首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Rainbow trout habitat use is often described in high‐gradient, runoff‐driven, heterotrophic streams where geomorphic features and overhanging riparian vegetation provide channel complexity and cover. However, many rainbow trout populations thrive in rivers with contrasting aquatic habitat. We describe rainbow trout habitat use in a low‐gradient, groundwater‐dominated tailwater river where river flow management and macrophyte growth and senescence largely govern available trout habitat. In the summers of 2013 and 2014, available aquatic habitat (depth, velocity, macrophyte cover, substrate size) was quantified, while individual trout location was determined by radio telemetry and linked to environmental variables. Detailed habitat surveys indicate that macrophyte cover increases throughout the summer and is a strong determinant of in‐stream habitat characteristics. Paired logistic regression shows that adult rainbow trout prefer greater depths. Water depth increases with macrophyte abundance at both reach and local scales as plants restrict flow, and available trout habitat is linked to this seasonal pattern. When macrophyte abundance is high, adult trout show secondary preference for localised areas of lower macrophyte cover but otherwise show no selectivity for macrophyte cover, velocity or substrate size. Results suggest that submerged aquatic plants increased the quantity and quality of rainbow trout habitat as a source of channel complexity and cover. Macrophytes may play a similar role in other low‐gradient streams and should not be overlooked by fisheries managers considering habitat suitability.  相似文献   

2.
Abstract. Effects of four types of habitat improvement structures have been evaluated in Låktabäcken Creek, a steep and infertile brown trout, Salmo trutta L., stream in Northern Sweden. Boulder dams proved to be the most efficient structure, increasing brown trout densities by up to three times and standing crop by up to five times their original values. Log deflectors gave similar effects on standing crop while boulder groupings and boulder deflectors seemed to be inefficient. Older/larger fish were primarily favoured. No increase in growth or enhanced condition has been registered. Obviously, profitable stream positions for older fish were lacking in Läktabäcken Creek. An increase in the amount of cover and an increase in the winter survival might be secondary effects of alterations.  相似文献   

3.
Abstract –  The instream positions of brown trout fry differ between daylight and darkness. According to field and laboratory observations, recently emerged 0+ brown trout use shallow and slow-flowing areas close to the bank at night and tend to move off-shore during daylight. In laboratory channels, we tested whether the use of habitats close to the river bank could be attributed to a choice of either water depth or velocity. In two complementary experiments, emerging brown trout alevins were given the choice of using shallow-slow or deep-swift habitats (experiment 1), and deep-slow or shallow-swift habitats (experiment 2). At night, a persistent preference for the shallow habitats was displayed, regardless of velocity. It was concluded that swim-up brown trout fry respond to shallowness rather than ambient low water velocity when selecting habitats close to the bank at night. The behavioural significance of this result and implications for river management are discussed.  相似文献   

4.
Abstract  The diurnal winter habitat of three species of juvenile salmonids was examined in a tributary of Skaneateles Lake, NY to compare habitat differences among species and to determine if species/age classes were selecting specific habitats. A total of 792 observations were made on the depth, velocity, substrate and cover (amount and type) used by sympatric subyearling Atlantic salmon, subyearling brown trout and subyearling and yearling rainbow trout. Subyearling Atlantic salmon occurred in shallower areas with faster velocities and less cover than the other salmonid groups. Subyearling salmon was also the only group associated with substrate of a size larger than the average size substrate in the study reach during both winters. Subyearling brown trout exhibited a preference for vegetative cover. Compared with available habitat, yearling rainbow trout were the most selective in their habitat use. All salmonid groups were associated with more substrate cover in 2002 under high flow conditions. Differences in the winter habitat use of these salmonid groups have important management implications in terms of both habitat protection and habitat enhancement.  相似文献   

5.
Abstract Seasonal habitat use by over-yearling and under-yearling brook trout, Salvelinus fontinalis (Mitchill), was examined in a second-order stream in north-central Pennsylvania, USA. The habitat occupied by brook trout and available habitat were determined in a 0.5-km stream reach during the spring, summer and autumn of 1989 and the spring and summer of 1990. Cover, depth, substrate and velocity were quantified from over 2000 observations of individual brook trout. Habitat used by under-yearling brook trout was more uniform between seasons and years than that used by over-yearling brook trout. Over-yearling brook trout occupied areas with more cover and greater depth than did under-yearling brook trout, suggesting ontogenetic shifts in these variables. Differences for velocity and substrate were not as great as those for cover and depth. The selection of areas with low water velocities governed trout habitat use in spring, whereas cover and depth were the most important habitat variables in summer and autumn. Principal component analysis showed that available habitat and trout habitat centroids diverged most in spring, indicating that habitat selection by brook trout may be greatest at this time.  相似文献   

6.
Variation in brown trout (Salmo trutta L.) population recruitment and structure is related to migratory patterns, which should depend on ease of access to habitats providing increased opportunity for growth. We quantified the number of young of year (YOY) as a proportion of the total number of brown trout at 24 locations on 11 streams within the Taieri catchment, New Zealand, including back calculated growth rates and emergence dates from otoliths. Locations with high absolute and relative abundance of YOY fish were related to elevation and distance from the river mainstem (habitat used by migratory fish), fish density, and the interaction between invertebrate food biomass, distance and elevation. Hatch date and growth were not related to the proportion of YOY fish, though growth was negatively correlated to total fish density. We suggest landscape features play a large role in determining recruitment and population structure. Locations at lower elevations have a high YOY density, high competition and lower growth, likely prompting out‐migration. These conditions could be created by successful return migration and spawning of large fecund fish resulting in YOY densities exceeding the habitat carrying capacity. Environmental factors, such as food availability, also played a role in determining population structure. These results provide an example of how population structure and recruitment might be controlled by local conditions and access to high growth environments in wild populations of introduced brown trout across a catchment.  相似文献   

7.
Abstract– Habitat is important in determining stream carrying capacity and population density in young Atlantic salmon and brown trout. We review stream habitat selection studies and relate results to variable and interacting abiotic and biotic factors. The importance of spatial and temporal scales are often overlooked. Different physical variables may influence fish position choice at different spatial scales. Temporally variable water flows and temperatures are pervasive environmental factors in streams that affect behavior and habitat selection. The more frequently measured abiotic variables are water depth, water velocity (or stream gradient), substrate particle size, and cover. Summer daytime, feeding habitats of Atlantic salmon are size structured. Larger parr (>7 cm) have a wider spatial niche than small parr. Selected snout water velocities are consistently low (3–25 cm. s?1). Mean (or surface) water velocities are in the preferred range of 30–50 cm. s?1, and usually in combination with coarse substratum (16–256 mm). However, salmon parr demonstrate flexibility with respect to preferred water velocity, depending on fish size, intra- and interspecific competition, and predation risk. Water depth is less important, except in small streams. In large rivers and lakes a variety of water depths are used by salmon parr. Summer daytime, feeding habitat of brown trout is also characterized by a narrow selection of low snout water velocities. Habitat use is size-structured, which appears to be mainly a result of intraspecific competition. The small trout parr (<7 cm) are abundant in the shallow swift stream areas (<20–30 cm depths, 10–50 cm. s?1 water velocities) with cobble substrates. The larger trout have increasingly strong preferences for deep-slow stream areas, in particular pools. Water depth is considered the most important habitat variable for brown trout. Spatial niche overlap is considerable where the two species are sympatric, although young Atlantic salmon tend to be distributed more in the faster flowing and shallow habitats compared with trout. Habitat use by salmon is restricted through interspecific competition with the more aggressive brown trout (interactive segregation). However, subtle innate differences in behavior at an early stage also indicate selective segregation. Seasonal changes in habitat use related to water temperatures occur in both species. In winter, they have a stronger preference for cover and shelter, and may seek shelter in the streambed and/or deeper water. At low temperatures (higher latitudes), there are also marked shifts in habitat use during day and night as the fish become nocturnal. Passive sheltering in the substrate or aggregating in deep-slow stream areas is the typical daytime behavior. While active at night, the fish move to more exposed holding positions primarily on but also above the substrate. Diurnal changes in habitat use take place also in summer; brown trout may utilize a wider spatial niche at night with more fish occupying the shallow-slow stream areas. Brown trout and young Atlantic salmon also exhibit a flexible response to variability in streamflows, wherein habitat selection may change considerably. Important topics in need of further research include: influence of spatial measurement scale, effects of temporal and spatial variability in habitat conditions on habitat selection, effects of interactive competition and trophic interactions (predation risk) on habitat selection, influence of extreme natural events on habitat selection use or suitability (floods, ice formation and jams, droughts), and individual variation in habitat use or behavior.  相似文献   

8.
Ayllón D, Almodóvar A, Nicola GG, Elvira B. Ontogenetic and spatial variations in brown trout habitat selection.
Ecology of Freshwater Fish 2010: 19: 420–432. © 2010 John Wiley & Sons A/S Abstract – Habitat quality and quantity determine many biological processes and traits that directly affect the population dynamics of stream fishes. Understanding how habitat selection is adjusted to different ecological conditions is essential to improve predictive modelling of population dynamics. We describe brown trout Salmo trutta summer habitat selection patterns through univariate and multivariate habitat selection functions across defined river reach typologies. We sampled 44 sites and performed a principal component analysis that defined eight reach types differing in both local site and catchment‐scale physical features. We observed ontogenetic changes in habitat selection, as trout preferred deeper and slower flowing water as they increased in size. Likewise, selectivity for different types of structural habitat elements changed through ontogeny. Both patterns were consistent across reach types. Moreover, we detected spatial variations in habitat selection patterns within age‐classes among different reach types. Our results indicate that brown trout is a habitat generalist and suggest that spatial variations in habitat selection patterns are driven by physical and environmental factors operating at multiple spatial scales.  相似文献   

9.
Abstract  Breakpoints in both length and weight that represent the onset of first maturation, revealed that growth and maturation were correlated with density-related parameters in stream-dwelling resident brown trout, Salmo trutta L., from nine different rivers in Serbia. The determination of density dependence of growth is not simple, as both river width and depth, as single variables of habitat and relative biomass, and density were not significantly correlated with breakpoints. The significant relationship between breakpoints and the mean weight of brown trout ( x p) suggests that differences in breakpoints were inversely related to brown trout density. The implications of density dependence for management of streams holding resident brown trout are discussed.  相似文献   

10.
In this study, we investigated functional structure patterns of tropical headwater and river fish assemblages. We hypothesised that environmental conditions are primarily structuring headwater streams leading to functionally clustered assemblages, whereas processes that favour functional overdispersion would guide river assemblages. For 27 headwater streams and 22 rivers, we used eight functional traits for calculating two functional indexes: mean pairwise distance (MPD) and net relatedness index (NRI). We performed linear regressions between indexes and species richness, a multiple regression between NRI and eight environmental variables and a variation partitioning to disentangle the role of environment and space on NRI. Our findings indicate that fish assemblages of headwaters are structured by environmental conditions as most assemblages in this habitat displayed a tendency to clustering and MPD/NRI were not correlated with species diversity, whereas the opposite pattern was observed for river habitat. Four environmental variables (channel depth, water velocity, dissolved oxygen and turbidity) explain 56% of functional structure variation. These variables seem to function as selective filters in headwaters, whereas channel depth may be determinant for functional overdispersion of river fish assemblages. Components associated with space are also influencing the functional structure. Limitations of species dispersal through space (between both habitat types) appear as a possible cause to this. In this sense, both environmental conditions and processes linked with space are capable of influencing the functional structure of tropical headwater streams and river fish assemblages.  相似文献   

11.
Abstract –  We quantified the use of habitat patches by brown trout, Salmo trutta , during summer conditions in a plains stream in the western United States. A Global Positioning System was used to map discrete habitat patches (2–420 m2) consisting of macrophytes, wood accumulation, or deep water. Habitat use by brown trout was monitored by radio telemetry. Brown trout used habitat in a nonrandom manner with 99% of all daytime observations and 91% of all nighttime observations occurring in patches that consisted of combinations of deep water, wood accumulations or macrophytes even though such patches constituted only 9.8% of the available habitat. Brown trout used deep water almost exclusively during the day but broadened their habitat use at night. Most fish stayed within a large plunge pool created by a low-head dam. This pool supplemented the deep-water habitat that was naturally rare in our study area and illustrates how human modifications can sometimes create habitat patches important for stream fishes.  相似文献   

12.
The density of juvenile brown trout (Sulmo trutta L.) and Atlantic salmon (Salmo salar L.) was significantly higher along river bank areas protected against erosion than along natural river banks in the River Gaula, Central Norway. A habitat shift appeared in Atlantic salmon, and a behavioural shift was demonstrated by brown trout from August October. The effect of habitat on densities of juvenile salmonids should be taken into account as mitigation measures on eroded river banks and when assessing fish production in rivers.  相似文献   

13.
Abstract – In-stream habitat was measured and trout density was estimated in Merrick Brook (105 habitat units) and the Tankerhoosen River (135 habitat units), Connecticut to determine relationships between habitat use of brook trout Salvelinus fontinalis and brown trout Salmo trutta and woody debris. In each habitat unit, woody debris was inventoried, and length, width, depth, area, width : depth ratio and undercut bank area were estimated. Trout abundance was estimated by snorkeling. Multiple regression was used to test relationships between trout density and principal components describing habitat unit variables. In Merrick Brook, habitat unit size and shape explained most of the variability in density of brook trout (<130 and ≥130 mm) and brown trout (<150 mm) among habitat units, although principle components describing large woody debris or fine woody debris contributed significantly to variations in density of brook trout (≥130 mm) and brown trout (<150 and ≥150 mm). In the Tankerhoosen River, fine woody debris explained most of the variability in density of brook trout (<130 and ≥130 mm), followed by habitat unit size and shape. Both large woody debris and fine woody debris contributed significantly to variations in density of brown trout (≥150 mm). These results suggest that woody debris is an important component of wild trout habitat above that provided by habitat unit shape and size alone.  相似文献   

14.
The macrohabitat preferences of 1+ fish (10 cm FL) and the microhabitat use of 0+ juvenile fishes in the River Lee catchment (UK) were examined from data collected over a 3-year period between late autumn and early spring using depletion sampling and point abundance sampling, respectively. Canonical correspondence analysis and habitat profiles revealed preferences in the more rheophilous fish species (e.g. brown trout, Salmo trutta L . , barbel, Barbus barbus (L.)) for features characteristic of upstream natural channels and meander sections of the by-passed old river, with the more ubiquitous (e.g. perch, Perca fluviatilis L.) and limnophilous fishes [e.g. pike, Esox lucius L . , tench, Tinca tinca (L.)] preferring habitats mainly in downstream channelised stretches. The microhabitat of 0+ juvenile fishes in the River Lee was similar to that reported elsewhere for the same species, influenced mainly by channel width, depth, and distance from the bank, though microhabitat overlap in 0+ roach, Rutilus rutilus (L.), and gudgeon, Gobio gobio (L.), was greater in the Lee than observed in larger, more open river systems.  相似文献   

15.
1. Habitat availability for 0+ Rutilus rutilus (L.) was determined at four sites in the regulated River Great Ouse, Eastern England, using a modified version of the Instream Flow Incremental Methodology. Discharge–habitat relationships were then calculated using a modified version of the Physical Habitat Simulation (PHABSIM) computer package. A weighted usable area (WUA) time series was generated using the discharge–habitat models. 2. Habitat availability varied between sites and with discharge, although at three of the four sites some suitable habitat remained throughout the year. In general, more habitat was available for juvenile fishes than for young larval fishes and during the winter. 3. As discharge increased habitat availability decreased, primarily as a result of increased velocity and depth. This was exacerbated by the trapezoidal shape of the main channel. In a marina, which was thought to be acting as a flood refuge, WUA decreased as a result of increasing water depth. Only in a modified backwater did WUA increase with discharge. Owing to the morphology of the backwater, there was still a WUA minimum at intermediate discharges. 4. The output of the model indicates the variation in habitat available for small fish in both temporal and spatial dimensions, and reinforces the requirement for spatial heterogeneity in riverine habitats for the preservation of fish stocks. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract – The relationship between redd superimposition and spawning habitat availability was investigated in the brown trout (Salmo trutta L.) population inhabiting the river Castril (Granada, Spain). Redd surveys were conducted in 24 river sections to estimate the rate of redd superimposition. Used and available microhabitat was evaluated to compute the suitable spawning habitat (SSH) for brown trout. After analysing the microhabitat characteristics positively selected by females, SSH was defined as an area that met all the following five requirements: water depth between 10 and 50 cm, mean water velocity between 30 and 60 cm s?1, bottom water velocity between 15 and 60 cm s?1, substrate size between 4 and 30 mm and no embeddedness. Simple regression analyses showed that redd superimposition was not correlated with redd numbers, SSH or redd density. A simulation‐based analysis was performed to estimate the superimposition rate if redds were randomly placed inside the SSH. This analysis revealed that the observed superimposition rate was higher than expected in 23 of 24 instances, this difference being significant (P < 0.05) in eight instances and right at the limit of statistical significance (P = 0.05) in another eight instances. Redd superimposition was high in sections with high redd density. High superimposition however was not exclusive to sections with high redd density and was found in moderate‐ and low‐redd‐density sections. This suggests that factors other than habitat availability are also responsible for redd superimposition. We argue that female preference for spawning over previously excavated redds may be the most likely explanation for high superimposition at lower densities.  相似文献   

17.
Abstract –  Habitat suitability criteria (HSC) for depth, mean velocity, nose velocity, substrate, embeddedness, and cover were developed for brown trout ≥170 mm ( Salmo trutta Linnaeus) on the West Branch Farmington River, CT, USA. Microhabitat data was collected by underwater observation using an equal effort habitat sampling design; HSC were constructed using nonparametric tolerance limits. Transferability of previously published HSC to the West Branch Farmington River was poor; only 1 of 13 HSC tested was considered transferable. The HSC developed for the West Branch Farmington River were tested for transferability to the East Branch Westfield River, Massachusetts. First, a composite suitability index (SI) score was calculated using the source HSC for each occupied and unoccupied location in the Westfield River. Then, χ 2-tests were used to determine if optimal or suitable locations were occupied in greater proportion than usable or unsuitable locations. Composite SI scores based on total depth, mean velocity, and cover were not transferable, but composite SI scores based only on total depth and mean velocity were. A multivariate profile analysis was also used to test for transferability. In each test, only total depth, fish depth, and mean velocity HSC were successfully transferred. Transferability of depth and velocity HSC between rivers shows promise for applications to similar systems where brown trout occur.  相似文献   

18.
  • 1. The natural stock of large woody debris (LWD) in the afforested Douglas River (Fermoy, Co. Cork) is very low relative to old‐growth forests, which seems to arise from deficiency both of supply and retention. Woody debris is important to the ecology and physical structure of forest streams, so its abundance is relevant to aquatic conservation and the maintenance and size of salmonid fish stocks.
  • 2. The physical characteristics and fish stocks of 16 contiguous segments of two 200 m stream reaches were surveyed in spring 1998 prior to the installation of 12 partially spanning debris structures on four of the segments. This study investigated the effect of debris structures on the heterogeneity of flow and substratum, and the distribution of brown trout (Salmo trutta), and assessed the potential use of woody debris manipulation as a tool in the management of forest streams.
  • 3. Surveys of stream habitat conditions over a 2 year period following the installation of woody debris showed a change in stream architecture. This created more suitable habitat for trout through development of additional pools in which beds of fine sediment developed, and constraining the main current, increasing the amount of eddies and slack water areas.
  • 4. There were significant increases in trout density and biomass in the debris segments relative to control segments without debris dams 1 and 2 years after debris addition, although trout condition was not modified by the addition of LWD. These results suggest that the addition of woody debris offers a positive and practical management technique for enhancing fish in plantation forest streams.
Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract Rate of recapture (gill netting), habitat use, and diet of three strains of stocked brown trout, Salmo trutta L., were compared with resident brown trout in a Norwegian lake. The strains originated from an alpine lake, from a boreal lake, and from the native brown trout population in the lake. Overall recapture rate was 5–8% for all strains. The low recapture rate could be due to the relatively small size at stocking; mean fish length varied between 13.1 and 14.5 cm with strain and stocking method. Two years after release, the frequency of the different strains decreased from about 12% in the first year to stabilize at about 1%. The alpine strain showed the highest overall recapture rate, whereas the native strain was recaptured at an intermediate rate. The overall recapture rate of scatter-planted brown trout was higher than that of spot-planted brown trout. Immediately after being stocked, introduced fish ate less and had a less-varied diet than resident trout; however, stocked fish adopted a natural diet within the first summer. The distribution of trout between the pelagic and the upper epibenthic habitat was similar for both the resident and the stocked brown trout. Results indicate that the habitat use of stocked brown trout is adaptive and becomes similar to that of indigenous fish.  相似文献   

20.
Interactive segregation has been suggested as the ruling competition mechanism determining niche and niche segregation between juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Results from allopatry–sympatry observations of habitat use in both nature and in experiments were contrary to predictions derived from the interactive segregation hypothesis. Habitat use parameters under natural conditions such as distance to shore for Atlantic salmon parr were nearly identical in allopatric (mean ± SD; 3.2 ± 1.4 m) and sympatric (3.3 ± 1.4 m) situations. Occupied water depths largely reflected available water, but water depths <15 cm were avoided by salmon parr. Under experimental conditions, habitat use of allopatric salmon was density independent and salmon size had only minor effects, with smaller fish being more likely to occur in the shallow. Habitat use of salmon in sympatry with trout did not differ from allopatric salmon habitat use, and only salmon size had minor effects on depth choice – occurrence of trout or fish density had no effect. Allopatric trout was in general more frequent in the shallow habitat than salmon. Habitat use of sympatric trout was affected by the occurrence of salmon and trout size, resulting in a higher use of the shallow habitats for small trout. To conclude, selective segregation has a dominant role in salmon habitat use (not affected by trout occurrence), whereas a mixed situation occurs in trout habitat use with elements of interactive segregation when competing with Atlantic salmon (affected by salmon occurrence).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号