首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We applied global waveform tomography to model radial anisotropy in the whole mantle. We found that in the last few hundred kilometers near the core-mantle boundary, horizontally polarized S-wave velocities (VSH) are, on average, faster (by approximately 1%) than vertically polarized S-wave velocities (VSV), suggesting a large-scale predominance of horizontal shear. This confirms that the D" region at the base of the mantle is also a mechanical boundary layer for mantle convection. A notable exception to this average signature can be found at the base of the two broad low-velocity regions under the Pacific Ocean and under Africa, often referred to as "superplumes," where the anisotropic pattern indicates the onset of vertical flow.  相似文献   

2.
Seismic determination of elastic anisotropy and mantle flow   总被引:1,自引:0,他引:1  
Park J  Yu Y 《Science (New York, N.Y.)》1993,261(5125):1159-1162
When deformed, many rocks develop anisotropic elastic properties. On many seismic records, a long-period (100 to 250 seconds), "quasi-Love" wave with elliptical polarization arrives slightly after the Love wave but before the Rayleigh wave. Mantle anisotropy is sufficient to explain these observations qualitatively as long as the "fast" axis of symmetry is approximately horizontal. Quasi-Love observations for several propagation paths near Pacific Ocean subduction zones are consistent with either flow variations in the mantle within or beneath subducting plates or variations in the direction of fossil spreading in older parts of the Pacific plate.  相似文献   

3.
Thinning and flow of Tibetan crust constrained by seismic anisotropy   总被引:8,自引:0,他引:8  
Intermediate-period Rayleigh and Love waves propagating across Tibet indicate marked radial anisotropy within the middle-to-lower crust, consistent with a thinning of the middle crust by about 30%. The anisotropy is largest in the western part of the plateau, where moment tensors of earthquakes indicate active crustal thinning. The preferred orientation of mica crystals resulting from the crustal thinning can account for the observed anisotropy. The middle-to-lower crust of Tibet appears to have thinned more than the upper crust, consistent with deformation of a mechanically weak layer that flows as if confined to a channel.  相似文献   

4.
Trench-parallel flow beneath the nazca plate from seismic anisotropy   总被引:1,自引:0,他引:1  
Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.  相似文献   

5.
Although the morphologies of subducting slabs have been relatively well characterized, the character of the mantle flow field that accompanies subduction remains poorly understood. To analyze this pattern of flow, we compiled observations of seismic anisotropy, as manifested by shear wave splitting. Data from 13 subduction zones reveal systematic variations in both mantle-wedge and subslab anisotropy with the magnitude of trench migration velocity |V(t)|. These variations can be explained by flow along the strike of the trench induced by trench motion. This flow dominates beneath the slab, where its magnitude scales with |V(t)|. In the mantle wedge, this flow interacts with classical corner flow produced by the convergence velocity V(c); their relative influence is governed by the relative magnitude of |V(t)| and V(c).  相似文献   

6.
We measured the spin state of iron in ferropericlase (Mg0.83Fe0.17)O at high pressure and found a high-spin to low-spin transition occurring in the 60- to 70-gigapascal pressure range, corresponding to depths of 2000 kilometers in Earth's lower mantle. This transition implies that the partition coefficient of iron between ferropericlase and magnesium silicate perovskite, the two main constituents of the lower mantle, may increase by several orders of magnitude, depleting the perovskite phase of its iron. The lower mantle may then be composed of two different layers. The upper layer would consist of a phase mixture with about equal partitioning of iron between magnesium silicate perovskite and ferropericlase, whereas the lower layer would consist of almost iron-free perovskite and iron-rich ferropericlase. This stratification is likely to have profound implications for the transport properties of Earth's lowermost mantle.  相似文献   

7.
Arrivals of P waves from a recent event at the Nevada Test Site, recorded at a distance of 15.3 degrees , passed beneath the Yellowstone caldera at depths of 200 and 400 kilometers. The travel time anomalies are modeled by a vertical cylindrical structure with a high-velocity core and a low-velocity collar as compared with the more normal mantle. The velocity structure and vertical extent of this feature are consistent with a chemical mantle plume beneath the Yellowstone caldera.  相似文献   

8.
Seismic anisotropy: tracing plate dynamics in the mantle   总被引:2,自引:0,他引:2  
Park J  Levin V 《Science (New York, N.Y.)》2002,296(5567):485-489
Elastic anisotropy is present where the speed of a seismic wave depends on its direction. In Earth's mantle, elastic anisotropy is induced by minerals that are preferentially oriented in a directional flow or deformation. Earthquakes generate two seismic wave types: compressional (P) and shear (S) waves, whose coupling in anisotropic rocks leads to scattering, birefringence, and waves with hybrid polarizations. This varied behavior is helping geophysicists explore rock textures within Earth's mantle and crust, map present-day upper-mantle convection, and study the formation of lithospheric plates and the accretion of continents in Earth history.  相似文献   

9.
Three-dimensional numerical simulations were conducted of mantle convection in which flow through the transition zone is impeded by either a strong chemical change or an endothermic phase change. The temperature fields obtained from these models display a well-defined minimum in the vertical correlation length at or near the radius where the barrier is imposed, even when the fields were filtered to low angular and radial resolutions. However, evidence for such a feature is lacking in the shear-velocity models derived by seismic tomography. This comparison suggests that any stratification induced by phase or chemical changes across the mid-mantle transition zone has a relatively small effect on the large-scale circulation of mantle material.  相似文献   

10.
Shear-wave splitting across the fast-spreading East Pacific Rise has been measured from records of SKS and SKKS phases on the ocean-bottom seismometers of the Mantle Electromagnetic and Tomography (MELT) Experiment. The direction of fast shear-wave polarization is aligned parallel to the spreading direction. Delay times between fast and slow shear waves are asymmetric across the rise, and off-axis values on the Pacific Plate are twice those on the Nazca Plate. Splitting on the Pacific Plate may reflect anisotropy associated with spreading-induced flow above a depth of about 100 km, as well as a deeper contribution from warm asthenospheric return flow from the Pacific Superswell region.  相似文献   

11.
The neodymium isotope and samarium-neodymium systematics of 2.7-billion-year-old mantle-derived magmas indicate that the lifetime of chemical heterogeneities was much shorter in the Archean mantle than in the modern mantle. Isotopic evidence is compatible with a Rayleigh number 100 times larger and convection 10 times faster in the Late Archean compared with the present-day mantle. Modern plate tectonics thus may be an improbable analog for the Archean. Chemical heterogeneities in the mantle may originate upon magma migration and mineralogical phase changes rather than by recycling of oceanic and continental crust.  相似文献   

12.
Understanding deformation of mineral phases in the lowermost mantle is important for interpreting seismic anisotropy in Earth's interior. Recently, there has been considerable controversy regarding deformation-induced slip in MgSiO(3) post-perovskite. Here, we observe that (001) lattice planes are oriented at high angles to the compression direction immediately after transformation and before deformation. Upon compression from 148 gigapascals (GPa) to 185 GPa, this preferred orientation more than doubles in strength, implying slip on (001) lattice planes. This contrasts with a previous experiment that recorded preferred orientation likely generated during the phase transformation rather than deformation. If we use our results to model deformation and anisotropy development in the D' region of the lower mantle, shear-wave splitting (characterized by fast horizontally polarized shear waves) is consistent with seismic observations.  相似文献   

13.
Experimental determination of oxygen self-diffusion in CaTiO(3) perovskite, a structural analog of (Mg,Fe)SiO(3) perovskite, confirms a theoretical relation between diffusion constants and anion porosity. Oxygen diffusion rates in (Mg,Fe)SiO(3) perovskite calculated with this relation increase by about eight orders of magnitude through the lower mantle. Electrical conductivity values calculated from these diffusion rates are consistent with inferred conductivity values for the lower mantle. This result suggests that the dominant conductivity mechanism in the deep mantle is ionic.  相似文献   

14.
Karato S  Li P 《Science (New York, N.Y.)》1992,255(5049):1238-1240
High-temperature creep experiments on polycrystalline perovskite (CaTiO(3)), an analog of (Mg,Fe)SiO(3) perovskite of the lower mantle, suggest that (grain size-sensitive) diffusion creep is important in the lower mantle and show that creep rate is enhanced by the transformation from the orthorhombic to the tetragonal structure. These observations suggest that grain-size reduction after a subducting slab passes through the 670-kilometer discontinuity or after a phase transformation from orthorhombic to tetragonal in perovskite will result in rheological softening in the top portions of the lower mantle.  相似文献   

15.
T Okuchi 《Science (New York, N.Y.)》1997,278(5344):1781-1784
Because of dissolution of lighter elements such as sulfur, carbon, hydrogen, and oxygen, Earth's outer core is about 10 percent less dense than molten iron at the relevant pressure and temperature conditions. To determine whether hydrogen can account for a major part of the density deficit and is therefore an important constituent in the molten iron outer core, the hydrogen concentration in molten iron was measured at 7.5 gigapascals. From these measurements, the metal-silicate melt partitioning coefficient of hydrogen was determined as a function of temperature. If the magma ocean of primordial Earth was hydrous, more than 95 mole percent of H2O in this ocean should have reacted with iron to form FeHx, and about 60 percent of the density deficit is reconciled by adding hydrogen to the core.  相似文献   

16.
Hydrogen in stishovite, with implications for mantle water content   总被引:2,自引:0,他引:2  
Stishovite, the highest pressure polymorph of silicon dioxide, may be an important mineral in some regions of the Earth's mantle. Fourier transform infrared spectroscopy has been used to determine the hydrogen content of synthetic stishovite. The concentration of hydrogen depends on the aluminum content of the sample and reaches a maximum of 549 +/- 23 hydrogen atoms per 10(6) silicon atoms for an Al(2)O(3) content of 1.51 percent by weight. Stishovite could be a storage site for water in deep subducting slabs and in regions of the mantle that are too hot for hydrous minerals to be stable.  相似文献   

17.
The meteorite Tenham was observed by transmission electron microscopy and ringwoodite and majorite, the high-pressure polymorphs of olivine and pyroxene, were identified. Ringwoodite contains antiphase boundaries and straight dislocations that are probably dissociated. Mantle flow of spinel might proceed by pure climb, and whole-mantle convection may be possible if the grain size is small enough.  相似文献   

18.
A sharp discontinuity at the base of Earth's mantle has been suggested from seismic waveform studies; the observed travel time and amplitude variations have been interpreted as changes in the depth of a spatially intermittent discontinuity. Most of the observed variations in travel times and the spatial intermittance of the seismic triplication can be reproduced by a ubiquitous first-order discontinuity superimposed on global seismic velocity structure derived from tomography. The observations can be modeled by a solid-solid phase transition that has a 200-kilometer elevation above the core-mantle boundary under adiabatic temperatures and a Clapeyron slope of about 6 megapascal per kelvin.  相似文献   

19.
Miller V  Savage M 《Science (New York, N.Y.)》2001,293(5538):2231-2233
The eruptions of andesite volcanoes are explosively catastrophic and notoriously difficult to predict. Yet changes in shear waveforms observed after an eruption of Mount Ruapehu, New Zealand, suggest that forces generated by such volcanoes are powerful and dynamic enough to locally overprint the regional stress regime, which suggests a new method of monitoring volcanoes for future eruptions. These results show a change in shear-wave polarization with time and are interpreted as being due to a localized stress regime caused by the volcano, with a release in pressure after the eruption.  相似文献   

20.
Crystal defects form during tectonic deformation and are reactivated by the shear stress associated with passing seismic waves. Although these defects, known as dislocations, potentially contribute to the attenuation of seismic waves in Earth's upper mantle, evidence for dislocation damping from laboratory studies has been circumstantial. We experimentally determined the shear modulus and associated strain-energy dissipation in pre-deformed synthetic olivine aggregates under high pressures and temperatures. Enhanced high-temperature background dissipation occurred in specimens pre-deformed by dislocation creep in either compression or torsion, the enhancement being greater for prior deformation in torsion. These observations suggest the possibility of anisotropic attenuation in relatively coarse-grained rocks where olivine is or was deformed at relatively high stress by dislocation creep in Earth's upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号