they are formed and the site of gravitational stimulus perception appears to be the bud itself. Except on the leading shoot, leaves from inverted buds turned so that their adaxial surface faced upward, unless there was intense illumination from below. However, both anisophylly and positioning of leaves on lateral shoots were apparently predetermined because the shorter, more forward pointing leaves appeared below the longer distichous leaves on shoots from inverted buds. Shoots with normally oriented leaves appeared the next season.  相似文献   

10.
Cai ZQ  Chen YJ  Bongers F 《Tree physiology》2007,27(6):827-836
We hypothesized that photosynthesis and growth of tropical vegetation at its most northern distribution in Asia (Xishuangbanna, SW China) is adversely affected by seasonal drought and chilling temperatures. To test this hypothesis, we measured photosynthetic and growth characteristics of Zizyphus attopensis Pierre seedlings grown in three contrasting forest microhabitats: the understory, a small gap and a large gap. Photosynthetic capacity (light-saturated photosynthetic rate (A(max)), maximum rate of carboxylation and electron transport rate) and partitioning of leaf nitrogen (N) into carboxylation and electron transport differed significantly among seasons and microhabitats. Specific leaf area (SLA) did not change seasonally, but differed significantly among microhabitats and showed a negative linear relationship with daily integrated photon flux (PPF(i)). In contrast, leaf N concentration per unit area (N(a)) changed seasonally but did not differ among microhabitats. Measurements of maximum PSII photochemical efficiency (F(v)/F(m)) indicated that chronic photoinhibition did not occur in seedlings in any of the microhabitats during the study. Photosynthetic capacity was greatest in the wet season and lowest in the cool season. During the cool and dry seasons, the reduction in A(max) was greater in seedlings grown in the large gap than in in the understory and the small gap. Close logarithmic relationships were detected between PPF(i), leaf N(a) and photosynthetic capacity. Stem mass ratio decreased, and root mass ratio increased, in the dry season. We conclude that seasonal acclimation in growth and photosynthesis of the seedlings was associated with changes in biochemical features (particularly N(a) and partitioning of total leaf N between the different photosynthetic pools) and biomass allocation, rather than with changes in leaf morphological features (such as SLA). Local irradiance is the main factor driving seasonal variations in growth and photosynthesis in the study area, where the presence of heavy fog during the cool and dry seasons limits irradiance, but supplies water to the soil surface layers.  相似文献   

11.
The effect of two training systems (Central Leader with branch pruning versus Centrifugal Training with minimal pruning, i.e., removal of fruiting laterals only) on canopy structure and light interception was analyzed in three architecturally contrasting apple (Malus domestica Borkh.) cultivars: 'Scarletspur Delicious' (Type II); 'Golden Delicious' (Type III); and 'Granny Smith' (Type IV). Trees were 3D-digitized at the shoot scale at the 2004 and 2005 harvests. Shoots were separated according to length (short versus long) and type (fruiting versus vegetative). Leaf area density (LAD) and its relative variance (xi), total leaf area (TLA) and crown volume (V) varied consistently with cultivar. 'Scarletspur Delicious' had higher LAD and xi and lower TLA and V compared with the other cultivars with more open canopies. At the whole-tree scale, training had no effect on structure and light interception parameters (silhouette to total area ratio, STAR; projected leaf area, PLA). At the shoot scale, Centrifugal Training increased STAR values compared with Central Leader. In both training systems, vegetative shoots had higher STAR values than fruiting shoots. However, vegetative and fruiting shoots had similar TLA and PLA in Centrifugal Trained trees, whereas vegetative shoots had higher TLA and PLA than fruiting shoots in Central Leader trees. This unbalanced distribution of leaf area and light interception between shoot types in Central Leader trees partly resulted from the high proportion of long vegetative shoots that developed from latent buds. These shoots developed in the interior shaded zone of the canopy and therefore had low STAR and PLA. In conclusion, training may greatly affect the development and spatial positioning of shoots, which in turn significantly affects light interception by fruiting shoots.  相似文献   

12.
Foliar anatomy and morphology are strongly related to physiological performance; therefore, phenotypic plasticity in leaves to variations in environmental conditions, such as irradiance and soil moisture availability, can be related to growth rate and survivorship, mainly during critical growth phases, such as establishment. The aim of this work was to analyze changes in the foliar internal anatomy (tissue proportions and cell dimensions) and external morphology (leaf length, width and area) of Nothofagus pumilio (Poepp. et Endl.) Krasser seedlings growing in a greenhouse under controlled irradiance (three levels) and soil moisture (two levels) during one growing season (measured three times), and to relate them to physiological traits. Three irradiance levels (4, 26 and 64% of the natural incident light) and two soil moisture levels (40 and 80% soil capacity) were evaluated during November, January and March. Internal foliar anatomy of seedlings was analyzed using digital photographs of histological cuttings, while leaf gross morphology was measured using digital calipers and image analysis software. Most internal anatomical variables presented significant differences under different irradiance levels during the growing season, but differences were not detected between soil moisture levels. Palisade parenchyma was the tissue most sensitive to irradiance levels, and high irradiance levels (64% natural incident light) produced greater values in most of the internal anatomical variables than lower irradiance levels (4-24% natural incident light). Complementarily, larger leaves were observed in medium and low irradiance levels, as well as under low soil moisture levels (40% soil capacity). The relationship of main results with some eco-physiological traits was discussed. Foliar internal anatomical and external morphological plasticity allows quick acclimation of seedlings to environmental changes (e.g., during harvesting). These results can be used to propose new forest practices that consider soil moisture and light availability changes to maintain high physiological performance of seedlings.  相似文献   

13.
Mesophyll conductance, g(m), was estimated from measurements of stomatal conductance to carbon dioxide transfer, g(s), photosynthesis, A, and chlorophyll fluorescence for Year 0 (current-year) and Year 1 (1-year-old) fully sunlit leaves from short (2 m tall, 10-year-old) and tall (15 m tall, 120-year-old) Nothofagus solandrii var. cliffortiodes trees growing in adjacent stands. Rates of photosynthesis at saturating irradiance and ambient CO(2) partial pressure, A(satQ), were 25% lower and maximum rates of carboxylation, V(cmax), were 44% lower in Year 1 leaves compared with Year 0 leaves across both tree sizes. Although g(s) and g(m) were not significantly different between Year 0 and Year 1 leaves and g(s) was not significantly different between tree heights, g(m) was significantly (19%) lower for leaves on tall trees compared with leaves on short trees. Overall, V(cmax) was 60% higher when expressed on the basis of CO(2) partial pressure at the chloroplasts, C(c), compared with V(cmax) on the basis of intercellular CO(2) partial pressure, C(i), but this varied with leaf age and tree size. To interpret the relative stomatal and mesophyll limitations to photosynthesis, we used a model of carbon isotopic composition for whole leaves incorporating g(m) effects to generate a surface of 'operating values' of A over the growing season for all leaf classes. Our analysis showed that A was slightly higher for leaves on short compared with tall trees, but lower g(m) apparently reduced actual A substantially compared with A(satQ). Our findings showed that lower rates of photosynthesis in Year 1 leaves compared with Year 0 leaves were attributable more to increased biochemical limitation to photosynthesis in Year 1 leaves than differences in g(m). However, lower A in leaves on tall trees compared with those on short trees could be attributed in part to lower g(m) and higher stomatal, L(s), and mesophyll, L(m), limitations to photosynthesis, consistent with steeper hydraulic gradients in tall trees.  相似文献   

14.
We investigated how shoot gross morphology and leaf properties are determined in Fagus japonica Maxim., a deciduous species with flush-type shoot phenology, in which all leaves are produced in a single flush at the start of each season. We examined relationships between current-year shoot properties and local light environment in a 14-m tall beech tree growing in a deciduous forest. Leaf number (LN), total leaf area (TLA), and total leaf length (SL) of the current-year shoot increased with increasing photosynthetic photon flux density (PPFD). Leaf thickness, dry mass per leaf area and nitrogen content on a leaf area basis increased, whereas the chlorophyll/N ratio decreased with increasing PPFD. To separate the effects of current-year PPFD from those of previous year(s), we artificially shaded a part of the uppermost leaf tier. Reciprocal transfers of beech seedlings between controlled PPFD regimes were also made. Characteristics of shoot gross morphology such as LN, TLA and SL were largely determined by the PPFD of the previous year. The exception was the length of the longest "long shoots" with many leaves, in which elongation appeared to be influenced by both previous-year and current-year PPFD. In contrast, leaf properties were determined by current-year PPFD. The ecological implications of our findings are discussed.  相似文献   

15.
Main and interactive effects of basal medium and cytokinin concentration on bud and shoot development of micropropagated valley oak explants were examined. Stem segments with axillary buds were placed on BTM (Broad Leaved Tree Medium), GD (Gresshoff-Doy) and WPM (Woody Plant Medium) media supplemented with 0.3, 0.7 and 1.5 mg 1–1 of BAT (6-benzylaminopurine). Overall, BTM and GD media were superior for the micropropagation of this species, and both media promoted development of vigorous and relatively abundant shoots. Conversely, fewer shoots were initiated on WPM medium and those produced were frequently chlorotic. Irrespective of basal medium, the quantity of shoots produced after nine weeks generally increased as the concentration of BAP increased, but rosettes with short internodes and numerous leaves predominated on media supplemented with 0.7 or 1.5 mg 1–1 of BAR Shoots on media with 0.3 mg 1–1 of BAP, however, exhibited the long internodes and two or three leaves per shoot characteristic of typical valley oak sprouts, and were most suitable for subsequent micropropagation procedures.  相似文献   

16.
Takenaka A 《Tree physiology》2000,20(14):987-991
To examine the mechanisms underlying crown development, I investigated the dependence of shoot behavior on light microenvironment in saplings of the evergreen broad-leaved tree species, Litsea acuminata (Bl.) Kurata, growing on a forest floor. The local light environment of individual shoots (shoot irradiance) and plants (plant irradiance, defined as the shoot irradiance of the most sunlit shoot of a plant) were analyzed as factors affecting shoot behavior. Daughter shoots that developed under partially sunlit conditions were longer and less leafy than daughter shoots developed under shaded conditions. Shoot production increased with increasing shoot irradiance. Terminal shoots receiving 5% or less of full sunlight produced 0.67 daughter shoots on average, whereas shoots receiving 10% or more of full sunlight produced 1.72 daughter shoots. In terminal shoots receiving 5% or less of full sunlight, the probability of producing no daughter shoots was about 63% when other shoots on the plant received 10% or more of full sunlight, but was < 35% where the rest of the plant was also shaded. Shoot death was observed only in shoots receiving 5% or less of full sunlight. The mortality of shaded shoots was higher in plants growing in high irradiance than in plants growing in low irradiance. The ecological significance of correlative inhibition (the enhanced mortality and reduced production of new shaded shoots in the presence of partially-sunlit shoots) is discussed.  相似文献   

17.
Leaf development of shoots exposed to full sunlight and shoots shaded by the canopy was followed in field-grown, mature peach trees (Prunus persica (L.) Batsch, cv. Loring) during the first half of the 1995 growing season. The architecture and size of shaded shoots and sun-exposed shoots differed significantly. Total number of leaves produced on shaded shoots was significantly less than on sun-exposed shoots throughout the season, and differences in leaf number between light conditions increased as the season progressed. The overall patterns of leaf development along sun-exposed and shaded shoots were qualitatively similar. The expression pattern of the type II chlorophyll a/b-binding protein gene, Lhcb2*Pp1, determined by RNA abundance in leaves at different positions along the shoot, was also similar between the two light conditions. The major difference between sun-exposed and shaded leaves was a lower abundance of Lhcb2*Pp1 RNA in mature, shaded leaves compared with sun-exposed leaves. Although the number of fruit per shoot was significantly lower on shaded shoots than on sun-exposed shoots, the rate of fruit drop was not substantially different during the growing season, indicating that quantitative differences in leaf initiation and growth caused by differences in light exposure did not adversely affect fruit retention. However, based on comparison with a previous study of leaf development in non-fruiting trees, reproductive development slowed the rate of vegetative growth without affecting the overall pattern of leaf development along the shoots.  相似文献   

18.
19.
Photosynthetic acclimation to highly variable local irradiance within the tree crown plays a primary role in determining tree carbon uptake. This study explores the plasticity of leaf structural and physiological traits in response to the interactive effects of ontogeny, water stress and irradiance in adult almond trees that have been subjected to three water regimes (full irrigation, deficit irrigation and rain-fed) for a 3-year period (2006-08) in a semiarid climate. Leaf structural (dry mass per unit area, N and chlorophyll content) and photosynthetic (maximum net CO(2) assimilation, A(max), maximum stomatal conductance, g(s,max), and mesophyll conductance, g(m)) traits and stem-to-leaf hydraulic conductance (K(s-l)) were determined throughout the 2008 growing season in leaves of outer south-facing (S-leaves) and inner northwest-facing (NW-leaves) shoots. Leaf plasticity was quantified by means of an exposure adjustment coefficient (ε=1-X(NW)/X(S)) for each trait (X) of S- and NW-leaves. Photosynthetic traits and K(s-l) exhibited higher irradiance-elicited plasticity (higher ε) than structural traits in all treatments, with the highest and lowest plasticity being observed in the fully irrigated and rain-fed trees, respectively. Our results suggest that water stress modulates the irradiance-elicited plasticity of almond leaves through changes in crown architecture. Such changes lead to a more even distribution of within-crown irradiance, and hence of the photosynthetic capacity, as water stress intensifies. Ontogeny drove seasonal changes only in the ε of area- and mass-based N content and mass-based chlorophyll content, while no leaf age-dependent effect was observed on ε as regards the physiological traits. Our results also indicate that the irradiance-elicited plasticity of A(max) is mainly driven by changes in leaf dry mass per unit area, in g(m) and, most likely, in the partitioning of the leaf N content.  相似文献   

20.
Cameron AD  Sani H 《Tree physiology》1994,14(4):427-436
Patterns of shoot growth and branching were studied over two growing seasons in rooted cuttings collected from both epicormic shoots and seedlings of Betula pendula Roth. Epicormic shoots were induced to sprout on stumps and small logs of 5-, 10- and 30-year-old trees. The use of epicormic shoots enhanced the rooting capacity of stem cuttings collected from these shoots but did not appear to reverse the process of maturation. In this study, maturation was based on characteristics typical of mature trees but not necessarily those of the mother plant, because it was not possible to root cuttings, for comparison, from 5-, 10- and 30-year-old ortets, other than from epicormic shoots. There was evidence of the persistence of mature characteristics through an increase in shoot plagiotropism with increasing ortet age. Rooted cuttings from both seedlings and epicormic shoots, however, assumed an increasingly orthotropic habit with a smaller shoot angle at the end of the first growing season than at the beginning and this continued into the second growing season. Other indications of maturation, such as delayed bud flushing and the incidence of flowering with increasing ortet age, were also evident in rooted cuttings from epicormic shoots. There was a clear difference in branching habit depending on cutting source. Rooted cuttings derived from epicormic shoots produced nearly twice as many lateral branches compared with rooted cuttings collected from seedlings, but this was not an effect of maturation. There was some evidence that rooted cuttings derived from seedlings grew taller than rooted cuttings from epicormic shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号