首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells were isolated from the developing leaves of Ipomoea aquatica and Digitaria sanguinalis. The effects of phenoxy alkanoic acid herbicides on light-dependent 14CO2 fixation and oxygen evolution in these leaf cells were studied. (2,4-Dichlorophenoxy)acetic acid and (2,4,5-trichlorophenoxy) acetic acid (2,4,5-T and 2,4-D) caused a 20% stimulation of 14CO2 fixation at 0.8 × 10?5M and an inhibition at 1 × 10?4M in I. aquatica leaf cells. Temperature seemed to have a marked influence on such action. No effect or very little effect was observed in the leaf cells of D. sanguinalis. The nonactive (2,4,6-Trichlorophenoxy)acetic acid (2,4,6-T) caused a similar stimulation of CO2 fixation as 2,4-D and 2,4,5-T at low concentrations in I. aquatica leaf cells, but no inhibition was observed at high concentration. Increase of hight intensity increased the rate of CO2 fixation in both control and 2,4,6-T-treated cells; however, the percentage of stimulation remained the same. At stimulatory concentration, all three compounds did not cause any stimulation in either photosystem I and II or photosystem II-mediated oxygen evolution. At higher concentrations, the differential effects of 2,4-D and 2,4,5-T on the light-induced CO2 fixation and photosystem II-mediated oxygen evolution in the I. aquatica leaf cells and D. sanguinalis mesophyll (ms) cells may be attributed in part to their selective action against dicotyledonous plants.  相似文献   

2.
Cells were isolated from the developing leaves of Ipomoea aquatica and Digitaria sanguinalis. The effects of phenoxy alkanoic acid herbicides on light-dependent 14CO2 fixation and oxygen evolution in these leaf cells were studied. (2,4-Dichlorophenoxy)acetic acid and (2,4,5-trichlorophenoxy) acetic acid (2,4,5-T and 2,4-D) caused a 20% stimulation of 14CO2 fixation at 0.8 × 10−5M and an inhibition at 1 × 10−4M in I. aquatica leaf cells. Temperature seemed to have a marked influence on such action. No effect or very little effect was observed in the leaf cells of D. sanguinalis. The nonactive (2,4,6-Trichlorophenoxy)acetic acid (2,4,6-T) caused a similar stimulation of CO2 fixation as 2,4-D and 2,4,5-T at low concentrations in I. aquatica leaf cells, but no inhibition was observed at high concentration. Increase of hight intensity increased the rate of CO2 fixation in both control and 2,4,6-T-treated cells; however, the percentage of stimulation remained the same. At stimulatory concentration, all three compounds did not cause any stimulation in either photosystem I and II or photosystem II-mediated oxygen evolution. At higher concentrations, the differential effects of 2,4-D and 2,4,5-T on the light-induced CO2 fixation and photosystem II-mediated oxygen evolution in the I. aquatica leaf cells and D. sanguinalis mesophyll (ms) cells may be attributed in part to their selective action against dicotyledonous plants.  相似文献   

3.
The binding behavior of mercuric chloride (HgCl2), phenylmercuric acetate (PMA), and ethylmercuric chloride (EMC) to the spinach chloroplasts in relation to the inhibition of the Hill reaction was studied at pH 6.8 and 7.8 using 203Hg labeled compounds. The pH of the reaction medium did not influence the amount of mercury binding of the chloroplast at various mercurial concentrations, but it altered the inhibition curve of the Hill reaction. Between 0–1 × 10?5M the binding of Hg2+ and EMC were similar and increased linearly with the concentration, while the binding of PMA was similar to the binding of Hg2+ only at a concentration below 4 × 10?6M and was less when the concentration was above 4 × 10?6M. However, the inhibition of the Hill reaction by these mercury compounds was quite different; at pH 7.8, the I50 values for Hg2+, PMA, and EMC were 5 × 10?6, 2.5 × 10?6, and 2.5 × 10?6M, respectively, while at pH 6.8, these values were 4 × 10?6, 4 × 10?5, and 2 × 10?4M, respectively. The differential block of electron flow by the mercury compounds at pH 6.8 and 7.8 was further confirmed by electron spin resonance study.  相似文献   

4.
At concentrations near 2 × 10?4M, barban, chlorpropham, and phenmedipham are inhibitors of the electron transfer in potato and mung bean mitochondria. The inhibition seems to be localized in the flavoprotein region. It affects preferentially the exogenous NADH dehydrogenation, in potato mitochondria (I50, 10?4M). Succinate dehydrogenation is less inhibited. At noninhibiting concentrations, the studied carbamates cannot uncouple the oxidative phosphorylations. Photosynthesis is completely inhibited by 2.10?7M phenmedipham, 5 × 10?5M barban, and 2 × 10?4M chlorpropham. The inhibition takes place at the PS II level. Moreover, barban and chlorpropham are uncouplers of the photophosphorylations for concentrations between 5 × 10?5 and 5 × 10?4M. The effects observed on mitochondrial respiration can also be found on respiration of Acer cultured cells. The effects on isolated chloroplast photosynthesis are also observed for slightly higher concentrations on cultured Chlorella and on pea and oat leaf fragments.  相似文献   

5.
Degradation of ioxynil (4-hydroxy-3,5-diiodobenzonitrile) to CO2 was detected in a clay loam, high organic matter content soil. The majority of radioactivity was recovered as 14CO2 from both ring-labeled and cyano-labeled ioxynil; however, 14CO2 was always released from cyano-labeled ioxynil at a much faster initial rate. No 14CO2 was released in treated sterile soil, either aerobically or anaerobically. Production of 14CO2 from cyanolabeled and ring-labeled ioxynil was greatly inhibited by HgCl2 (10?5M), and p-chloromercuribenzoate (5 × 10?5M), but slightly inhibited by ferricyanide (10?4M). No 14CO2 was evolved from ring-labeled ioxynil under anaerobic conditions. These observations indicated that the degradation of ioxynil to CO2 in soil was a microbial action and was oxygen dependent. This is consistent with the known mechanism of oxygenases in degrading benzene rings. Anaerobically, a small amount of 14CO2 was released from cyano-labeled ioxynil. Thin-layer chromatographic analyses of the culture supernatant revealed that 3,5-diiodo-4-hydroxybenzamide and 3,5-diiodo-4-hydroxybenzoic acid were intermediate metabolites.  相似文献   

6.
The effects of pyrethroids on the on-going electrical activity of the axons of neurosecretory cells from the brain of fifth instar Rhodnius prolixus have been studied using extracellular electrodes. Low concentrations of the pyrethroids decamethrin, bioresmethrin, permethrin, and bioallethrin all produce dramatic increases in the overall frequency and dramatic changes in the pattern of electrical activity when applied directly to the exposed brain and corpora cardiaca in an otherwise intact insect. This change in activity was brought about by a recruitment in active units and the production of phasic acivity. A doubling of frequency over that of controls was brought about by low doses of the pyrethroids, namely decamethrin, 1 × 10?10M; bioresmethrin, 2 × 10?10M; permethrin, 1 × 10?9M; and bioallethrin, 2 × 10?7M. Similar hyperactivity of this system occurred during intoxication of intact insects following topical application of LD95 bioresmethrin. The enhanced sensitivity shown by neurosecretory cells over that of other cell types is discussed, as is the possibility that the increases in electrical activity of neurosecretory axons may result in massive neurohormonal release and thereby contribute to the eventual poisoning of the insect.  相似文献   

7.
Long-term experiments with dactyl cells of Nitella flexilis showed that the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) at a concentration of 1 × 10?5M affected not only O2 evolution in the light but also O2 uptake in the dark. The inhibition of O2 production was transitory, but dark respiration did not recover. DCMU induced the formation of giant mitochondria which disappeared before cell death. It was concluded that the algicidic effect of 1 × 10?5M DCMU on N. flexilis, but not necessarily the elongation of mitochondria, was due to the inhibition of mitochondrial respiration and not of photosynthesis.  相似文献   

8.
The action of insecticides on the spontaneous electrical activity of neurohemal tissue in the stick insect, Carausius morosus, has been studied using extracellular electrodes. The pyrethroid, permethrin, causes a massive increase in the frequency of the spontaneously generated action potentials at concentrations between 5 × 10?5 and 5 × 10?8M. Concentrations as low as 5 × 10?11M are still effective in producing bursting activity.DDT, at concentrations between 5 × 10?5M and 5 × 10?6M, produces an overall increase in activity although the bursting activity is less violent than that shown with permethrin. DDT, 5 × 10?7M, is ineffective at altering the resting pattern.Carbaryl and coroxon cause a transitory increase in electrical activity at 1 × 10?4M, but are ineffective at 1 × 10?5M.It is concluded that insecticides could have a direct effect upon the neurohormonal balance in insects.  相似文献   

9.
In apterous adults of the spirea aphid, Aphis citricola van der Goot, the optimum conditions for determining acetylcholinesterase (AChE) activity consist of reaction mixture of 0.1 M phosphate buffer (pH 7.5), 10?3M acetylthiocholine (ASCh), and enzyme extract equivalent to 80 ± 3 μg protein incubated for 15 min at 30°C. The Km value for ASCh (6.7 × 10?5M) was much lower than that of butyrylthiocholine (BuSCh) (1.25 × 10?2M). The enzyme activity was almost completely inhibited by 10?6M paraoxon or 10?5M eserine and was 84% inhibited by 10?5M BW284C51 (a specific AChE inhibitor). DTNB was found to inhibit the enzyme activity and was therefore added at the end of the reaction. AChE activity of A. citricola was inhibited in vitro and in vivo by dimethoxon > dimethoate, and aldicarb sulfoxide > aldicarb > aldicarb sulfone. The in vivo effect correlates well with the toxicity level of the various toxicants. A neurotoxicity index which combines both mortality and in vivo inhibition of the aphid AChE activity is suggested as a measure for determining the toxicity of organophosphorus and carbamate compounds toward aphids.  相似文献   

10.
Deltamethrin and NRDC 157, pyrethroid insecticides that produce different poisoning syndromes in mammals, enhanced veratridine-dependent, sodium channel-mediated 22Na+ uptake in mouse brain synaptosomes. Concentrations producing half-maximal enhancement were 2.5 × 10?8M (deltamethrin) and 2.2 × 10?7M (NRDC 157). This effect was stereospecific: The nontoxic 1S enantiomers had no significant effect on veratridine-dependent activation. At high deltamethrin concentrations, enhancement was maximal at 5 × 10?5?1 × 10?4M veratridine. Pyrethroid enhancement was completely blocked by 5 × 10?6M tetrodotoxin, and neither pyrethroid affected 22Na+ uptake in the absence of veratridine at concentrations up to 1 × 10?5M. The relative potencies of deltamethrin and NRDC 157 in the synaptosomal sodium channel assay agree well with their relative acute toxicities to mice when administered by intracerebral injection. These findings demonstrate that pyrethroids exemplifying both characteristic poisoning syndromes are potent, stereospecific modifiers of sodium channel function in mammalian brain.  相似文献   

11.
A range of compounds were tested as inhibitors of the enzyme epoxide hydrase, using a cyclodiene epoxide (HEOM) as substrate. Rat and rabbit liver microsomes and pupal homogenates of the blowfly (Calliphora erythrocephala) and the yellow mealworm (Tenebrio molitor) were compared as sources of the enzyme. Only minor differences were found between the four enzyme preparations, when considering I50 values and percentage inhibition at standard concentration. The simple epoxide 1,1,1-trichloropropane-2,3-epoxide and two glycidyl ethers p-nitrophenyl glycidyl ether and p-ethylphenyl glycidyl ether tended to have lower I50 values (1.8×10?6 to 8.0×10?5M) than triphenyl phosphate and SKF 525A (4.5×10?5 to 1.4×10?4M). Triphenyl phosphate and SKF 525A were competitive inhibitors for both the rat and Tenebrio enzymes. The only clear difference found between these two epoxide hydrase preparations was with respect to their inhibition by 1,1,1-trichloropropane-2,3-epoxide, which was an uncompetitive inhibitor with the rat enzyme, but showed kinetics of mixed inhibition with the insect preparation.  相似文献   

12.
Several aryl N-hydroxy- and N-methoxy-N-methylcarbamates were examined as inhibitors of bovine erythrocyte acetylcholinesterase (AChE). These carbamate derivatives were generally strong inhibitors of AChE, but, unlike the typical N-methyl- and N,N-dimethylcarbamates which are carbamylating agents, they proved to be reversible, competitive inhibitors of the enzyme. The values for the dissociation constant (Ka) for the enzyme-inhibitor complex to enzyme and inhibitor were in the range of 2 × 10?5?1 × 10?7M.  相似文献   

13.
为明确高粱田主要杂草对HPPD抑制剂类除草剂喹草酮的抗性,采用整株生物测定法测定马唐Digitaria sanguinalis、稗Echinochloa crusgalli、狗尾草Setaria viridis、野稷Panicum miliaceum、反枝苋Amaranthus retroflexus和藜Chenbopodium alum六种主要杂草的敏感种群对喹草酮的敏感基线,同时测定全国不同生态区高粱田中这6种杂草对喹草酮的抗性水平。结果显示,喹草酮对野稷、稗、反枝苋和藜的防除效果较好,GR50介于12.76~32.72 g (a.i.)/hm2之间,GR90介于68.04~193.54 g (a.i.)/hm2之间,对马唐的防除效果略低,GR50介于44.23~56.19 g (a.i.)/hm2之间,GR90介于472.26~849.24g(a.i.)/hm2之间。采自全国不同生态区高粱田的马唐、稗、狗尾...  相似文献   

14.
Over a concentration range of 5.0 × 10?6?7.5 × 10?4M, the selective herbicide difenzoquat (1,2-dimethyl-3,5-diphenyl-1H-pyrazolium) caused more pronounced inhibition of potassium ion (K+) absorption by excised seedling roots of susceptible wild oat (Avena fatua L.) compared to those of tolerant barley (Hordeum vulgare L. cv. Bonanza) or wheat (Triticum aestivum L. cv. Neepawa). At 2.5 × 10?5M difenzoquat, the relative inhibition of K+ (86Rb) absorption by wild oat root segments inceased from 30% with a 10-min uptake period to 75% with an uptake period of 90 min, whereas no inhibition at all was evident for wheat root segments even after a 90-min exposure to the herbicide. An ion efflux compartmental analysis procedure demonstrated that difenzoquat did not affect the passive permeability properties of the plasma membrane of wild oat root cells. The experimental findings indicated that difenzoquat interfered directly with the process of active ion transport across the plasma membrane of root cells.  相似文献   

15.
A series of compounds containing the trifluoromethylketone group have been synthesized utilizing either a modified Grignard procedure or by reacting selected aliphatic bromides or tosylates with the Collman reagent [Na2Fe(CO)4]. When tested in vitro as inhibitors of crude juvenile hormone esterase from the hemolymph of the cabbage looper, Trichoplusia ni (Noctuidae), the most active compounds were trifluoromethylketones possessing either a juvenoid-like structure or a straight aliphatic chain. The logarithm of the inhibitory potency of the aliphatic compounds was proportional to their chain length, up to 1,1,1-trifluorotetradecan-2-one (I50 = 1 × 10?7M). This powerful inhibition was found to be highly selective for JHE, reversible, competitive by Lineweaver-Burk analysis, and was characterized by high affinity of the inhibitor for the esterase (Ki = 3.2 × 10?9M, Km JH III = 2 × 10?7M). Other trifluoromethylketones were shown to be inhibitors of T. ni α-naphthylacetate esterase and bovine trypsin. By analogy with the mechanism of trypsin action, trifluoromethylketones are probably potent inhibitors due to their resemblance to a tetrahedral transition state on the reaction coordinate to the acylated enzyme.  相似文献   

16.
Methamidophos (O,S-dimethylphosphoramidothioate, Monitor) is an organophosphorus, cholinesterase-inhibiting insecticide. The rate constant (ki) for inhibiting rat plasma cholinesterase (ChE) was 1.57 ± 0.03 × 103M?1 min?1, for rat erythrocyte ChE was 8.86 ± 1.10 × 103M?1 min?1, and for rat brain ChE was 6.58 ± 0.42 M?1 min?1. Brain and plasma cholinesterases spontaneously recovered from over 90% inhibition at 30 min to 50% inhibition in 4 and 14 hr, respectively. Pralidoxime increased the rate of reactivation in vitro. In vivo, rats poisoned with methamidophos exhibited signs of cholinergic stimulation. The LD50 of ip methamidophos in male rats was 15 ± 0.7 mg/kg. Pralidoxime (60 mg/kg) and atropine (10 mg/kg) given with the methamidophos increased the LD50 to 52 ± 4.9 mg/kg and 60 ± 0.4 mg/kg, respectively. In rats given 12.5 mg methamidophos (an LD20), ChE activity was depressed 95 ± 12.5% in plasma, 92 ± 0.6% in stomach, and 88 ± 1% in brain at 1 hr after injection. At 48 hr after injection ChE activity had returned to 60% or more of control values in each of the tissues. Administration of a single dose of 60 mg/kg of pralidoxime along with methamidophos did not increase ChE activities at the times and places it was measured.  相似文献   

17.
Atrazine carryover often limits growers to production of atrazine-tolerant crops the year following application, and allows the increase of triazine-tolerant weed species such as Panicum miliaceum L. (wild proso millet). Tiriazine-resistant Brassica napus L. cv. ‘Triton’ (oilseed rape) was tested to characterize the nature of interspecific interference with P. miliaceum. In a greenhouse study, atrazine at 2.2 kg ha?1 depressed oilseed rape fruit (siliqua) number and fruit dry weight, and delayed flowering, but did not significantly affect height or weight of shoots, Oilseed rape fruit weight was reduced at 200 P. miliaceum plants m?2. fruit number and shoot weight were inhibited at 400 weeds m?2. and height was reduced and flowering delayed at 600 weeds m?2. Number and weight of fruits were reduced by one-third after 8 weeks of interference as compared to oilseed rape grown with the weed for 4 weeks. Oilseed rape height was reduced by 29% and shoot weight by 55% by 600 weeds m?2 and 2–2 kg ha?1 atrazine, while fruit number and weight were reduced by 72%. Oilseed rape shoot weight was reduced by 74% by 600 weeds m?2 for 12 weeks of interference, while fruit number and weight were reduced by 85% and 82%. respectively. In a field study, fluazifop reduced early season P. miliaceum cover by 72%, but did not increase oilseed rape cover. Mid-season P. miliaceum shoot weight was decreased by 97% by fluazifop and oilseed rape shoot weight was increased by 34%. P. miliaceum control increased oilseed rape biomass by 38% at 89 days, but biomass of oilseed rape sown at 11.2 kg ha?1 with 2.2 kg atrazine ha?1 was not decreased by P. miliaceum interference at 89 days.  相似文献   

18.
Methyl-1-(butylcarbamoyl)-2-benzimidazolecarbamate (benomyl) severely decreased DNA synthesis when applied at 3.5 × 10?6M during the G1 phase of germinating conidia of Fusarium oxysporum; nuclear divisions were completely inhibited at a fungicide concentration of 10 × 10?6M. The same concentration applied only after the S phase also completely inhibited the nuclear divisions. This dual interference of benomyl with DNA formation and mitosis might be related to a disturbed phosphorus metabolism.  相似文献   

19.
The effects of nine phenoxy-phenoxypropionic acid derivatives and structurally related compounds on the incorporation of [14C]-acetate into free fatty acids in isolated bean and maize chloroplasts were studied. The compounds tested were esters and the corresponding free acids, OH-diclofop, a nonherbicidal metabolite of diclofop in plants, and d and l enantiomers of diclofop. Fatty acid biosynthesis in bean chloroplasts was not affected by all compounds. OH-Diclofop had a weak inhibitory effect on fatty acid synthesis in maize chloroplasts, while free acids were stronger inhibitors than the corresponding esters in the same system. Uptake studies with diclofop-methyl and diclofop indicated that the esters showed higher uptake rates in chloroplasts suspension. d-Diclofop (I50, 9 × 10?8M) was a more potent inhibitor than l-diclofop (I50, 4 × 10?6M). This agrees with the low herbicidal activity of the l enantiomer in vivo. The results suggest that the mode of action in this type of herbicide may be closely linked with the inhibition of fatty acid biosynthesis. The tolerance of beans could be based on an insensitivity of the target site.  相似文献   

20.
A “soluble” glutathione S-transferase that catalyzes the cleavage of the herbicide, 2,4′-dinitro-4-trifluoromethyl diphenylether (fluorodifen), was isolated and partially characterized from epicotyl tissues of pea seedlings. A 32-fold purification of the enzyme was achieved by differential centrifugation, ammonium sulfate precipitation, Sephadex gel filtration, and DEAE-cellulose ion exchange chromatography. The enzyme had a pH optimum of 9.3–9.5 and was specific for reduced glutathione, with an estimated apparent Km value of 7.4 × 10?4M. Limited specificity studies with four substituted 14C-labeled diphenylether compounds indicated that fluorodifen was the only effective substrate, with an estimated apparent Km value of 1.2 × 10?5M. Differences and similarities between the pea epicotyl enzyme and other plant and animal glutathione S-transferases were discussed from the standpoint of substrate specificity, pH optima, distribution, stability, and inhibitor studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号