首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Diffuse soluble reactive P (SRP) & total P (TP) loads from over 50 major river catchments in Northern Ireland were predicted using an export coefficient modelling approach. Phosphorus export coefficients for each CORINE land cover class, derived from satellite imagery, allowed the prediction of P loads from a breakdown of the CORINE land cover classes by catchment using a GIS. This approach was validated using observed P loads calculated from flow and concentration data. Mean measured Olsen-P concentrations in the soil A-horizon were also determined on a catchment basis. Plots of P loads to the watercourse versus Olsen-P concentrations in the soil showed a breakpoint around 22 mg Olsen- P l−1 for both SRP & TP data. Below Olsen-P concentrations of 22 mg l−1, SRP & TP losses were essentially independent of Olsen-P at 0.28 and 0.63 kg P ha−1 yr−1, respectively. Above Olsen-P concentrations of 22 mg l−1, there was considerable spread in the P loss data. Nevertheless, significant upward trends in SRP and TP losses to watercourses were detected with increasing Olsen-P at a rate of approximately 0.5 and 1.0 kg P ha−1 yr−1, for SRP and TP respectively, for each 10 mg l−1 increase in Olsen-P.  相似文献   

2.
Abstract. Anecdotal and circumstantial evidence have suggested that the Olsen test underestimates plant-available phosphorus (P) in basaltic soils in Northern Ireland. Therefore, the ability of this test to predict plant-available P in basaltic (and non-basaltic) soils was investigated by regressing Olsen-P data against herbage P indices calculated from plant tissue test data using the diagnosis and recommendation integrated system. The average Olsen-P concentration for a range of fields situated on basaltic soils was considerably lower than the average Olsen-P concentration for a range of fields situated on non-basaltic soils, and yet mean sward P status, as given by the herbage P indices, was similar for both groups of fields. Herbage P indices were also much better correlated with Olsen-P measurements in non-basaltic soils than in basaltic soils. Furthermore, at low Olsen-P values (≶9mgPL−1) some swards on basaltic soils were genuinely deficient in P, while others were sufficient or even in surplus for this nutrient. The results confirm that Olsen-P is inadequate as a predictor of plant-available P in basaltic soils. It is concluded that an alternative soil test is needed to provide a reliable assessment of plant-available P in basaltic soils, to prevent overuse of fertilizer and manure P and to minimize the amounts of P entering local watercourses.  相似文献   

3.
Abstract. An examination of total phosphorus (TP) concentrations from 902 lakes in England, Scotland and Northern Ireland (NI), suggest that only Scottish lakes have a high percentage (73%) of oligotrophic waters (TP<10 μg PI-1). The TP status of upland lakes in NI was greater than Scottish lakes particularly if lake catchments were afforested. Although lowland lakes in NI drain a predominately non-urbanized landscape, 38% of lakes below 100 m had TP concentrations > 100 μg PI-1 and only 29% <35 μg PI-1. English lakes tended to have higher TP concentrations (70% > 101 μg PI-1) which may reflect P inputs from sewage treatment works (STWs) although lakes draining agricultural catchments frequently produced high TP concentrations. Between 1985 and 1995, annual point source TP inputs to Loch Leven, Scotland, declined by 8 tonnes P or 40% of the 1985 TP loadings to the Loch. As point source inputs were proportionally richer in dissolved molybdate reactive phosphorus (MRP) than diffuse inputs, the MRP loading was reduced by 46%. From 1974 to 1995, TP concentrations in Lough Neagh (NI) increased despite reduced TP inputs from STWs. Partitioning of annual TP loadings from two major inflowing rivers to Lough Neagh, showed river MRP loadings from non-point sources had been increasing at annual rates of 1.9 and 2.3 kg P km-2. The remaining non-MRP river loadings had not been influenced by lower TP loads from STWs and showed no tendency to increase with time. Insufficient data is available from other lake systems in the British Isles to judge whether the increase in non-point source MRP loadings observed in the Lough Neagh catchment has been repeated elsewhere.  相似文献   

4.
Abstract. There is increasing evidence that phosphorus (P) can be transferred to surface waters by leaching as well as by erosion and surface runoff. Recently it has been suggested that P soluble in 0.01 m CaCl2 may be a good indicator of the specific Olsen-P concentration (usually termed the 'Change Point') at which the rate of P leaching from soil suddenly increases and poses a greater threat of eutrophication to standing waters. We know that these 'Change Points' vary from soil to soil but, so far, we do not fully understand the mechanism(s) involved. Here, we combine methods for assessing isotopically exchangeable P and P sequential fractionation to gain an insight into the processes which cause this sudden increase in P solubilization. We suggest that Change-Points simply define the asymtote of rapid desorption isotherms relating to that P which is most readily isotopically exchangeable (i.e at 24 h –33P24) with the soil solution. This involves ligand exchange at hydroxyl sites associated with Fe and Al cations, which is kinetically governed by the concentration of surface complexes on soil minerals. Individual Change-Points reflect the mineralogy and surface chemistry of different soil types. Laboratory and field measurements of the Olsen-P Change-Point reflect these surface phenomena and are similar. Olsen-P extracts the portion of the exchangeable pool that most readily controls solution P, and the Olsen-P/33P24 ratio is linearly related to Olsen-P Change-Points. This may provide a method for estimating P Change-Points where gradients of soil P are not available.  相似文献   

5.
Abstract. The páramo is a high-altitude ecosystem of the northern Andes. The vegetation is continuous, with grasses as the dominant groundcover. Because of their high water retention, páramos play a fundamental role in water availability for all the population of the inter-Andean valleys. There are many studies of this specific ecosystem, but very few are focussed on overgrazing and its effect on vegetation and soil properties. Intensive grazing started less than 20 years ago and was studied in a representative area in the western Cordillera of central Ecuador covered by recent volcanic ash deposits. Intensive sheep grazing has led to a strong decline in the number of plant species, the replacement of the tussock grass vegetation by a short carpet grass vegetation, and an increase of bare land. In that area, the upper 50 cm of Andisols are deeply affected by a convergent decrease of Al and Fe oxalate and pyrophosphate in soil extracts, carbon contents decrease from 100 g kg–1 to less than 50 g kg–1 in the humid zone, from 70 to 40 g kg–1 in the dry zone and a reduction of water-retention capacity at −33 kPa matrix potential from 800 g kg–1 to 200 g kg–1 in humid zones, from 350 to less than 100 g kg–1 in drier areas. They showed also a decrease in the macrostructure and the development of a highly water repellent microstructure. All these important transformations favour the development of aeolian erosion in dry areas, runoff on bare surfaces, and gully erosion on slopes. The role of the páramo in water-regulation of this ecosystem seems to have been adversely affected for the future.  相似文献   

6.
Abstract. There is increasing evidence that phosphorus has been accumulating in the surface horizons of agricultural soils to the extent that some soils represent a potential diffuse source of pollution to surface waters. The relationships between equilibrium phosphorus concentration at zero sorption (EPC 0) of soil and a number of soil physicochemical variables were investigated in the surface layers of arable and grassland agricultural soils sampled from the Thame catchment, England. Soil EPC0 could be predicted from an equation including soil test (Olsen) P, soil phosphate sorption index (PSI) and organic matter content (OM) (R2=0.88; P <0.001) across a range of soil types and land use. The simple index Olsen P/PSI was found to be a good predictor of EPC0 (R2=0.77; P <0.001) and readily desorbable (0.02 m KCl extractable) P (R2=0.73; P <0.001) across a range of soil types under arable having soil organic matter contents of <10%.  相似文献   

7.
Abstract. Phosphorus concentrations and outputs have been compared and contrasted in six small agricultural catchments in the west and northeast of Scotland. The loss of P from soils to stream waters was more from catchments with intensive dairy cattle farming in the west than from the less intensively stocked/arable catchments in the northeast, with striking differences being seen between the two regions. In the northeast, intensive animal farming caused less P loss in drainage water than arable management.
Larger mean annual concentrations were seen in the west (0.076-0.142 mg PO4-P/l as molybdate-reactive phosphate–MRP) compared with the northeast (0.012-0.025 mg PO4-P/l), a feature caused by the combination of limited P-retention in the western Gleysols and smaller inputs to the largely-podzolic northeastern catchments. Stream concentrations were decreased by dilution during winter storm flows and increased during summer baseflow and at the beginning of soil rewetting in autumn.  相似文献   

8.
Abstract. A long-term lysimeter experiment with undisturbed monoliths studied leaching behaviour and balances of phosphorus (P), potassium (K) and nitrogen (N) during a seven year crop rotation on four types of soil receiving inorganic fertilizers, manure and grass compost respectively. It was shown that application of manure did not lead to any direct change in nutrient leaching, unlike the application of fertilizers to soils of normal fertility. However, soil type considerably affected the nutrient concentrations in the drainage water.
Manure applied in amounts equal to the maximum animal density allowed by Swedish legislation slightly oversupplied P and N (0.5–3.5 and 18–38 kg ha−1 y−1 respectively) compared to the crop requirement and leaching losses for most of the soils. The relationship between lactate-soluble P in the topsoil and the concentrations of dissolved P in the drainage water was very strong. However the strength of this relationship was dependent on just one or two soils. P losses from a fertile sandy soil were large (1–11 kg ha−1 y−1) throughout the crop rotation and average crop removal (13 kg ha−1 y−1) plus the leaching losses were not balanced (average deficit 3–6 kg ha−1 y−1) by the addition of fertilizer, manure or grass compost. No decreasing trend was found in the P losses during seven years. However, the K deficit (average 26 kg ha−1 y−1) led to a significant reduction in the leaching trend from this soil. The other soils that had a smaller K deficit showed no significant reduction in the leaching of K.  相似文献   

9.
Abstract. Agricultural soils are important sources of the tropospheric ozone precursor NO and the greenhouse gas N2O. Emissions are controlled primarily by parameters that vary the soil mineral N supply, temperature and soil aeration. In this field experiment, the importance of soil physical properties on emissions of NO and N2O are identified. Fluxes were measured from 13 soils which belonged to 11 different soil series, ranging from poorly drained silty clay loams to freely drained sandy loams. All soils were under the same soil management regime and crop type (winter barley) and in the same maritime climate zone. Despite this, emissions of NO and N2O ranged over two orders of magnitude on all three measurement occasions, in spring before and after fertilizer application, and in autumn after harvest. NO emissions ranged from 0.3 to 215 μg NO-N m–2 h–1, with maximum emissions always from the most sandy, freely drained soil. Nitrous oxide emissions ranged from 0 to 193 μg N2O-N m–2 h–1. Seasonal shifts in soil aeration caused maximum N2O emissions to switch from freely drained sandy soils in spring to imperfectly drained soils with high clay contents in autumn. Although effects of soil type on emissions were not consistent, N2O emission was best related to a combination of bulk density and clay content and the NO/N2O ratio decreased logarithmically with increasing water filled pore space.  相似文献   

10.
Abstract. We studied the effects of red deer grazing and fence-line pacing on soil losses of contaminants (suspended sediment, Escherichia coli , phosphorus) and nitrogen species (ammonia, nitrate) via overland flow and soil physical properties (macroporosity, bulk density, saturated hydraulic conductivity, K sat) soon after (1 day) and 6 weeks after grazing on a Pallic pastoral soil in southern New Zealand. Fence-line pacing decreased the soil volume occupied by water, macroporosity and K sat, while increasing suspended sediment (to 0.226 g 100 mL−1), total P (to 2.0 mg L−1), mainly as particulate P (up to 90% of total P), and E. coli (to 3.52 log10 c.f.u. 100 mL−1) concentrations in overland flow at 1 day after grazing compared with soils from the rest of the paddock (0.148 g 100 mL−1, 0.86 mg L−1 and 2.86 log10 c.f.u. 100 mL−1, respectively). Although concentrations in overland flow were less at 6 weeks after grazing than at 1 day after grazing, losses of P, especially in fence-line soils, were still above recommended limits for surface water quality. Compared to P, losses of N species would be unlikely to have a significant impact on downstream water quality. Management strategies should be directed towards minimizing the occurrence of fence-line pacing to prevent contaminant loss and maintain water and soil quality.  相似文献   

11.
The effects of burning on the levels of soil organic matter, soil nitrogen, and soil microbial biomass were studied by carrying out experimental shifting cultivation at two sites, Niah and Bakam in Sarawak, Malaysia. Vegetation biomass was burned in plots (10 × 10 m2) at the rates of 0 (control), 100, 200, and 300 Mg ha−1 at the Niah site and 0, 20, and 100 Mg ha−1 at the Bakam site. At the Niah site, the levels of total C and N of the soils did not change throughout the experiment in spite of enhanced soil respiration until 2 months after burning. Although burning induced an increase in the amount of NH4-N of the soils, the readily available pool of N (the sum of the NH4-N, NO3-N, microbial biomass N, and extractable organic N pools) in the burned plots was depleted appreciably at the end of rice cultivation. The effects of burning on these properties tended to be substantial with increasing amounts of the vegetation biomass burned. On the other hand, the levels of total C and N and the readily available N pool at the Bakam site were low before burning compared with those at the Niah site, and the burning treatments did not affect them appreciably. While the rice yield at the Niah site reached the average value obtained in traditional shifting cultivation in Sarawak, that at the Bakam site was much lower. It was suggested that the flush of NH4-N induced by burning was one of the major factors for rice growth.  相似文献   

12.
The origin of highly acidic (pH<4.5) barren soils in the Klamath Mountains of northern California was examined. Soil parent material was mica schist that contained an average of 2,700 mg N kg−1, which corresponds to 7.1 Mg N ha−1 contained in a 10-cm thickness of bedrock. In situ soil solutions were dominated by H+, labile-monomeric Al3+ and NO3, indicating that the barren area soils were nitrogen saturated—more mineral nitrogen available than required by biota. Leaching of excess NO3 has resulted in removal of nutrient cations and soil acidification. Nitrogen release rates from organic matter free soil ranged from 0.0163 to 0.0321 mg N kg−1 d−1. Nitrogen release rate from fresh ground rock was 0.0465 mg N kg−1 d−1. This study demonstrates that geologic nitrogen may represent a large and reactive nitrogen pool that can contribute significantly to soil acidification.  相似文献   

13.
Phosphorus (P) speciation in 21 basaltic and four non-basaltic Irish grassland soils was determined by NaOH–EDTA extraction and 31P NMR spectroscopy. Organic P in basaltic soils ranged between 30 and 697 mg P kg−1 and consisted of phosphate monoesters (84–100%), DNA (0–16%) and phosphonates (0–5%). Inorganic P was mainly phosphate (83–100%) with small concentrations of pyrophosphate (0–17%). Phosphate monoesters were more important as a proportion of extracted P in basaltic soils, probably because of their greater oxalate-extractable Fe and Al contents. Phosphate monoesters appeared to be strongly associated with non-crystalline Al and increased with total soil P concentration, indicating that they do accumulate in grassland soils. In non-basaltic soils myo -inositol hexakisphosphate constituted between 20 and 52% of organic P, while scyllo -inositol hexakisphosphate constituted between 12 and 17%. These compounds were not quantified separately in basaltic soils because of poor NMR resolution in the phosphate monoester region, but appeared to represent a considerable proportion of the organic P in most samples. DNA concentrations were greater in basaltic soils compared with non-basaltic soils and were associated with acidic pH and large total C contents. The inability of the Olsen P test to assess effectively the P status of basaltic soils may result from strong phosphate sorption to Fe and Al oxides, inducing plant utilization of soil organic P. Phosphorus nutrient management should account for this to avoid over-application of P and associated financial and environmental costs.  相似文献   

14.
Abstract. Recent work has demonstrated that the Olsen test for phosphorus (P) is an unreliable predictor of plant-available P in soils derived from basalt parent material in Northern Ireland. The present study was conducted to develop a more reliable soil-P test for these soils by regressing P fractions removed from soil by various chemical extractants against herbage P indices calculated from plant tissue test data using a diagnosis and recommendation integrated system. The degree of P saturation of the soil P sorption capacity, based on ammonium oxalate extractable P, Al and Fe, provided a better prediction of P available to swards on basaltic soils than either the Olsen test or a number of other well-known soil-P test procedures. The superiority of the degree of P saturation test on basaltic soils was attributed to the fact that it simultaneously takes account of both P quantity and P buffering capacity factors in predicting P availability. The Olsen-P test, which accounts for the P quantity factor alone, was only reliable for non-basaltic soils. Re-classifying the P fertility status of basaltic soils according to the degree of P saturation test could result in considerably less P being recommended for these soils with possible consequential benefits to water quality.  相似文献   

15.
Abstract. Correlation analysis was used to determine the main factors related to soil pH and to yield of white clover in a range of hill soils. Results for 109 Northern Ireland pasture soils showed that pH (H2O) was significantly correlated with exchangeable Ca, total exchangeable bases, base saturation, P, exchangeable Al and Al saturation, but not with exchangeable Mn. Clover yield (dry weight of shoots) in 12 acid soils from Northern Ireland, Scotland and the Falkland Islands was significantly correlated with exchangeable Ca, total exchangeable bases and Al saturation. The results support the use of Al saturation rather than exchangeable Al, soil solution Al or pH when calculating lime requirements to overcome these limiting factors in hill soils.  相似文献   

16.
Phosphorus loss from agricultural soils to water is recognized as a major contributor to eutrophication of surface water bodies. There is much evidence to suggest that liming, a common agricultural practice, may decrease the risk of P loss by decreasing P solubility. An unsaturated leaching column experiment, with treatments of control and two lime rates, was carried out to investigate the effects of liming on P mobility in a low-P acid Irish soil, which was sieved and then packed in columns. Phosphorus was applied at the soil surface in the form of KH2PO4 in solution or as cow slurry. Soil solution was sampled at time intervals over depth and analysed for P fractions. Organic P (OP) was the dominant form of P mobile in soil solution. Liming increased OP mobility, probably through increased dispersion of OP with increased pH. Slurry application also increased OP mobility. Results indicated the potential for OP loss following heavy (100 m–3 ha–1) cow slurry application, even from low-P soils, and suggested that liming may increase this risk. Reactive P (RP) was sorbed strongly and rapidly by the soil and did not move substantially below 5 cm depth. As a result, Olsen-P values in the top 2 cm were greatly increased, which indicates an increased risk of RP loss in overland flow. Lime showed little potential as a soil amendment to reduce the risk of P loss.  相似文献   

17.
长期不同施肥模式下碱性土有效磷对磷盈亏的响应   总被引:2,自引:1,他引:1  
[目的]磷素易于在土壤中固定,碱性土壤更甚,影响着磷肥的肥效和利用效率.研究长期施用磷肥对我国北方碱性土有效磷与磷盈亏的影响,为碱性土地区合理施用磷肥提供理论依据.[方法]本研究是基于河北、北京、山东、天津、河南和山西的6个冬小麦-夏玉米轮作长期定位施肥试验,试验周期为1991-2011年.所有定位施肥试验均设有不施磷...  相似文献   

18.
Abstract. Physical, chemical and environmental consequences of land use change from cultivated land to desert grassland and vice-versa were monitored in the middle reaches of the Heihe River basin, which is one of the largest inland basins of arid northwest China. Levels of N and P in soils and surface waters and soil organic carbon were measured. After the first 3–5 years of cultivation the N and P contents of various former grassland soils, including mountain-meadow and plains-meadow grasslands, decreased significantly. After some 13 years of cultivation, soil nutrient content in former mountain meadow grasslands gradually stabilized, whereas those of desertified grassland, where cultivation had simply been abandoned, showed a notable decrease. Under these latter conditions, soil N and P were lost at a rate of 276 kg ha−1 and 360 kg ha−1, respectively, over the 13-year period. The transformation of grassland into cultivated land and that of cultivated land into desert grassland resulted in organic carbon emissions of 1.68 Tg C and 0.55 Tg C, respectively, over 13 years. Land use changes in the arid inland region clearly have a significant influence on the soil organic carbon pool and carbon cycle. Falls in soil N and P led to 63% and 34% mean enrichment of N and P, respectively, in downstream waters, thus posing a future environmental problem for the arid region of northwest China.  相似文献   

19.
Carbon and nitrogen stocks in the soils of Central and Eastern Europe   总被引:6,自引:1,他引:6  
Abstract. Soil organic carbon and total nitrogen stocks are presented for Central and Eastern Europe. The study uses the soil geographic and attribute data held in a 1:2 500 000 scale Soil and Terrain (SOTER) database, covering Belarus, Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Moldova, Poland, Romania, the Russian Federation (west of the Urals), Slovakia, and Ukraine. Means and coefficients of variation for soil organic carbon and total nitrogen are presented for each major FAO soil grouping. The mean content of organic carbon, to a depth of 1 m, ranges from 3.9 kg C m–2 for coarse textured Arenosols to 72.9 kg C m–2 for poorly drained Histosols. Mean carbon content for the mineral soils, excluding Arenosols, is 15.8 kg C m–2. The top 1 m of soil holds 110 Pg C (Pg=1015 g), which corresponds to about 7% of the global stock of soil organic carbon. About 44% of this carbon pool is held in the top 0.3 m of the soil, the layer that is most prone to be changed by changes in soil use and management. About 166 million ha in Central and Eastern Europe have been degraded by compaction, erosion of topsoil, fertility decline and crusting. The achievable level of carbon sequestration for these soils, upon adoption of 'best' management practices or restorative measures, is estimated.  相似文献   

20.
We used a laboratory incubation approach to measure rates of net N mineralization and nitrification in forest soils from Fu-shan Experimental Forest WS1 in northern Taiwan. Net mineralization rates in the O horizon ranged from 4.0 to 13.8 mg N kg−1 day−1, and net nitrification rates ranged from 2.2 to 11.6 mg N kg−1 day−1. For mineral (10–20 cm depth) soil, net mineralization ranged from 0.06 to 2.8 mg N kg−1 day−1 and net nitrification rates ranged from 0.02 to 2.8 mg N kg−1 day−1. We did not find any consistent differences in N mineralization or nitrification rates in soils from the upper and lower part of the watershed. We compared the rates of these processes in three soil horizons (to a soil depth of 30 cm) on a single sampling date and found a large decrease in both net N mineralization and nitrification with depth. We estimated that the soil total N pool was 6,909 kg N ha−1. The present study demonstrates the importance of the stock of mineral soil N in WS1, mostly organic N, which can be transformed to inorganic N and potentially exported to surface and ground water from this watershed. Additional studies quantifying the rates of soil N cycling, particularly multi-site comparisons within Taiwan and the East Asia–Pacific region, will greatly improve our understanding of regional patterns in nitrogen cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号