首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
AIM:To explore the role of erythropoietin (EPO) in the differentiation of mouse bone marrow-derived mesenchymal stem cells (MSCs) into adipocytes. METHODS:The mouse MSCs were cultured using routine methods. The cells were induced to differentiate by the cocktail medium containing 3-isobutyl-1-methylxanthine, insulin and dexamethasone, and the cells in the experiment group were treated with EPO. On the 20th day of induced differentiation, the cells were detected by oil red O staining. The mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid binding protien 4 (FABP4) and adiponectin were determined by real-time fluorescence quantitative PCR. The phosphorylation levels of PPARγ, extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) were measured by Western blotting. MTT assay was adopted to detect the proliferation. RESULTS:During adipogenic induction, EPO decreased lipid accumulation, and inhibited the adipogenic differentiation of MSCs without cytotoxicity. The mRNA expression of PPARγ, C/EBPα, FABP4 and adiponectin was significantly inhibited in induced cells. Moreover, EPO enhanced the activity of both p38 MAPK and ERK, and increased PPARγ phosphorylation. CONCLUSION: EPO significantly inhibits differentiation of mouse bone marrow-derived MSCs into adipocytes in vitro via reducing the mRNA expression of PPARγ, C/EBPα, FABP4 and adiponectin, which may be mediated by the p38 MAPK and ERK signaling pathways.  相似文献   

2.
AIM: To compare the capacity of in vitro differentiation into multinucleated fibers between embryonic-like stem cells (ELSCs) and mesenchymal stem cells (MSCs) derived from human bone marrow. METHODS: To isolate ELSCs, human bone marrow mononuclear cells were cultured in gelatin-coated flask with serum-free Knockout-DMEM medium designed for the expansion of human embryonic stem cells. MSCs were isolated from the same bone marrow by the traditional method. The morphological characters of both ELSCs and MSCs were observed under inverted phase-contrast microscope, and the expression of their multipotent antigen markers was identified by immunofluorescent staining. ELSCs and MSCs were cultured in myogenic differentiation medium. The protein levels of muscle-specific antigen markers myosin heavy chain (MHC), myogenin and MyoD were detected by the method of immunostaining. The mRNA expression of MHC, myogenin and MyoD was detected by RT-PCR. The capacity of in vitro differentiation into multinucleated fibers was compared between ELSCs and MSCs by calculating the proportion of MHC-positive multinucleated fibers. RESULTS: ELSCs, which weakly expressed the multipotential markers Oct-4, Nanog-3 and Sox-2, were isolated from bone marrow by the method of serum-free medium. ELSCs appeared smaller, slenderer and more homogeneous, and were morphologically different from MSCs derived from the same marrow. No multipotential marker in MSCs was expressed. ELSCs and MSCs were induced into long multinucleated fibers expressing MHC and myogenin at mRNA and protein levels by culturing in the myogenic differentiation medium. However, on the 10th day after induction, the proportion of the MHC-positive fibers in ELSCs was (25.7?4.1)%, and the proportion in MSCs was (15.8?7.6)%.The capacity for differentiation into muscle in ELSCs was significantly higher than that in MSCs (P<0.05). CONCLUSION: Bone marrow ELSCs are induced into multinucleated fibers and have the stronger myogenic differentiation capacity than MSCs derived from the same marrow. ELSCs are a more ideal candidate for muscular disease therapy.  相似文献   

3.
AIM: To investigate the isolation, purification, expansion and multilineage differentiation of mesenchymal stem cells (MSCs) derived from human umbilical cord vein in vitro.METHODS: By 1% collagenase Ⅱ digestion, endothelial cells were isolated from human umbilical cord vein and cultured in IMDM medium.The morphology of the cells was observed by Wright’s staining and electron microscope.Cell cycle and immunophenotype were investigated by flow cytometry.Assays of adipogenic and osteogenic differentiation were performed in vitro.von Kossa staining, Oil Red O staining and mRNA expression of osteopontin and lipoprotein lipase were studied in the induced cells.RESULTS: The cells from the cord vein displayed a fibroblast-like morphology adhering to the culture plate.FACS showed that the cells expressed several MSCs-related antigens such as CD29, CD44 and CD105, while CD13, CD31, CD45, CD34, and HLA-DR were negative.Adipocyte and osteocyte differentiation were induced successfully.CONCLUSION: The morphology, growth characteristics, immunophenotype and pluripotentiality of the MSCs from human umbilical cord vein are similar to the MSCs from bone marrow (BM).They could potentially be an excellent source of MSCs for experiments and clinics.  相似文献   

4.
5.
AIM: To investigate the effect of zinc finger protein 521 (Zfp521) on the differentiation of rat bone marrow mesenchymal stem cells (MSCs) into neurons. METHODS: Rat MSCs were cultured by conventional method in vitro and divided into non-transfection group, transfection group (transfected with Rn-Zfp521-siRNA) and negative control group (transfected with negative control siRNA). MSCs were induced by β-mercaptoethanol (β-ME) to differentiate into neurons. The fluorescence expressed by transfected MSCs was observed under inverted fluorescence microscope. The expression of Zfp521 was detected after transfection by RT-PCR. Immunohistochemistry, RT-PCR and Western blotting were used to detect the expression levels of neuron-specific enolase (NSE),microtubule-associated protein 2(MAP-2) and Zfp521 after induction. RESULTS: The fluorescence of MSCs was mostly displayed 72 h after transfection and the efficiency of transfection was up to 84.1%±2.3%. Meanwhile, the mRNA expression of Zfp521 was decreased (P<0.05). MSCs were induced by β-ME to differentiate into neurons. The differentiation efficiency of MSCs transfected with Rn-Zfp521-siRNA was the highest and the expression of NSE and MAP-2 was significantly increased compared with other groups (P<0.05). Zfp521 was detected in all groups, and the expression level of Zfp521 was significantly decreased after induction (P<0.01). CONCLUSION: Zfp521 may be down-regulated during the differentiation. The inhibition of Zfp521 promotes the neural differentiation of MSCs. Zfp521 may play an important role in regulating MSCs differentiation into neurons.  相似文献   

6.
AIM:To investigate the effects of recombinant human transforming growth factor β1 (rhTGF-β1) on the ability of proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells (MSCs), as well as its effects on the expression of bone morphogenetic protein 2 (BMP-2), Smad4 and core binding factor α1 (Cbfa1). METHODS:SD rat MSCs were isolated and purified by the differential time adherent method. MTT assay was used to confirm the optimal concentration of rhTGF-β1 for the proliferation of MSCs. The optimal concentration for differentiation of MSCs into osteoblast was also determined by observing the activity and positive staining of alkaline phosphatase. According to the different induction conditions, MSCs were divided into 4 groups:control group, classic group, rhTGF-β1 group, and rhTGF-β1+classic group. Alkaline phosphatase, type I collagen, bone Gla protein and calcium nodes were detected to evaluate the osteogenic differentiation. BMP-2 was detected by ELISA and the mRNA expression of Smad4 and Cbfa1 was analyzed by real-time quantitative PCR. RESULTS:The optimal concentrations of rhTGF-β1 for the proliferation of MSCs and for the osteogenic differentiation of MSCs were 10 and 5 μg/L, respectively. The MSCs in classical group and rhTGF-β1 group were promoted to osteogenic differentiation, and the mRNA expression of BMP-2, Smad4 and Cbfa1 was increased. rhTGF-β1 induced osteogenic differentiation of MSCs in the early and middle terms. However, in rhTGF-β1+classic group, the osteogenic differentiation of MSCs was more obvious in the late term. CONCLUSION:The induction conditions of classical group, rhTGF-β1 group and rhTGF-β1+ classical group promote the differentiation of MSCs by increasing BMP-2 secretion and starting the TGF-β superfamily/Smads signaling pathway to regulate the differentiation of MSCs.  相似文献   

7.
8.
AIM: To investigate the effect of transfection of hTERT gene into human mesenchymal stem cells (MSCs) on their telomerase activity and life-span.METHODS: Human MSCs were transfected with a pEGFP-hTERT plasmid by liposome-mediated transfection. Then the hTERT mRNA expression in MSCs was detected by RT-PCR. The activity of telomerase in transfected MSCs was detected by PCR and ELISA. The telomerase-positive MSCs was cultured in vitro and induced into neuron-like cells with EGF and bFGF. Neuron-specific markers (NF-M, MAP2) were detected by RT-PCR.RESULTS: hTERT fragment was identified in the hTERT-transfeced cells but not in the untransfected human bone marrow MSCs. The untransfected human MSCs remained telomerase-negative but the hTERT-transfected cells showed robust telomerase activity. The telomerase-negative MSCs entered a nondividing state and senesced after about 20 to 25 passages. In test group, however, telomerase-positive MSCs to date had undergone 35 passages. RT-PCR analysis showed that telomerase-positive MSCs expressed neuron-specific markers, such as NF-M or MAP2 after induced with EGF and bFGF in vitro. CONCLUSION: Ectopic expression of the hTERT gene in human MSCs reconstitutes telomerase activity. The transfection of hTERT gene into human MSCs extends their replicative life span and maintains their multipotent differentiation capacity.  相似文献   

9.
AIM: To evaluate the biological characteristics and differentiating potentials of bone marrow-derived mesenchymal stem cells (MSCs) from sensitized mice by allogeneic splenocyte transfusion in vitro. METHODS: Adherent culture method was applied for culturing the bone marrow-derived MSCs from sensitized mice. The cell morphology was examined and the surface marker profiles were analyzed by flow cytometry. The differentiating potentials of the MSCs into osteogenic, adipogenic and myogenic lineages were explored. The bone marrow-derived MSCs from the normal mice were collected and served as controls. RESULTS: Both the bone marrow-derived MSCs from sensitized and normal mice were exhibited a homogeneous distinctive morphology and were positive for the surface markers CD29, CD105, CD44 and Sca-1, negative in CD 34 and CD11b. The abilities of both MSCs to differentiate into osteogenic, adipogenic and myogenic pathways in the same condition were also observed. CONCLUSION: There is no difference in the biological characteristics and induced differentiating potentials between the sensitized mouse bone marrow-derived MSCs by allogeneic splenocytes transfusion and the MSCs from normal mice.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号