首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
湿地土壤质量退化的模糊综合评价   总被引:2,自引:0,他引:2  
Wetland soil quality degradation caused by large-scale agricultural reclamation on the Sanjiang Plain of Northeast China has been widely reported. A relative soil quality evaluation (RSQE) model and a projection pursuit evaluation (PPE) model based on real-coded accelerating genetic algorithm were introduced to evaluate quality variations in top layers of the main wetland soils on the Sanjiang Plain in 1999 and 2003, respectively. As soil quality degradation boundaries were vague, this study established two fuzzy synthetic evaluation (FSE) models based on the original data and criteria used in the RSQE and PPE models. The outputs of the two FSE models were obtained by choosing two fuzzy composite operators M (∧,∨) and M (?,⊕). Statistical analysis showed that the results of the FSE, RSQE, and PPE models were correlated. In particular, outputs of the FSE model using M (?,⊕) were significantly correlated with those of the RSQE model with r = 0.989 at P < 0.01. Compared with RSQE and PPE models, the FSE model may be more objective in showing soil quality variations and was closer to the natural situation, showing the feasibility and applicability of the FSE model in evaluating soil quality degradation. However, the choice of composite operator was of critical importance. The study of wetland soil quality degradation on the Sanjiang Plain was of scientific and practical significance for protection and management of soils and for sustainable development of agriculture in this area in the future.  相似文献   

2.
松嫩平原盐渍土钠吸附比推算土壤碱化度研究   总被引:2,自引:0,他引:2  
Soil exchangeable sodium percentage (ESP) and sodium adsorption ratio (SAR) are commonly used to assess soil sodicity.Correlation between ESP and SAR of saturated pasted extract (SAR e) or of 1:5 (m:m) mixture soil to water (SAR 1:5) has been documented to predict ESP from SAR.However limited studies have been undertaken to model soil ESP based on soil SAR in the Songnen Plain,Northeast China.In this study,117 soil samples were used to predict ESP from SAR e and SAR 1:5 of salt-affected soils in western Songnen Plain.Soil ESP was highly related (r 2 > 0.76,P < 0.001) with SAR e and SAR 1:5.ESP of salt-affected soils in the Songnen Plain could be predicted using a logarithmic regression equations of ESP=10.72 · ln(SAR e) 15.36 and ESP=11.44 · ln(SAR 1:5) + 5.48.  相似文献   

3.
<正>Soils are a valuable resource with life activity in terrestrial ecosystem, and soil health and its sustainable management are becoming a major focus of global concern. A healthy soil is a “harmonious social system”, which should have good structure, functional state,and buffering performance to maintain the dynamic balance of soil ecosystem. Soil health has become the frontier of soil science. The development of theoretical and practical approaches for soil health evaluation and managem...  相似文献   

4.
海南橡胶园土壤持续利用措施的研究   总被引:3,自引:0,他引:3  
This research was designed to help solve existing sustainable use problems such as soil nutrient loss and soil fertility decline in natural rubber plantations located in the hilly land of the south central mountainous area of Hainan Island,China. Two different land management practices, sustainable and traditional, were adopted in a four-year experiment.Contour terraced fields and deep ditches for green manure were built in a sustainable way with a balanced, need-based application of complex fertilizer. Results of the four-year experiment showed that these sustainable measures compared to traditional measures improved available P and available K; had a 47.8% less soil erosion (an average of 3663 t km^-2 year^-1) and a 15.9% lower runoff coefficient of 0.53; increased the dry rubber yield by 42.4%; and improved the economic benefit by 2.4 times. The sustainable land management scheme not only improved land utilisation efficiency, hut also helped maintain soil fertility while increasing production in rubber plantations. It thereby offered a reasonable and sustainable use for land resources in the tropical mountainous areas.  相似文献   

5.
LU RU-KUN 《土壤圈》1991,1(4):371-376
The reserve of soil nutrients is limited.In case of irrational use of land,nutrients would be depleted sooner.Before the 1950s the low grain production in China was maintained only by expanding the cultivated area and by recycling of nutrients in agriculture.Calculation of nutrients balance showed that in the year of 1949 there were great deficits of N,P and K elements in agriculture of China.It revealed that there would have really been danger of soil nutrients exhaustion if such a situation had continued.Things have changed since the beginning of 1950s.The nutrients balance in agriculture has been getting better and better.In the year 1987 N and P balance got rid of their great deficits.But for K and deficit grew even larger.This resulted in a rapid expansion of soil area deficient in K in China since the mid 1970s.In spite of the fact that the P balance in the arable land of the whole country was positive,the field which did not receive P fertilizer had become deficient in P.So the area deficient in P also increased.It is stressed that great attention should be paid to the depletion of soil nutrients,especially K in the northern part of China where the soil is relatively rich in K.Of course,soil sulfur and microelements should be considered next.  相似文献   

6.
中国土壤学过去30年在一些关键领域的研究进展   总被引:5,自引:0,他引:5  
Due to continuous decreases in arable land area and continuous population increases,Chinese soil scientists face great challenges in meeting food demands,mitigating adverse environmental impacts,and sustaining or enhancing soil productivity under intensive agriculture.With the aim of promoting the application of soil science knowledge,this paper reviews the achievements of Chinese scientists in soil resource use and management,soil fertility,global change mitigation and soil biology over the last 30 years.During this period,soil resource science has provided essential support for the use and exploitation of Chinese soil resources,and has itself developed through introduction of new theories such as Soil Taxonomy and new technologies such as remote sensing.Soil fertility science has contributed to the alleviation and elimination of impeding physical and chemical factors that constrain availability of essential nutrients and water in soils,the understanding of nutrient cycling in agroecosystems,and the increase in nutrient use efficiency for sustainable crop production.Chinese soil scientists have contributed to the understanding of the cropland’s role in global change,particularly to the understanding of methane and nitrous oxide emission from rice fields and the effect of elevated carbon dioxide and ozone on rice-wheat system.Soil biology research has progressed in biological N fixation,distribution of fauna in Chinese soils,and bioremediation of polluted soils.A new generation of soil scientists has arisen in the last three decades.The gaps between research and application in these soil science fields are also discussed.  相似文献   

7.
长期施肥对华北平原土壤生产力的影响   总被引:3,自引:0,他引:3  
Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil productivity and fertilizer applications affect crop yields. A long-term experiment with a winter wheat-summer maize rotation was established in 1989 in a field of the Fengqiu State Key Agro-Ecological Experimental Station, a region typical of the North China Plain, including seven treatments: 1) a balanced application of NPK chemical fertilizers(NPK); 2) application of organic fertilizer(OM); 3) application of 50% organic fertilizer and50% NPK chemical fertilizers(1/2OMN); 4) application of NP chemical fertilizers(NP); 5) application of PK chemical fertilizer(PK);6) application of NK chemical fertilizers(NK); and 7) unfertilized control(CK). To investigate the effects of fertilization practices on soil productivity, further pot tests were conducted in 2007–2008 using soil samples from the different fertilization treatments of the long-term field experiment. The soil sample of each treatment of the long-term experiment was divided into three pots to grow wheat: with no fertilization(Potunf), with balanced NPK fertilization(PotNPK), and with the same fertilizer(s) of the long-term field experiment(Potori). The fertilized soils of the field experiment used in all the pot tests showed a higher wheat grain yield and higher nutrient uptake levels than the unfertilized soil. Soil productivity of the treatments of the field experiment after 18 years of continuous fertilizer applications were ranked in the order of OM 1/2OMN NPK NP PK NK CK. The contribution of soil productivity of the different treatments of the field experiment to the wheat grain yield of Potoriwas 36.0%–76.7%, with the PK and NK treatments being higher than the OM, 1/2OMN, NPK, and NP treatments since the soil in this area was deficient in N and P and rich in K. Wheat grain yields of PotNPKwere higher than those of Potoriand Potunf. The N, P, and K use efficiencies were higher in PotNPKthan Potoriand significantly positively correlated with wheat grain yield. Soil organic matter could be a better predictor of soil productivity because it correlated more strongly than other nutrients with the wheat grain yield of Potunf. Wheat yields of PotNPKshowed a similar trend to those of Potunf, indicating that soil productivity improvement was essential for a further increase in crop yield. The long-term applications of both organic and chemical fertilizers were capable of increasing soil productivity on the North China Plain, but the former was more effective than the latter. The balanced application of NPK chemical fertilizers not only increased soil productivity, but also largely increased crop yields, especially in soils with lower productivity. Thus, such an approach should be a feasible practice for the sustainable use of agricultural soils on the North China Plain, particularly when taking into account crop yields, labor costs, and the limited availability of organic fertilizers.  相似文献   

8.
淮北平原的变性土的形成和演化   总被引:3,自引:0,他引:3  
Liu  L. W. 《土壤圈》1991,1(1):3-15
The objectives of the present paper are to restore soil-forming environment of the Vertisols,to reveal their regularities of formation and evolution and to found soil chronology.In regard to formation and evolution of the Vertisols in the Huaibei Plain,they have undergone 3 cycles of deposition-formation during different geologic time (Q3^3;Q4^2 and Q4^3).Therefore,they are considered as the soils developed on heterogeneous parent material.The Vertisols as a paleosol can be divided into relict Vertisols and buried Vertisols.The former is shajiang black soils called by local people,the latter is shajiang black soils underlying Warp soil or warp soil horizon.  相似文献   

9.
Based on data from 10-year field experiments on residue/fertilizer management in the dryland farming region of northern China, Century model was used to simulate the site-specific ecosystem dynamics through adjustment of the model's parameters, and the applicability of the model to propose soil organic carbon (SOC) management temporally and spatially, in cases such as of tillage/residue/fertilization management options, was identified v/a scenario analysis.Results between simulations and actual measurements were in close agreement when appropriate applications of stover,manure and inorganic fertilizer were combined. Simulations of extreme C/N ratios with added organic materials tended to underestimate the measured effects. Scenarios of changed tillage methods, residue practices and fertilization options showed potential to maintain and enhance SOC in the long run, while increasing inorganic N slowed down the SOC turnover rate but did not create a net C sink without any organic C input. The Century model simulation showed a good relationship between annual C inputs to the soil and the rate of C sequestration in the top 20 cm layer and provided quantitative estimations of changes in parameters crucial for sustainable land use and management. Conservation tillage practices for sustainable land use should be integrated with residue management and appreciable organic and inorganic fertilizer application, adapted according to the local residue resource, soil fertility and production conditions. At least 50% residue return into the soil was needed annually for maintenance of SOC balance, and manure amendment was important for enhancement of SOC in small crop-livestock systems in which crop residue land application was limited.  相似文献   

10.
Soil health is an important component of “One Health”. Soils provide habitat to diverse and abundant organisms. Understanding microbial diversity and functions is essential for building healthy soils towards sustainable agriculture. Arbuscular mycorrhizal fungi (AMF) form potentially symbiotic associations with approximately 80% of land plant species that are well recognized for carbon flux and nutrient cycling. In addition to disentangling the signaling pathways and regulatory mechanisms between the two partners, recent advances in hyphosphere research highlight some emerging roles of AMF and associated microbes in the delivery of soil functions. This paper reviews the contribution of AMF to soil health in agroecosystems, with a major focus on recent progress in the contribution of hyphosphere microbiome to nutrient cycling, carbon sequestration, and soil aggregation. The hyphosphere microbiome and fungal stimulants open avenues for developing new fertilizer formulas to promote AMF benefits. In practice, developing AMF-friendly management strategies will have long-term positive effects on sustainable agriculture aiming at simultaneously providing food security, increasing resource use efficiency, and maintaining environment integrity.  相似文献   

11.

Purpose  

Since the mid-1950s, the wetlands in Sanjiang Plain of Northeast China have experienced greater changes in land use under which the mobility of soil Fe could be changed giving definite effects on the biomass production of adjacent regions. The aim of this work was to investigate the effects of land use change on the characteristics of soil Fe vertical distribution with a focus on evaluating the effects of cultivation on the soil Fe mobility in Sanjiang Plain.  相似文献   

12.
华北平原一年两熟保护性耕作体系试验研究   总被引:51,自引:16,他引:51  
冬小麦-夏玉米一年两熟的种植方式在华北地区的农业生产中具有极为重要的地位。但是传统耕作方式使该地区的农业生产不可持续。保护性耕作技术是一种先进的保水保土的生产技术。该文在田间试验的基础上,研究了保护性耕作体系对作物产量、土壤容重、土壤含水率、土壤温度的影响,结果表明:保护性耕作能够提高作物的产量,增加土壤的含水率。其对土壤容重和土壤温度的影响并未对作物的生长产生不利影响。但是,从长远来看,对保护性耕作引起的土壤容重增加、温度降低的问题必须引起足够的重视。结果初步表明:以免耕加覆盖为主的保护性耕作体系可以在华北平原一年两熟地区试验推广。  相似文献   

13.
为解决内蒙古河套平原黏性碱化盐土土壤黏重,作物难以正常生长、产量低下等问题,对河套平原黏性碱化盐土进行了土壤耕层(0~20 cm)掺砂的土壤改良试验,研究掺砂对土壤理化性状和玉米产量的影响。结果表明:试验区土壤掺砂可以降低土壤容重,改变土壤机械组成和土壤质地,提高了黏性碱化盐土的通气孔隙度,改善土壤的通气透水性,降低土壤全盐量和碱化度,有效改善玉米生长环境,提高了玉米的产量。掺砂20%处理的土壤容重从1.64 g/cm3(CK)降低到1.49 g/cm3,土壤通气孔隙度从8.57%提高到18.17%,达到正常范围,使土壤砂粒、粉粒、粘粒含量比例趋向适中,土壤质地由壤质黏土转变为黏壤土,土壤全盐量下降了13%,碱化度降低了21%,玉米产量提高了301%。综合分析,掺砂20%处理对当地碱化盐土改良效果较为适宜。  相似文献   

14.
本文根据商丘试区多年研究成果与实践,结合我国水资源短缺的现状和黄淮海平原旱涝盐碱灾害形成的特点,提出节水农业持续发展的基础是改善农业生产条件,它通过治水、改土、调整农业生产结构和良种良法,以实现高产、优质、高效农业。农业持续发展的重要限制因素是水,重点研究了节水农业技术体系,即提高水的利用率和水的利用效率以及实现节水农业生产分区的途径及效益。  相似文献   

15.
松嫩平原中、西部地区土壤盐渍化非常严重,盐渍土改良对于土地资源利用和生态环境改善具有重大意义。在大安古河道苏打草甸盐化土、碱化盐土和草甸碱土复区选择试验田,通过种植水稻,借助周期性的灌水、排水过程,溶洗土壤中的盐分,达到改良盐渍土的目的。经过连续4年的试验,土壤平均含盐量由试验前的0.45%降至第4个试验年的0.15%。从第1试验年到第4试验年,水稻产量由绝收逐渐增至4250 kg hm-2。试验结果表明,充分利用地表水资源,通过种稻改良强度盐渍土是可行的,同时也可为松嫩平原中、西部更大范围利用强度盐渍土壤资源、恢复生态环境提供科学指导。  相似文献   

16.
可持续的土地管理概念与水土保持可持续发展前景   总被引:4,自引:0,他引:4  
全球性的水土流失和土地退化是人类社会可持续发展面临的主要障碍之一。介绍了可持续的土地管理的基本概念,水土保持可持续发展的基本理论问题和发展方向就是可持续的土地管理,传统的水土保持工作必须从技术性水土保持发展到土壤的可持续管理。并论述了水土保持可持续发展前景,同时列举了国内外水土保持可持发展的相关行动与一些具体项目。  相似文献   

17.
长期秸秆还田与施氮后土壤活性碳、氮的变化   总被引:4,自引:3,他引:4  
通过长期定位试验,研究了秸秆还田和施氮后小麦生育期内土壤微生物量碳、氮(MBC、MBN)及可溶性有机碳(DOC)的变化,以期为关中麦玉轮作区土壤肥力的提升以及农业的可持续发展提供科学依据。采用裂区设计,主处理为玉米秸秆全量还田(S+N)和秸秆不还田(N),副处理为3个不同施氮水平(0,168,252kg/hm~2)共6个处理。结果表明:土壤MBC从小麦分蘖期至越冬期降低,此后至拔节期升高且达到峰值,拔节期至成熟期降低。各处理土壤DOC从分蘖期至拔节期增加,拔节期达到峰值,此后至成熟期降低;而土壤MBN的动态变化在整个生育期呈现降低的趋势。秸秆还田处理的土壤MBC和DOC显著高于秸秆不还田处理,平均分别提高6.7%和9.3%;秸秆还田后土壤MBN均高于秸秆不还田处理,且在越冬期、拔节期和成熟期达显著水平;各处理的土壤MBC和MBN随着施氮量的增加而显著降低,还田处理的土壤DOC随施氮量的增加而显著增加,平均增加11.8%;而秸秆不还田各处理中土壤DOC含量表现出先增高后降低的趋势。可见,秸秆还田有提高土壤活性有机碳氮的作用,而过量施用氮肥对活性碳氮的提高有抑制作用。因此,关中平原麦玉轮作区实行秸秆还田配合施用适量氮肥是提高土壤肥力水平、实现农业可持续发展的有效措施。  相似文献   

18.
农田生态系统作为重要的陆地生态系统之一,不同气候带与农业区的农田生态系统服务权衡关系与机理尚不明确。该研究定量分析了1990—2019年典型区域淮河流域农田生态系统关键服务食物供给与土壤保持的权衡强度,运用地理探测器方法揭示了不同气候带与农业区划下农田生态系统服务权衡关系的驱动机制,完善与细化了农田生态系统服务权衡机理,为推进淮河流域不同气候区和农业区的粮食安全和生态安全协同和精准施策提供科学依据。结果表明:1)淮河流域食物供给服务总体呈现增长趋势,黄淮海平原食物供给增长幅度显著高于长江中下游。土壤保持服务分区差异较大,在气候带上表现为亚热带增长趋势快于暖温带,在农业区划上表现为长江中下游增长趋势快于黄淮海平原,但黄淮海平原土壤保持平均值高于长江中下游。2)淮河流域农田食物供给与土壤保持两种服务间的权衡关系存在时空分异性,总体呈现加剧态势,权衡强度表现为暖温带长江中下游农业区>亚热带农业区>暖温带黄淮海平原农业区。3)淮河流域农田生态系统食物供给与土壤保持间的权衡关系受自然因素和人为因素共同作用,人为因素尤其是化肥施用量显著增强了食物供给与土壤保持间的权衡;在不同气候带与农...  相似文献   

19.
ABSTRACT

Potassium (K) deficiency in crops in southern US Coastal Plain soils has been documented since the l880s. Long-term soil fertility studies such as Alabama’s “Cullars Rotation” experiment (circa 1911) have been conducted with K since 1911. Other Alabama long-term experiments on several Coastal Plain and related Hapludults, Paleudults, and Kandiudults also contain K variable treatments which have been monitored since 1929. Soil test data from these long-term experiments have allowed us to answer some practical questions regarding K dynamics in Coastal Plain soils. Potassium movement through the soil profile is dependent on the soil’s cation exchange capacity (CEC) but relative accumulation is greater in the plow layer regardless of soil CEC. While subsoil K testing may be useful for identifying situations where subsoil K has been depleted, this extra effort and expense is not necessary for most cropping situations. A crop will remove most of its K from the plow layer if it is present in sufficient quantity based on soil test. Crop depletion of plow-layer K to the point where yield may be reduced is gradual and may take 10–15 years or more depending upon soil CEC and initial soil K concentration. Depletion is most rapid in low CEC soils as would be expected. However, soil test K can vary considerably during the course of a crop season with the lowest soil test K concentrations occurring immediately after harvest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号