首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upland oak forests in the ecotone between the eastern deciduous forest and the southern Great Plains are threatened by encroachment of eastern redcedar (Juniperus virginiana) due to fire suppression. The rapid rate of encroachment caused concern about concomitant alterations of site characteristics including nutrient cycling and the soil microbial communities (SMC) that could lead to positive feedbacks reinforcing eastern redcedar encroachment. We studied eight upland oak forests across central and western Oklahoma with stands representing three levels of encroachment: oak-dominated, eastern redcedar-dominated, and an intermediate mixture of both species. We analyzed litter chemistry (carbon, lignin, and nitrogen), soil chemistry (soil organic matter, NH4N, NO3-N, PO4, K, and pH), and profiled soil microbial communities using phospholipid fatty acid analysis (PLFA). Eastern redcedar encroachment was accompanied by reduced litter carbon along with higher levels of arbuscular mycorrhizal (AM) fungi while litter N was lower in mixed stands. However, we detected no change in soil chemistry. Our results indicate eastern redcedar encroachment in these upland oak forests reduced litter quality and altered the SMC through increases in AM fungi, a symbiont associated with eastern redcedar. These alterations may create positive soil–microbial feedbacks by reducing the fitness of the dominant oak species and facilitating rapid increase in eastern redcedar in this threatened, oak-dominated ecosystem.  相似文献   

2.
Recent studies have demonstrated that mass loss, nutrient dynamics, and decomposer associations in leaf litter from a given plant species can differ when leaves of that species decay alone compared to when they decay mixed with other species’ leaves. Results of litter-mix experiments have been variable, however, making predictions of decomposition in mixtures difficult. It is not known, for example, whether interactions among litter types in litter mixes are similar across sites, even for litter mixtures containing the same plant species. To address this issue, we used reciprocal transplants of litter in compartmentalized litterbags to study decomposition of equal-mass litter mixtures of sugar maple (Acer saccharum Marshall) and red oak (Quercus rubra L.) at four forest sites in northwestern Connecticut. These species differ significantly in litter quality. Red oak always has higher lignin concentrations than maple, and here C:N is lower in oak leaves and litter, a pattern often observed when oak coexists with maple. Overall, we observed less mass loss and lower N accumulation in sugar maple and red oak litter mixtures than we predicted from observed dynamics in single-species litterbags. Whether these differences were significant or not depended on the site of origin of the leaves (P<0.02), but there was no significant interaction between sites of decay and the differences in observed and predicted decomposition (P>0.2) . Mixing of leaf litter types could have significant impacts on nutrient cycling in forests, but the extent of the impacts can vary among sites and depends on the origin of mixed leaves even when the species composition of mixes is constant.  相似文献   

3.
It is widely accepted that microarthropods influence decomposition dynamics but we know relatively little about their effects on litter chemistry, extracellular enzyme activities, and other finer-scale decomposition processes. Further, few studies have investigated the role of individual microarthropod species in litter decomposition. The oribatid mite Scheloribates moestus Banks (Acari: Oribatida) is abundant in many U.S. ecosystems. We examined the potential effects of S. moestus on litter decomposition dynamics and chemical transformations, and whether these effects are influenced by variation in initial litter quality. We collected corn and oak litter from habitats with large populations of S. moestus and in microcosms with and without mites measured respiration rates, nitrogen availability, enzyme activities, and molecular-scale changes in litter chemistry. Mites stimulated extracellular enzyme activities, enhanced microbial respiration rates by 19% in corn litter and 17% in oak litter over 62 days, and increased water-extractable organic C and N. Mites decreased the relative abundance of polysaccharides in decomposing corn litter but had no effect on oak litter chemistry, suggesting that the effects of S. moestus on litter chemistry are constrained by initial litter quality. We also compared the chemistry of mite feces to unprocessed corn litter and found that feces had a higher relative abundance of polysaccharides and phenols and a lower relative abundance of lignin. Our study establishes that S. moestus substantially changes litter chemistry during decomposition, but specific effects vary with initial litter quality. These chemical transformations, coupled with other observed changes in decomposition rates and nutrient cycling, indicate that S. moestus could play a key role in soil C cycling dynamics.  相似文献   

4.
Plant‐litter chemical quality is an important driver of many ecosystem processes, however, what actually constitutes high‐ or low‐quality litter (chemical potential for fast and slow decomposition, respectively) is often interpreted by the indices available. Here, near‐infrared spectroscopy (NIRS) was used to explore leaf‐litter chemical quality and the controls on decomposition in the tropical rainforest region of north Queensland Australia. Leaf‐litter samples from litterfall collections and litterbag studies were used. NIRS was used to calibrate the chemical compositions of the material (N, P, C, Mg, Ca, acid detergent fiber, acid detergent lignin, α‐cellulose, and total phenolics) from a smaller sample set covering the spectral range in the full set of samples. Calibrations were compared for both separate (local) and combined models, for litterbags, and litterfall. Coefficients of determination (r2) in the local models ranged from 0.88 (litterbag Mg) to 0.99 (litterfall N), with residual prediction deviation ratios > 3 for all constituents except Mg (≈ 2.5). Mass loss in the litterbags was strongly related to the NIR spectra, with model r2's of 0.75 (in situ leaves) and 0.76 (common control leaf). In situ decomposability was determined from modeling the initial NIR spectra prior to decomposition with litterbag exponential‐decay rates (model r2 of 0.81, n = 85 initial samples). A best subset model including litter‐quality, climate, and soil variables predicted decay better than the NIR decomposability model (r2 = 0.87). For litter quality alone the NIR model predicted decay rate better than all of the best predictive litter–chemical quality indices. The decomposability model was used to predict in situ decomposability in the litterfall samples. The chemical variables explaining NIR decomposability for litterfall were initial P, C, and phenolics (linear model r2 = 0.80, n = 2471). NIRS is a holistic technique that is just as, if not more accurate, than litter–chemical quality indices, when predicting decomposition and decomposability, shown here in a regional field study.  相似文献   

5.
《Applied soil ecology》2006,33(3):338-349
Although the area under cultivation of genetically modified plants (GMPs) has substantially increased during the last decade, the effects of transgenic organisms on ecosystem processes (such as litter decomposition and nutrient cycling) largely remain unknown. In this study, the decomposition of leaf litter from transgenic birch trees (Betula pendula) expressing sugar beet chitinase IV gene was studied in a field experiment. Eight chitinase transgenic lines and a non-transgenic control were included in the study. The decomposition of these litters was investigated by studying: (i) litter mass loss, (ii) fungal (litter ergosterol content) and total microbial biomass (SIR) and their activity (basal respiration), and (iii) the effects of transgenic litter on microbial-feeding soil fauna (number of nematodes and abundance of different functional groups). At the end of the study (8 and 11 months after establishment) mass loss of chitinase transgenic leaf litter did not differ from that of non-transgenic control trees. Similarly, no differences in either the fungal or total microbial biomass between the treatments were recorded. A single transgenic line showing high chitinase IV expression differed significantly from the controls in the mean number of nematodes. The nematode populations in this litter showed distinct temporal dynamics compared to the controls, thus indirectly indicating microbial differences in the litter. The results of this study indicate that conceivable changes, possibly derived from pleiotropic effects due to gene modification, in the litter quality due to gene transformation are either absent or too weak to affect the decomposability of the litter in the soil.  相似文献   

6.
森林凋落物分解研究进展   总被引:15,自引:0,他引:15  
 森林凋落物分解是森林生态系统养分生物循环的重要环节,而分解过程中所释放的CO2是全球碳素收支的重要组分,开展森林凋落物分解研究是充分认识森林生态系统结构和功能的基础。研究认为:凋落物分解的预测指标可分为3类,即环境指标(如实际蒸散量)、凋落物物理质量(如叶抗张强度)和化学质量指标(如C/N比、木质素/N比和C/P比等);凋落物分解过程中养分释放机制极其复杂,养分动态模式主要有淋溶—释放、淋溶—富集—释放和富集—释放3种,并因凋落物种类、分解阶段和元素本身性质的不同而异;凋落物混合分解并非单一树种分解的简单叠加,因树种组成和比例不同,基质的化学组成会发生变化,从而影响分解者的多样性、丰富度和生理活性,进而直接和间接地影响其分解速率;凋落物混合分解中可能存在无效应、促进效应和抑制效应;现有的研究结果显示,凋落物混合分解的适宜比例应与群落中不同树种的种群比例相一致;CO2浓度升高不仅影响凋落物的化学性质,而且与分解环境中土壤的生物活性密切相关,但CO2浓度升高并不改变凋落物质量与分解速率之间的关系;越来越多的研究显示,CO2浓度升高的环境下,植物群落的物种组成会产生变化,这种变化对养分循环速率的影响远大于单纯大气CO2浓度变化的影响。  相似文献   

7.
Rhododendron maximum L., a spreading understory shrub, inhibits overstory regeneration and alters forest community structure in southern Appalachian hardwood forests. Using paired plots and reciprocal litter transplants in forests with and without R. maximum cover, we examined the influence of R. maximum on litter mass and quality, N cycling and soil extracellular enzymes. Standing stocks of soil organic matter, soil N, leaf litter mass and fine root biomass were greater in forests with R. maximum than those without. Tannin extracts from R. maximum foliage, and leaf litter and fine roots collected under R. maximum had a relatively high capacity to precipitate protein compared to extracts from trees. Across the growing season, soil inorganic N availability was generally lower under R. maximum, mostly due to reduced NO3 availability. Our data suggest that R. maximum litter alters N cycling through the formation of recalcitrant polyphenol–organic N complexes. Soil extracellular enzymes indicate the potential processing rates of organic substrates. Between forest types, polyphenol oxidase activity was greatest in R. maximum O horizons, regardless of litter type, suggesting that the local microbial community can better degrade and access protein–tannin-complexed N. Protease activity did not differ between forest types, but was greater on R. maximum leaf litter than hardwood leaf litter. The alteration of the N cycle via the formation of polyphenol–organic N complexes may contribute to hardwood seedling suppression, while the enzymatic release of these complexes by ericoid mycorrhizal fungi may increase N acquisition for R. maximum and contribute to its expansion in southern Appalachian forests.  相似文献   

8.
Herbivores can indirectly affect ecosystem productivity and processes such as nutrient cycling and decomposition by altering the quantity and quality of resource inputs into the decomposer subsystem. Here, we tested how browsing by red deer impacts on the decomposition of, and nutrient loss from, birch leaf litter (Betula pubescens), and tested whether effects of browsing on these measures were direct, via alteration of the quality of leaf litter, or indirect through long term impacts of deer browsing on soil biological properties. This was tested in a microcosm experiment using soil and litter taken from inside and outside three individual fenced exclosures located at Creag Meagaidh National Nature Reserve, Scotland. We found that litter of un-browsed trees decomposed faster than that from browsed trees, irrespective of whether soil was sourced from inside or outside exclosures. These findings suggest that effects of browsing on litter quality, rather than on soil biological properties, are the key determinant of enhanced decomposition in un-browsed areas of this ecosystem. Despite this, we found no consistent impact of browsing on litter C:N, a key indicator of litter quality; however, the rate of litter decomposition was linearly and negatively related to litter C:N when analysed across all the sites, indicating that this measure, in part, contributed to variation in rates of decomposition in this ecosystem. Our findings indicate that herbivores impact negatively on rates of decomposition in this ecosystem, ultimately retarding nutrient cycling rates, and that these effects are, in part, related to changes in litter quality.  相似文献   

9.
Temperature and litter quality are two of the key factors controlling litter decomposition. Predicted global warming and vegetation succession will therefore have profound impacts. This study was conducted to assess effects of experimental warming on litter decomposition and nutrient dynamics of two contrasting tree species (red birch, Betula albosinensis Burk., and dragon spruce, Picea asperata Mast.) and a mixture of the two with the heating cable method in the eastern Tibetan Plateau of China. This treatment raised surface soil temperature by 3.2°C and resulted in a 5.2% decline in soil moisture 10 cm below the soil surface. The water content of dragon spruce, red birch and mixed litter was decreased by 18, 11 and 13%, respectively. Marked differences between the two species in the decomposition rates and nutrient remaining percentages were detected. Moreover, we found positive, non‐additive effects of litter mixture. Experimental warming did not affect mass loss and nutrient release of dragon spruce litter but significantly increased mass loss and affected nutrient release of red birch and mixed litter during the early decomposition period. Overall, inter‐specific (red birch and dragon spruce) differences in decomposability were substantially larger than warming‐induced responses. Thus, a warming‐induced community succession towards dragon spruce forests in the Tibetan Plateau region could have a greater impact on early litter decomposition than warming itself.  相似文献   

10.
Elevated atmospheric CO2 concentration ([CO2]) may change litter chemistry which affects litter decomposability. This study investigated respiration and microbial biomass of soils amended with litter of Pinus densiflora (a coniferous species; pine) and Quercus variabilis (a deciduous species; oak) that were grown under different atmospheric [CO2] and thus had different chemistry. Elevated [CO2] increased lignin/N through increased lignin concentration and decreased N concentration. The CO2 emission from the soils amended with litter produced under the same [CO2] regime was greater for oak than pine litter, confirming that broadleaf litter with lower lignin decomposes faster than needle leaf litter. Within each species, however, soils amended with high lignin/N litter grown under elevated [CO2] emitted more CO2 than those with low lignin/N litter grown under ambient [CO2]. Such contrasting effects of lignin/N on inter- and intra-species variations in litter decomposition should be ascribed to the effects of other litter chemistry variables including nonstructural carbohydrate, calcium and manganese as well as inhibitory effect of N on lignin decomposition. The microbial biomass was also higher in the soils amended with high lignin/N litter than those with low lignin/N litter probably due to low substrate use efficiency of lignin by microbes. Our study suggests that elevated [CO2] increases lignin/N for both species, but increased lignin/N does not always reduce soil respiration and microbial biomass. Further study investigating a variety of tree species is required for more comprehensive understanding of inter- and intra-species variations of litter decomposition under elevated [CO2].  相似文献   

11.
Bamboos are one of the fast-growing and multiple use species in the world, and thus bamboo forests/plantations play an important role in C sequestration at regional and global levels. We studied aboveground litterfall, litter decomposition and nutrient dynamics for two years in two subtropical bamboo ecosystems in Southwest China so as to test the hypothesis that litter quality determine the rate and nutrient dynamics during decomposition of different litter fractions. Mean annual total aboveground litter production ranged from 494 to 434 g m-2 in two bamboo stands (P stand, dominated by Pleioblastus amarus and H stand, hybrid bamboo dominated by Bambusa pervariabilis x Dendrocalamopsis daii). Bulk (-80%) of litter production was contributed by leaf litter in two stands followed by twigs and sheathes. Different litter fractions represented considerable variations in the rates of mass loss and nutrient release. Variation of the mass remaining after 2 years of decomposition was significantly explained by initial C/N ratio and initial P concentration. Initial concentrations of N, P, Ca, and Mg explained 57.9%, 95.0%, 99.8% and 98.1%, respectively, of the variations of these elements mass remaining after 2 years of decomposition. The patterns of nutrient dynamics and the final amount remaining were mainly determined by their initial litter substrate quality in tl~ese two subtropical bamboo plantations.  相似文献   

12.
土壤微生物群落结构对凋落物组成变化的响应   总被引:9,自引:0,他引:9  
凋落物分解是陆地生态系统养分循环的关键过程,明确凋落物多样性如何影响土壤微生物群落构成和多度,继而潜在地改变凋落物分解的微生物学机制有助于认识生物多样性和森林生态系统功能的关系。通过小盆模拟试验,应用磷脂脂肪酸谱图的方法研究了我国南方红壤丘陵区典型物种马尾松和湿地松的凋落物分别与白栎和青冈的凋落物混合,与单一针叶凋落物分解时相比,针阔混合凋落物分解过程中土壤微生物群落结构的变化,结果显示:(1)针阔混合凋落物分解时土壤微生物群落磷脂脂肪酸(Phospholipidfatty acids,PLFA)总量低于单一针叶处理,细菌和放线菌的相对多度高于单一针叶处理,真菌则相反,群落真菌/细菌低于单一针叶处理,土壤微生物生物量的差异主要来自于真菌;(2)主成分分析表明:针阔混合凋落物分解与单一针叶凋落物分解的土壤微生物群落结构差异显著,两个时期(分解9个月和18个月)主成分一分别可以解释65.74%和89.63%的变异,第一主成分主要包括18∶2ω6,9、18∶1ω9c、17∶0和10Me18∶0等磷脂脂肪酸;(3)土壤微生物群落结构受凋落物初始C/N和木质素/N调控,土壤微生物群落细菌的相对多度与凋落物初始C/N和木质素/N显著负相关,真菌则与凋落物初始C/N和木质素/N显著正相关,群落真菌/细菌与凋落物初始C/N和木质素/N显著正相关。针阔凋落物混合分解通过改变凋落物C/N和木质素/N,提供了对分解者更为有利的微环境。  相似文献   

13.
The decomposition of oak leaf litter was studied by means of a litterbag experiment in an oak forest in the Netherlands. The contribution of microbial activity and leaching to weight loss and element dynamics during the first 6 weeks of decomposition was investigated by means of frequent respiration measurements and extractions of the litter and by a qualitative comparison of throughfall and litter percolation water chemistry. The oak-leaf litter lost 9.3% of its initial dry weight during the first 6 weeks. In total, 90% of this observed weight loss was explained by the processes studied. About 5.9% (64% of the total) of this weight loss was attributed to microbial tespiration and 0.5% (5%) to the loss of inorganic solutes. Leaching of dissolved organic compounds was estimated to account for 2.0% (21%). The results indicated a fast leaching of K and Cl out of the fresh litter during the first 2 weeks, while Mg, Fe, Mn, Si, ortho P, and dissolved organic N were released at a much lower rate. At the same time, small amounts of H+, NH inf4 sup+ and NO inf3 sup- were retained in the litter.  相似文献   

14.
In sloping oak forests of the German low mountain range high wild boar (Sus scrofa) and red deer (Cervus elaphus) population densities may affect soil ecological processes by grubbing, grazing, trampling and dunging. We simulated wild boar grubbing in a fenced exclosure and an unfenced replicate and established two adjacent control plots, one fenced, the other unfenced. We evaluated if repeated soil bioturbation and game exclusion by fencing influence soil texture, soil chemical and soil biotic properties in the upper soil over a time period of 2 years. Soil bioturbation was conducted in November 2000 and 2001 creating a grubbing pattern similar to that found in naturally grubbed areas. Soil and fauna sampling was performed in spring and fall of the years 2001 and 2002.Soil bioturbation did not affect soil texture, pH and the contents of organic carbon and nitrogen. In contrast, the contents of potassium and magnesium, the microbial activity and the abundance of saprophageous and predatory soil arthropods were generally lower in grubbed plots compared to ungrubbed control plots (p≤0.05).The exclusion of game did not improve soil quality. On the contrary, microbial activity and the contents of organic carbon and total nitrogen were elevated outside the fenced exclosure (p≤0.05) which may be related to the deposition of urine and dung.Our study found that large mammals affect soil nutrient cycling in sloping oak forests either directly by the deposition of urine and dung or indirectly by accelerating nutrient leaching and disturbing the decomposer system in the soils.  相似文献   

15.
Low intensity control burns are a standard fuel reduction management tool used in pine barrens ecosystems. Periodic disturbances through fire can be an important influence on the cycling of nutrients within the ecosystem. Previous studies have shown that the inorganic chemistry of leaf litter residues differs with increasing temperature. Our study compared chemical changes in white oak (Quercus alba), pitch pine (Pinus rigida) and black huckleberry (Gaylussacia baccata), characteristic of the New Jersey pine barrens, during thermal decomposition using FT-IR spectroscopy. Three replicates of senescent leaf material were ground and separately heated for 2 h at: 100, 200, 300, 400 and 550 °C. These temperatures are representative of the range seen in fuel reducing prescribed burns in the pine barrens. Unburned litter of each species was used as a control. An optimization process using varying amounts of KBr and oak litter was performed to develop favorable FT-IR spectral conditions for a sample to KBr ratio of 0.75%. Chemometric analysis of the FT-IR spectra using principal component analysis (PCA) was used to analyze the changes in carbohydrate chemistry of each litter plant species (leaf litter species) at each temperature. In general, it appears that there is clear separation of leaf litter species at the different combustion temperatures. Infrared spectroscopy illustrated that all three species shared wavenumbers characteristic of the primary components of leaves such as cellulose, lignin and hemicellulose. Results from the PCA indicated separation of litter species and species by combustion temperature. PC axis 1 corresponds to the effects of temperature on leaf litter species and PC axis 2 separates the leaf litter species. At the low temperatures (control-200 °C), oak, pine and huckleberry litter species separated from each other. Wavenumbers that contributed to the separation of species at low temperatures belonged to functional group stretching frequencies of outer surface waxes, basic sugars, fatty acids and aldehydes. It appears that oak had more IR bands specific to suberin content. Convergence of these species occurs at 300 °C. Complexity of chemical composition decreases at this particular temperature as is shown by the decrease in wavenumber richness when compared to litters at low and high temperatures. Oak, pine and huckleberry had similar IR spectra showing bands belonging to outer surface wax content, pectin, lignin and hemicellulose. With increasing temperatures (400-550 °C), differences between litter species increased slightly. Plant material was reduced to similar composition due to thermal decomposition, which consisted of inorganic materials such as carbonate, phosphate and sulfate ions and possible fused aromatics.  相似文献   

16.
Ecosystem processes such as N transformations have seldom been studied in urban and suburban areas. Here we report the temporal and spatial variations in soil N measured continuously over 16 months in remnant forests dominated by northern red oak (Quercus rubraL.) along a 130 km urban-rural transect in the New York City metropolitan area. Urban, suburban and rural forests all exhibited clear seasonal patterns in soil N concentrations and transformation rates. Concentrations of extractable inorganic N were highest in early spring, while net N mineralization and nitrification rates were highest in summer. Peak N mineralization and nitrification in urban stands tended to occur a month earlier than in rural stands. Daily net N mineralization rates averaged 4.45 mg N kg−1 soil organic matter (SOM) in urban stands, 3.51 in suburban stands, and 2.49 in rural stands. In urban and suburban forests, between 23.2-73.8% of the annual net N mineralized was nitrified, but in rural forests, net nitrification was mostly below the detection limit. Annual net N mineralization rates, expressed on an areal basis (to a depth of 7.5 cm), averaged 11.6 g m−2 in urban forests, 11.3 g m−2 in suburban sites, and 7.3 g m−2 in rural forests. N returns in oak litter fall were 2.15, 1.32, and 1.81 g m−2 in urban, suburban, and rural stands, respectively. The elevated N transformation rates and nitrate production, in combination with possible pollution constraints on tree growth in urban environments, raises concern that these urban and suburban forests may be approaching an N saturated status.  相似文献   

17.
川西亚高山三个森林群落的凋落物动态   总被引:21,自引:0,他引:21  
Litter production, components and dynamics were investigated and forest floor litter was quantified throughout a whole year in three subalpine forests, dominated by tree species of spruce (SF), fir (FF) and birch (BF), in Western Sichuan, China, in order to understand the key factors that influenced litter production and dynamics. Litterfall in the three forests consisted mainly of leaves, woody litter, reproductive organs and moss. Contribution of leaf litter to the total litterfall was significantly (P 〈 0.05) greater than that of woody litter, reproductive organs or moss. Regardless of the stands, litterfall exhibited a marked monthly variation with the maximum litterfall peaks occurring in October, with smaller peaks occurring in February for SF and FF, and May for BF. The analysis indicated that tree species, stand density, leaf area index (LAI), stand basal area and stand age were the key factors determining litter production. Meanwhile tree species and phenology controlled the litter dynamics, with wind and snow modifying the litter components and dynamics.  相似文献   

18.
The rate at which organic matter decomposes generally increases with temperature, unless it is physico-chemically protected from enzymatic depolymerization. The temperature sensitivity of decomposition should increase with decreasing reaction rates, corresponding to increasing activation energy of the decomposing compounds. One approach to testing this carbon-quality temperature hypothesis is to study the effect of temperature on leaf litter decomposition, because fresh surface litter is unprotected. However, other factors such as humidity co-vary with temperature, and biological processes such as enzyme production and microbial population growth may also be thermally sensitive. We developed a litter slurry approach to isolate the effect of temperature and litter quality on decomposition. We found that pine litter decomposed faster than oak litter, consistent with a lower C:N and lignin:N ratio. During the first 14 days of decomposition, there was no difference in decomposition rate for litter incubated at 25 °C compared to 35 °C. Lower potential enzyme activity at 35 °C suggested that enzyme production was suppressed at 35 °C compared to 25 °C, resulting in similar in situ enzyme activities at the two temperatures. After 14 days, enzyme pools were similar between the two incubation temperatures, which resulted in faster decomposition at the warmer temperature, consistent with enzyme kinetic theory. At Day 14, the decomposition rate of the high quality pine litter was more temperature sensitive than the decomposition rate of the lower quality oak litter, suggesting that the quality of soluble pool rather than bulk chemistry determined the temperature sensitivity during this stage. After 28 days of incubation, oak litter decomposition was more temperature sensitive than pine litter, consistent with the carbon temperature-quality hypothesis. The litter slurry approach revealed that biological responses to temperature can affect the apparent temperature sensitivity of decomposition, and highlight a need for further research into microbial responses to temperature.  相似文献   

19.
This paper deals with a study on the effects of Chinese fir,lobolly pine and deciduous oak forests o the nutrient status of soils in northern subtropics of China,adopting the principle of forest ecology in the case of similar climate and soil type.The experimental area was situated in the Xiashu Experimental Centre of Forest,where the soil is yellow-brown soil derved from siliceous slope wash.Sample plots of these 3 stands were established to study the nutrient status in litter ,the amount of nutrient uptake by roots,the quantity of nutrient output by percolating water outside the deep layer of soil,and the seasonal dynamics of available nutrient in surface soil.It was whown that the intensity of nutrient cycling in soil under deciduous oak was the highest,and the effect of oak in improving soil fertility was the best.The result of improving soil fertility by Chinese fir was the most inferior,though the intensity of nutrient cycling under that stand was higher than that under loblolly pine stand.The influence of loblolly pine on the improvement of soil fertility was better than that of Chinese fir,in spite of its lowest intensity of nutrient cycling.  相似文献   

20.
Microorganisms form the basis of soil food webs and represent key control points of carbon cycling and sequestration. Virtually all central European forests are managed and land-use regimes likely impact microbial abundance and community composition. Consequently, knowledge on how land-use intensity and abiotic variables, such as pH, C-to-N ratios, moisture regimes and concomitantly different stress levels, affect microbial communities is needed. We investigated phospholipid fatty acid (PLFA) profiles of leaf litter and soil from four forest types differing in foliage, age and management intensity, replicated in three regions across Germany. To account for temporal variation, samples were taken twice in the same season, but with an interval of three years. Total microbial biomass and microbial community composition differed between years, presumably due to between year variations in weather conditions. The litter layer was more prone to effects of drying, with a reduction of almost 30% of total PLFAs in the drier year. In soil effects of weather conditions depended on soil type and therefore differed between regions, with microorganisms in the sandy soils of the Schorfheide being more susceptible to water-stress, as evidenced by a ten-fold increase of the stress indicator cy/pre ratio in the drier year. Despite temporal variations in microbial biomass and community composition, the balance between the fungal and bacterial energy channel, as measured by fungal-to-bacterial ratios, remained rather constant in particular in soil. While total microbial biomass did not differ between forest types, microbial community composition differed significantly between beech and coniferous forests. Despite more acidic conditions, the fungal energy channel was less pronounced in leaf litter of coniferous forests than in broad-leaved forests, whereas the proportion of bacterial fatty acids was the highest in coniferous forests. Increasing management intensity presumably fosters the bacterial energy channel in the exposed litter layer. Supporting this assumption coniferous forests featured significantly higher values of the stress indicators cy/pre and SAT/MONO ratio. Bacterial community structure and biomass closely correlated with pH, with particular PLFAs dominating at high and low pH, respectively, indicating pH-specific microbial communities. In contrast, fungal abundance in leaf litter was correlated with C-to-N ratio. The results suggest that leaf litter and soil need to be considered separately when investigating changes in microbial community composition, since susceptibility of microorganisms to environmental stressors differs markedly between these layers. This, and repeated sampling events, may be particularly important when investigating subtle effects such as those related to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号