首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The generation and development of thermal convection based on inhomogeneous water surface cooling were examined by hydraulic and numerical experiments to examine the characteristics of thermal convection in a closed water body with aquatic plants. A visualization experiment revealed the structural characteristics of a whirlpool when thermal convection was generated quantitatively by using PIV analysis. Then, a water temperature measurement experiment demonstrated that a steady cold water mass generated based on the heat flux transport from the water surface increases. This explained each of the three stages in the convection development process. Moreover, aquatic plants, which grow thickly on the water surface, cause not only vertical but also horizontal flows based on the density difference with the water surface that is not covered by plants, and thus change the development process of the convection cell.  相似文献   

2.
It has recently been proposed that water purification could be performed using aquatic plants, since they absorb nutrient salts. The behavior of a substance in a closed water area is affected by turbulent flows from wind-induced flow, which is a mechanical disturbance, and convective flow, which is a thermal disturbance. In a closed density stratified water area, wind-induced flow gives rise to the entrainment phenomenon at the density interface. This phenomenon, which is based on mixing between the upper and lower water layers, lowers the density interface and so affects the water quality. We experimentally investigated the effect of aquatic plants on the turbulent flow from a mechanical disturbance in the closed water area. Results indicated that the presence of floating and submerged plants had a significant effect on the scale of the turbulent entrainment, and that the entrainment velocity depended on the overall Richardson number to the power of –3/2.  相似文献   

3.
株行距配置对玉米根系性状及产量的影响   总被引:5,自引:1,他引:4  
以郑单958为材料, 采用田间试验方法, 在50 025株/hm2、67 500株/hm2、100 050株/hm2密度下分别设两种株行距配置, 探讨增密条件下调控株行距配置对玉米根系性状及产量影响。结果表明, 3个种植密度下总体表现为小行距种植方式在0~60 cm土层内的根重密度、根长密度及根表面积密度均高于大行距处理。50 025株/hm2下吐丝期时0~60 cm土层内的根重密度和根长密度在两个株行距配置间差异显著(P<0.05), 两个株行距配置的根表面积密度在10叶展、吐丝期和吐丝后25 d差异显著(P<0.05);67 500株/hm2下不同时期两个株行距配置根重密度差异显著(P<0.05), 根长密度和根表面积密度在10叶展和吐丝后25 d差异显著(P<0.05);100 050株/hm2下, 两个株行距配置间根重密度和根长密度在10叶展和吐丝后25 d差异显著(P<0.05), 不同时期根表面积密度差异显著(P< 0.05)。同一密度下缩行增株后单株木质部伤流液体积增大, 根系供应能力增强, 产量增加, 50 025株/hm2、67 500株/hm2下产量分别提高了6.76%和4.89%。不同时期0~60 cm土层内根重密度、根长密度和根表面积密度与产量呈正相关, 其中10叶展时各根系性状均与产量呈显著正相关。  相似文献   

4.
The energy flux on the ground surface depends not only on climatological and biophysical controls in the vegetative canopy, but also on the available energy and energy partitioning beneath the canopy. Quantifying the evaporation and energy partitioning beneath the canopy is very important for improving water and energy utilization, especially in arid areas. In this study, we measured meteorological data, the net radiation and latent heat flux beneath the rice canopy, and then applied the radiation and energy balance equations to get the water surface temperature beneath the rice canopy. To apply the equations, we constructed shortwave and longwave radiation beneath the canopy sub-models and a bulk transfer coefficient sub-model. A plant inclination factor was parameterized with plant area index for the shortwave and longwave radiation sub-models. Bulk transfer coefficient was parameterized by plant area index and soil heat flux was predicted by the force restore model. With calculated water surface temperature and constructed sub-models, we reproduced net radiation and latent heat flux beneath the rice canopy. As a result, the reproduced water surface temperature, net radiation, and latent heat flux beneath the rice canopy were very close to the measured values and no significant differences were found according to 2-tail t test statistical analysis. Therefore, we conclude that these constructed sub-models could successfully represent water surface temperature, net radiation, and latent heat flux beneath the rice canopy.  相似文献   

5.
When floating vegetation grows on the water surface in a closed water body, the vegetation counteracts the magnitude of the wind acting on the water surface, and affects the fluid flow and the water quality variation in it. In this study, in order to investigate the counteraction effect of the luxuriant growth of floating vegetation on the fluid flow and water quality in the closed water body, we conducted hydraulic experiments on wind-induced flow with density stratification using a wind tunnel test tank and imitated vegetation. We used imitated vegetation made from polystyrene foam plates instead of using real floating vegetation. And we experimentally considered the effect of the vegetation using the concept of the wind-induced entrainment phenomenon. In particular, we focused the effect of the occupation rate and the swaying motion of vegetation. The results indicated that the swaying motion of imitated floating vegetation had an effect on the scale of entrainment. In addition the results had the same tendency as the previous study on the wind-induced entrainment phenomenon.  相似文献   

6.
A simple steady state model is derived which describes the diurnal water potential fluctuations in leaves and tubers of potatoes. The magnitude of these fluctuations is shown to depend on transpiration rate, hydraulic properties of the soil, rooting depth and density, resistance to flow of water within the plant, and the leaf water potential at which stomatal closure occurs. Model predictions agree quite well with measurements made in the field and in the growth chamber. The model is used to predict the lower limit of readily available moisture for potatoes and shows the important environmental and plant factors.  相似文献   

7.
Hydraulic resistance in plants is one of the most important factors responsible for changes in leaf water potential that is an indicator of plant water stress. Although the hydraulic resistance to passive water transport (Rpa) is a robust index in paddy rice (Oryza sativa), measurement is both time-consuming and labour-intensive. Here, we describe on a quick method to measure hydraulic resistance to osmotic water transport (Ros) by measuring the xylem sap exudation rate and osmotic water potential. In a greenhouse experiment, Ros responded significantly to soil temperature, but under field conditions soil temperature varied considerably less than air temperature. In the field experiment, Ros of six rice cultivars at two growth stages was strongly positively correlated with Rpa. We conclude that measuring Ros could be used to evaluate root water transport capacity in paddy rice under conditions with adequate soil water.  相似文献   

8.
密度对玉米光合生理特性和产量的影响   总被引:28,自引:15,他引:28  
以廊玉6号和农大108为试验材料,研究密度对玉米光合生理特性和产量的影响。结果表明:叶片光合速率、叶绿素含量、可溶性蛋白质含量、单株叶面积和单株干物重随着密度增加均降低;叶面积指数(LAI)、群体干物重(PDW)、光合势(LAD)和作物生长率(CGR)随密度增加而增大。生育前期差别不明显,中后期效应显著。无论单株性状还是群体性状,廊玉6号对密度的反应均比农大108迟钝,廊玉6号的耐密性强于农大108。本试验条件下,廊玉6号和农大108的适宜密度分别为67500株/hm2和60000株/hm2。  相似文献   

9.
Aloe vera (Sábila) is used in folklore medicine and commercial cosmetology products in many countries. Little is known about the plant's physiological, growth, and yield responses under different irrigation regimes. The plant has a crassulacean acid metabolism (CAM) that allows water conservation within the tissue, and therefore, resistance to high water stress. A. vera plants were submitted to different irrigation regimes in a greenhouse experiment to evaluate the response of the physiologic processes such as stomatal resistance and transpiration as well as leaf growth and yield. The experiment consisted of three irrigation regimes under a completely randomized design. No initial effect on stomatal resistance or transpiration was exhibited, but as time elapsed changes in these variables were noted. We suggest that the high water content in the parenchyma maintains stomatal opening despite water stress. In a subsequent period, the leaves that were submitted to water stress at the beginning, showed stomatal opening reduction related to low soil water potential. The low soil water potential reduced leaf weight, plant growth rate, and leaf number, mainly in leaf growth during the experiment confirming the sensitivity of new leaves to water stress. The results suggest that the low leaf temperature increases stomatal resistance, decreases plant and leaf growth rates. This behavior is opposite to other CAM species in semiarid condition.  相似文献   

10.
种植密度对旱地玉米植株性状及耗水特性的影响   总被引:6,自引:0,他引:6  
以紧凑型玉米品种先玉335为试材,在半干旱区研究种植密度对旱地玉米植株性状、产量性状、耗水量和水分利用效率的影响。结果表明,2010年(平水年)玉米拔节期株高在密度间没有差异,抽雄期株高随密度增加显著降低;2011年(丰水年)拔节期和抽雄期株高均随密度增加有明显增加趋势;穗位高随密度增加呈直线增加。平水年产量随密度增加先增加后显著减少,呈抛物线型,收获指数随密度增加呈明显直线下降趋势;丰水年产量随密度增加而增加,当密度增加至7.5万株/hm2时,产量不再显著增加,收获指数随密度增加变化不大。不同密度生育期总耗水量相差不大,平水年密度间总耗水量极差值为4.1 mm;丰水年总耗水量随密度增加呈增加趋势,极差值仅为17.8 mm,播种-拔节期耗水量随密度增加呈明显增加趋势,其变异系数在整个生育期中最大。平水年玉米水分利用效率随密度增加先增加后降低,当种植密度为7.5万株/hm2时达到最大值;丰水年适宜密度为7.5万株/hm2,其水分利用效率为26.7 kg/(hm2·mm)。  相似文献   

11.
达龙珠 《玉米科学》2011,19(5):91-95
在大田条件下,研究种植密度对高油玉米HE-2灌浆后期光合特性及产量的影响。结果表明,高油玉米HE-2在灌浆后期能保持较高的叶面积和净光合速率,叶面积、叶绿素含量、净光合速率及各荧光参数等均随种植密度增加而降低;子粒产量随种植密度增加先增加后下降,种植密度为52 500~60 000株/hm2时,高油玉米产量较高,最高为6 679.80kg/hm2。  相似文献   

12.
以玉米品种郑单958为材料,以玉米株行距配置为重点,设置高(100 050株/hm2)和中(67 500株/hm2)两个种植密度,每个密度下设置40 cm、60 cm两种行距处理,探究不同密度下株行距配置对产量、根系分布和养分吸收的影响。结果表明,随着种植密度的不断增加,产量呈先增大后减小的趋势,与中密度种植相比,高密度下玉米产量增加13.9%。在中密度下减小行距玉米产量提高1.0%,高密度下减小行距玉米产量显著提高26.1%。在高密度条件下,减小行距在水平、垂直方向均增加根长、根表面积、根体积等,并使植株地上部氮、磷、钾和干物质的积累量分别提高4.9%、8.1%、25.8%和4.5%。根系性状、植株养分含量、植株干重和产量均呈显著正相关。在高密度下通过适当减小行距、增大株距,减小株间根系竞争,提高根系对土壤养分吸收,对玉米密植增产具有重要作用。  相似文献   

13.
Abstract

Chilling is a major constraint in rice production in cool climates. In rice (Oryza sativa L.) plants, both the air temperature and the water (soil) temperature affect various growth processes independently, and low root zone temperature (thus, root temperature) can inhibit rice growth and yield. In this study, we investigated the effect of low root temperature on rice growth in relation to dry matter production and root water uptake. Plants were grown in hydroponic solutions at two temperatures, one equivalent to air temperature and the other 14ºC for 15 d starting 11 d after germination. Low temperature of the solution (low root temperature) inhibited dry matter production of rice plants by decreasing leaf area rather than photosynthetic rate. The response of leaf area was affected by changes in plant water status, that is relative water content (RWC) of stem was decreased by low root temperature resulting in reduced leaf area. The decrease in RWC caused by low root temperature was related to that in root hydraulic conductance (Kr). The responses of transpiration (E) and Kr to the low root temperature depended more on root surface area than on changes in hydraulic conductance per unit root surface area (Lpr). These results suggest that dry matter production under the low root temperature condition is controlled mainly by quantitative growth parameters such as leaf area and root surface area.  相似文献   

14.
双重化控对春玉米不同密度群体冠层结构的影响   总被引:4,自引:3,他引:4  
在大田栽培条件下,以京单28和先玉335为试验材料,设置5个密度梯度,分别于6叶期和9叶期叶面喷施膦酸胆碱合剂(ECK)和聚糠萘合剂(PKN),研究双重化控对春玉米群体冠层结构的影响.结果表明,随密度的增加,叶面积指数(LAI)、平均叶倾角(MTA)、株高、穗位高上升,透光率降低,冠层结构恶化.双重化控显著降低了高密度下(7.5万~10.5万株/hm2)LAI、穗下叶面积百分比,增加了MTA,提高了下层的通风透光性;缩短了穗下节间长,拉伸穗上节间长,改善了中上部的冠层结构;改善了玉米的穗部性状,显著提高了高密度下的玉米产量,京单28和先玉335产量增幅分别为9.76%~13.00%和10.95%~12.08%.研究表明,双重化控使玉米群体冠层结构得到合理优化,通风透光增强,使高密条件下植株个体维持较高的光合生理活性,产量同步提高.  相似文献   

15.
Field plots were established in autumn 1992 in which endophyte [ Neotyphodium coenophialum Glenn. Bacon, Price and Hanlin (formerly Acremonium coenophialum )]-infected (E+) and endophyte-free (E) isolines of three tall fescue [ Festuca arundinacea Schreb.) genotypes were planted. Plants were subjected to three water-withholding periods in 1993 and one in 1994, or were kept well watered throughout the experiment. There were no consistent endophyte effects for leaf elongation, tiller density or dry weight per tiller. There were genotype X endophyte interactions ( P <001) for tiller density and shoot dry weight per area and genotype X water X endophyte interactions ( P <005) for cumulative leaf elongation in 1993. These interactions indicated the highly specific effect of host genotype-endophyte association on the expression of plant growth. Leaf rolling in the stressed treatments was more severe in E than in E+ plants in 1993, but there were no differences in 1994, and stomatal conductance tended to be lower in E than in E+ plants in 1993. Fractional water content of the lower 3 cm of the youngest fully developed leaf sheath was usually greater, and never less, in E+ than in E plants. The leaf rolling and stomatal conductance results suggest that E plants were more severely stressed in the summer after planting. Thus, the endophyte may induce greater water retention in the leaf sheath and therefore better protect the internal growing zone from lethal desiccation.  相似文献   

16.
《Field Crops Research》2006,95(2-3):291-304
The optimum distribution of leaf nitrogen (N) in the canopy of rice plants (Oryza sativa L.) for maximum daily canopy photosynthesis (DCP) and the optimization effects on DCP were estimated during the grain filling period. The low- and high-density canopies (28.3 and 47.5 plants m−2) and isolated plants were established at heading using plants in pots grown up at the low density until heading to make the same canopy architecture except plant density and the same leaf N distribution at the start of treatment among the two canopies and the isolated plants. The simulation was conducted under two conditions of the upper limit of leaf N. Under condition 1, upper limit of leaf N content was 1.80 g m−2. Under condition 2, upper limits were measured leaf N content in each leaf position at heading. The model indicates that if leaf N content in the upper leaves can be increased with reduction of N in the lower leaves, DCP will increase in any of the plant density, light conditions and under conditions 1 and 2. On a clear day, the estimated increase in DCP was 19–45 and 38–70% in the low- and high-density canopies under condition 1, respectively. Even under condition 2, which is more realistic than condition 1, the increase was up to 21 and 25% in the low- and high-density canopies. These estimates obtained by the present model that incorporates the shading effects of panicles and stems on DCP were higher than the previous reports which did not consider the effects of shading by panicles and stems. In the observed leaf N distribution, the higher the plant density was, the steeper the gradient of the leaf N remained. The gradient in the high-density canopy was closer to that of the predicted optimum leaf N distribution, and likely to contribute to maintaining higher DCP in the canopies. Compared with the hypothetical case in which gradient of leaf N distribution would be more gentle as observed in the isolated plants, the maintained steeper gradient of observed leaf N content in the canopies was estimated to increase DCP by 13 and 5% in the high- and low-density canopy, respectively.  相似文献   

17.
Effects of different grazing frequencies and intensities on herbage production (on both a unit pasture and individual plant basis) and on persistence of chicory ( Cichorium intybus L. cv. Grasslands Puna) were studied at Palmerston North, New Zealand (latitude 40°23'S) from November 1994 to November 1995. Three experiments were conducted on the same chicory stand, sown on 12 May 1994. The main grazing experiment had two grazing intensities, hard-lax grazing (50- to 100-mm stem stubble to mid-January, and thereafter 100- to 150-mm stem stubble) and lax grazing (100- to 150-mm stem stubble), and three grazing frequencies (1-, 2- or 4-week intervals). A subsidiary plant survival experiment compared the survival of 120 marked plants in ungrazed and grazed treatments. A late autumn grazing experiment examined the effects on plant persistence in the following spring. The greatest herbage mass (leaf + stem) resulted from the 4-week grazing frequency [9640 ± 874 kg dry matter (DM) ha−1], in which stem mass was reasonably low (1270 ± 410 kg DM ha−1), but was significantly higher in the 4-week grazing frequency than 1- and 2-week grazing frequencies ( P < 0·01). Grazing intensity had no significant effect except on the average stem mass of individual plants when the hard-lax intensity gave a lower stem mass ( P < 0·01). There were no interactions between grazing frequency and intensity in herbage mass. Plant density declined by 35% over the growing season with the decline unaffected by grazing intensity or frequency during the season. Grazing in late autumn resulted in approximately 27% less plants the following spring. It was concluded that grazing management through the growing season cannot be used to improve persistence without compromising leaf growth rate, but that avoidance of grazing late autumn will improve the persistence of chicory.  相似文献   

18.
The amount of photosynthetically active radiation (PAR) in the water column is of fundamental importance in determining the growth of aquatic plant and aquatic primary production. Light attenuation in aquatic ecosystems has important ecological implication and water quality applications. In the present study, the light attenuation through the water column in the Shihmen Reservoir, Taiwan was measured. A light attenuation coefficient (K e) can be derived from the PAR measurements at each stations. The linear regression analysis reveals that Secchi disk depth is a sample alternative measure of light transmitability and provides a reasonable estimate of the light attenuation coefficient in the Shihmen Reservoir. We conducted multiple-regression analysis for the K e, chlorophyll a, and total suspended solids (TSS). Because the concentration of chlorophyll a is roughly <5 μg/L in the Shihmen Reservoir, the chlorophyll contribution to the attenuation coefficient will be <0.1 m−1, which is negligible. K e correlated with TSS concentration yields a good correlation, indicating the TSS should be a good water quality variable for predicting water column light attenuation coefficient in the Shihmen Reservoir.  相似文献   

19.
This research studied thermal environment in paddy field which the main objective to evaluate it when the water was present in the field by means of observation and simulation. Heat exchange in soil and water, plant and atmosphere were calculated using a two-layer resistance model. The atmospheric boundary layers-thermal, humidity and wind velocity-were assumed horizontally uniform and were arranged in one-dimensional equations. The observed paddy field was located at Kyushu University Experimental Farm in Fukuoka, Japan. In the simulation, fix boundary conditions of wind velocity and humidity, and fluctuating boundary condition of temperature at 100 m height were used over the paddy field with the presence of 5 cm depth of water layer. The simulation was successful in estimating radiation, dissipation of heat fluxes, mechanism of atmospheric thermal changes and the temperature of leaf, air, and water. The results show that most of the available energy dissipates into latent heat, and less into sensible heat.  相似文献   

20.
2018~2019年以陕科9号和大丰30为材料,设置4个密度4.5万、6.0万、7.5万和9.0万株/hm2进行田间试验,分析玉米冠层结构、光合性能以及产量构成指标,研究种植密度对玉米群体特征及产量的影响,确定陕北灌区玉米适宜种植密度。结果表明,两个品种子粒产量随密度增大呈先增加后降低的趋势,均在密度7.5万株/hm2时产量最高,两年平均产量分别为14.1 t/hm2和13.2 t/hm2。随种植密度增大单位面积穗数显著增加,穗粒数和百粒重减少。随着密度的增加,两个品种能够调节穗上中部叶倾角、株型变紧凑,穗位层接收到更多的光能,增加了群体光合速率,积累更多光合同化物,高密度条件下陕科9号协调形态结构和生理功能方面优于大丰30。适当增加密度配合耐密品种是陕北灌区春玉米增产的重要途径,密度7.5万株/hm2是该区玉米适宜种植密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号