首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pot experiments were carried out to examine the effects of slow-release fertilizer formulations on estimates of N2-fixation determined by the isotope dilution method. Soybeans were used as the N2-fixing plants, with non-nodulated soybeans and maize as the non-fixing controls. The 15N-fertilizer formulations used were (15NH4)SO4, K15NO3, gypsum-pelleted K15NO3, (15NH4)2SO4 + glucose, ground plant material enriched with 15N or 15N-oxamide. The estimate of the amount of N2 fixed by the nodulated soybean plants depended upon both the control plant and the fertilizer formulation used. Maize took up N later than non-nodulated soybean and estimates of soil N-pool (soil “A” value + fertilizer N added) calculated from the enrichment of this control were about twice as large as those calculated from the enrichment of non-nodulated soybean receiving the same fertilizer treatment. As a consequence, estimates of N2-fixation relative to this control were lower than those relative to non-nodulating soybean (mean 140 mg N per pot compared with 292 mg N per pot). With unstablilized 15N salts errors were sufficient to produce negative estimates of fixation relative to maize. Even with a “well-matched” control (non-nodulated soybean) estimates of fixation varied with fertilizer formulation.  相似文献   

2.
We compared the concentrations and contents of protein and oil in mature seeds from nodulated and non-nodulated soybean plants grown on soils with four different N levels during maturation. We observed a positive correlation between the contents of protein and oil in seeds from nodulated plants. Seeds from nodulated plants grown on urea-treated soil showed higher protein and lower oil contents than those from plants grown on soil treated with coated slow release N fertilizer (LP-100). Contents of these compounds in seeds from nodulated plants grown on LP-100 soil were almost the same as those from non-nodulated plants on the same soil. These observations indicated that N economy in roots during seed maturation affects the contents of storage compounds. We suggested that the control of the N2 fixation activity of soybean plants and management of soil N level during seed maturation are important to determine the contents of protein and oil in seeds.  相似文献   

3.
Summary Nitrogen fixation in seven groundnut genotypes was measured by 15N-isotope dilution using a non-nodulating cultivar of groundnut as the nonfixing reference plant. Nitrogen fixation varied between 100 kg N ha–1 in genotype J-11 and 153 kg N ha–1 in Robut 33-1. The amount of plant-available soil N was small, so that 86%–92% of plant nitrogen was derived from N2-fixation. Thus differences in N2-fixation between genotypes closely reflected differences in their total N accumulation.ICRISAT Journal Article no. 600  相似文献   

4.
A field experiment was conducted to study the effect of adding different phosphorus (P) fertilizer levels [0, 40, and 80 kg phosphorus pentoxide (P2O5) ha?1 (abbreviated as P0, P1, and P2, respectively)] and rates of sheep manure (M) [0, 20, and 40 ton ha?1 (abbreviated as M0, M1, and M2, respectively)] on growth and nitrogen (N2) fixation of soybean (Glycine max L.). Sorghum bicolor L. was employed as a reference crop to evaluate N2 fixation using the 15N-isotpic dilution technique. Results showed that addition of P fertilizer or sheep manure had positive effects on dry-matter production, N accumulation, and seed yield. Such effects were more pronounced when adding sheep manure and P together than adding separately. Solely P fertilizer had a small impact on N2 fixation. A tangible increase in the amounts of N2 fixed due to manure addition occurred. The efficient use of N fertilizer (%NUE) increased significantly as the result of adding a high level of P fertilizer. However, a drastic decrease in %NUE was observed when sheep manure was added solely or in combination with P fertilizer. From productivity and ecological standpoints, P2M1 and P2M2 surpassed the other treatments in showing greater grain yield and greater N2 fixation. However, considering the high cost of sheep manure, P2M1 was the optimal treatment for improving growth and N2 fixation in soybean plants with minimal manure consumption. In conclusion, the integrated use of manure and P fertilizer could be considered a useful agricultural practice for improving the performance of soybean plants grown in an Aridisol. Their beneficial effects were mainly attributed to the enhancement of N2 fixation through root growth and soil property improvements besides being a source of P and other nutrients that are essential for N2-fixation process.  相似文献   

5.
Summary A field study carried out in a sandy, relatively acid Senegalese soil with a low soluble P content (7 ppm) and low vesicular-arbuscular mycorrhizal (VAM) populations showed that soybean responded toGlomus mosseae inoculation when the soluble P level in the soil had been raised by the addition of 22 kg P ha–1. In P-fertilized plots, N2 fixation of soybean, assessed by the A value method, was 109 kg N2 fixed hat when plants were inoculated withRhizobium alone and it reached 139 kg N2 fixed ha–1 when plants were dually inoculated withRhizobium andGlomus mosseae using an alginate bead inoculum. In addition to this N2 fixation increase (+28%),Glomus mosseae inoculation significantly improved grain yield (+13%) and total N content of grains (+16%). This success was attributed mainly to the low infection potential of the native VAM populations in the experimental site. In treatments without solubleP or with rock phosphate, no effect of VAM inoculation was observed.  相似文献   

6.
Estimating symbiotic di‐nitrogen (N2) fixation is challenging, especially when working with woody N2 fixers in field trials. Fortunately, isotope methods based on 15N natural abundance or on 15N artificial enrichment (dilution method) make it possible to estimate the proportion of nitrogen derived from the atmosphere (Ndfa) in N2‐fixing species. These methods have been extensively used in the field for herbaceous species, much less for tree species such as alder and acacia, and rarely for black locust (Robinia pseudoacacia). The objectives of this study were to characterize the fixation potential of black locust in a plantation by using the two 15N isotope methods in the field, and to document values of isotope fractionation occurring during N2 fixation (the B value). B values were estimated both by growing trees on an N‐free medium in controlled conditions (Blab) and by making Ndfa calculated with the natural abundance method converge with Ndfa calculated with the 15N dilution method in the field (Bfield). The two methods gave consistent estimates of the B value. B values ranging between –1.4 and –3.2‰ were found, varying with the age of the plant material. Up to 76% of the N in the black locust trees came from the atmosphere, representing more than 45 kg N ha?1 over five years and confirming that black locust may be well adapted to N‐poor soils.  相似文献   

7.
A computational exercise was undertaken to quantify the percent N derived from atmosphere %Ndfa) in soybean and consequent N benefit from biological N2‐fixation process annually accrued to the soil by the soybean crop using average annual N‐input/‐output balance sheet from a 7 yr old soybean‐wheat continuous rotational experiment on a Typic Haplustert. The experiment was conducted with 16 treatments comprised of combinations of four annual rates of farmyard manure (FYM ? 0, 4, 8, and 16 t ha–1) and four annual rates of fertilizer N (? 0, 72.5, 145, and 230 kg N ha–1) applications. The estimated N contributed through residual biomass of soybean (RBNS) consisting of leaf fall, root, nodules, and rhizodeposition varied in the ranges of 7.02–16.94, 11.65–28.83, 3.31–8.91, and 11.3–23.8 kg N ha–1 yr–1, respectively. A linear relationship was observed between RBNS and harvested biomass N (HBNS) of soybean in the form of RBNS = 0.461 × HBNS – 20.67 (r = 0.989, P < 0.01), indicating that for each 100 kg N assimilated by the harvested biomass of soybean, 25.4 kg N was added to the soil through residual biomass. The Ndfa values ranged between 13% and 81% depending upon the annual rates of application of fertilizer N and FYM. As per the main effects, the %Ndfa declined from 76.4 to 26.0 with the increase in annual fertilizer‐N application from 0 to 230 kg N ha–1, whereas %Ndfa increased from 40.8 to 65.8 with the increase in FYM rates from 0 to 16 t ha–1, respectively. The N benefit from biological N2 fixation accrued to the soil through residual biomass of soybean ranged from 7.6 to 53.7 kg N ha–1 yr–1. The treatments having %Ndfa values higher than 78 showed considerable annual contribution of N from N2 fixation to the soil which were sufficient enough to offset the quantity of N removed from the soil (i.e., native soil N / FYM‐N / fertilizer‐N) with harvested biomass of soybean.  相似文献   

8.
A long-term field experiment was conducted for 8 years on a Vertisol in central India to assess quantitatively the direct and residual N effects of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter in a soybean–wheat rotation. After cultivation of soybean each year, its aerial residues were removed before growing wheat in the same plots using four N levels (120, 90, 60 and 30 kg ha?1) and Azotobacter inoculation. Inoculation of soybean increased grain yield by 10.1% (180 kg ha?1), but the increase in wheat yields with inoculation was only marginal (5.6%; 278 kg ha?1). There was always a positive balance of soil N after soybean harvest; an average of +28 kg N ha?1 yr?1 in control (nodulated by native rhizobia) plots compared with +41 kg N ha?1 yr?1 in Rhizobium-inoculated plots. Residual and direct effects of Rhizobium and Azotobacter inoculants caused a fertilizer N credit of 30 kg ha?1 in wheat. Application of fertilizers or microbial inoculation favoured the proliferation of rhizobia in crop rhizosphere due to better plant growth. Additional N uptake by inoculation was 14.9 kg N ha?1 by soybean and 20.9 kg N ha?1 by wheat crop, and a gain of +38.0 kg N ha?1 yr?1 to the 0–15 cm soil layer was measured after harvest of wheat. So, total N contribution to crops and soil due to the inoculants was 73.8 kg N ha?1 yr?1 after one soybean–wheat rotation. There was a total N benefit of 13.8 kg N ha?1 yr?1 to the soil due to regular long-term use of microbial inoculants in soybean–wheat rotation.  相似文献   

9.
The effects of phosphorus supply (0, 30, and 90 mg P kg‐1) on growth, N2 fixation, and soil N uptake by soybean (Glycine max (L.) Merr.) were studied in a pot experiment using the 15N isotope technique. Phosphorus supply increased the top dry matter production at flowering and the dry matter production of seeds, straw, pod shells, and roots at late pod filling of inoculated soybeans. Phosphorus supply reduced the N concentration of plant tops at flowering, but increased the amount of N accumulated at both flowering and late pod filling. In inoculated soybeans total N accumulation paralleled the dry matter production. The P concentration in above‐ground plant parts of nodulated soybeans was not affected by P application. At flowering only 18 to 34% of total N was derived from N2 fixation, whereas as much as 74% was derived from N2 fixation at late pod filling. Only the addition of 90 mg P kg‐1 soil significantly increased the amount of N2 fixed at the late pod filling stage. Phosphorus supply did not influence the uptake of fertilizer or soil N in soybeans, even if the root mass was increased up to 60% by the P supply.  相似文献   

10.
Current methods for measuring N2 fixation by nodulated legumes involve the addition of small amounts of 15N-labelled plant-available N compounds to soil so that plant N derived from the soil may be identified. All such methods assume that the proportions of added N and indigenous soil N assimilated by N2-fixing and non-fixing plants grown in the same soil are the same, irrespective of the amount of soil N assimilated. The development of a method for assessing these proportions is described.Nodulated legumes and reference plants are grown in soils receiving none or one rate of addition of labelled N compound containing several (two or more) concentrations of 15N. The proportions of added and indigenous N assimilated, are determined from the intercepts and slopes of regression lines relating isotopic composition of plant N to that of added N, together with some other readilly-obtainable plant N measurements.  相似文献   

11.
Denitrification rates were studied using the C2H2 inhibition technique in a 2-year field experiment within plots of nodulated and non-nodulated faba beans, ryegrass, and cabbage. Denitrification rates ranged from 14.40 to 0.02 ng N2O–N g–1 soil dry weight h–1. Mean denitrification increased fourfold in plots of N2–fixing Vicia faba compared to non-nodulated V. faba mutant F48, Lolium perenne, and Brassica oleracea. The results with and without C2H2 treatment indicate that in the field the major part of this enhanced denitrification led to the endproduct N2 rather than to the ozone-degrading N2O. Higher denitrification rates of plots with N2–fixing plants in September seemed to be caused by an increase in soil NO inf3 sup- of about 20 kg ha–1 found between July and August. Soil NO inf3 sup- and soil moisture explained 67% of the variation in denitrification rates of the different soil samples over the growing seasons in the 2 years. Soil moisture explained 44% of the variation for soil planted with N2–fixing plants and 62% for soil planted with non-fixing plants. Positive exponential relationships were obtained between denitrification rates and soil nitrate (r=0.71) and soil moisture (r=0.82).  相似文献   

12.
The 15N natural abundance technique is one of those most easily applied ‘on farm’ to evaluate the contribution of biological N2 fixation (BNF) to legume crops. When proportional BNF inputs are high, the accuracy of this technique is highly dependent on an accurate estimate of the 15N abundance of the N derived from N2 fixation (the ‘B’ value). The objective of this study was to determine the influence of soybean variety on ‘B’ value. Plants of five soybean varieties were inoculated separately with two Bradyrhizobium strains (one Bradyrhizobium japonicum and one Bradyrhizobium elkanii) grown in pots of soil virtually free of bradyrhizobia capable of nodulating soybean. The proportion of N derived from BNF (%Ndfa) was estimated in separate pots where a small quantity of enriched 15N ammonium sulphate was added. The %Ndfa was then used with the 15N natural abundance data of the nodulated soybean and non-N2-fixing reference plants, to determine the ‘B’ value for each soybean variety/Bradyrhizobium association. The varieties nodulated by the B. japonicum strain showed significantly greater N content and %Ndfa than those nodulated by the B. elkanii strain, and in all cases the ‘B’ value of the shoot tissue (‘Bs’) was higher. The differences in ‘Bs’ values between varieties nodulated by the same Bradyrhizobium strain were insignificant, indicating that this parameter is influenced much more by the Bradyrhizobium strain than by the variety of the host plant.  相似文献   

13.
N fixation by different faba bean (Vicia faba) cultivars was studied using the natural abundance method. The delta 15N ('15N) values of the faba beans and the reference plants differed by 4.6-7.0‰. The non-nodulating V. faba cv. F48 seems to be the best reference plant for nodulated and N2-fixing V. faba. Significant differences occurred in the quantity of N2 fixation of six V. faba cultivars. The average fraction of N derived from air (FNdfa) estimated from leaf material ranged between 69 and 80%. Shoot-based estimates of N fixation varied between 200 and 360 kg N ha-1. N fixation was affected more by differences in FNdfa than by differences in total N accumulation. Fixation data calculated with the non-nodulated reference plant V. faba cv. F48 were lower than those calculated with cabbage (Brassica oleracea) and ryegrass (Lolium perenne) as reference plants. Of all reference plants, non-N2-fixing V. faba cv. F48 has a root system and temporal pattern of N assimilation that is the one most similar to that of N2-fixing V. faba plants. Cv. F48 showed senescence as did the other V. faba cultivars after pod-fill was complete, whereas cabbage, ryegrass and camomile had a later senescence period. N fixation during pod-filling appears more important for a good yield than N2 fixation abilities in the earlier growth period. The best V. faba cultivars left about 100 kg N ha-1 in residual material on the field as fertilization for the following crops.  相似文献   

14.
Abstract

Real-time images of nitrogen fixation in an intact nodule of hydroponically cultured soybean (Glycine max [L] Merr.) were obtained. In the present study, we developed a rapid method to produce and purify 13N-labeled radioactive nitrogen gas (half life: 9.97?min). 13N was produced from a 16O (p, α) 13N nuclear reaction. The target chamber was filled with CO2 and irradiated for 10?min with protons at an energy of 18.3?MeV and an electric current of 5?μA, which was delivered from a cyclotron. All CO2 in the collected gas was absorbed and removed with powdered soda-lime in a syringe and replaced with helium gas. The resulting gas was injected into gas chromatography and separated and a 35?mL fraction, including the peak of [13N]-nitrogen gas, was collected by monitoring the chromatogram. The obtained gas was mixed with 10?mL of O2 and 5?mL of N2 and used in the tracer experiment. The tracer gas was fed into the underground part of intact nodulated soybean plants and serial images of the distribution of 13N were obtained non-invasively using a positron-emitting tracer imaging system (PETIS). The rates of nitrogen fixation of the six test plants were estimated to be 0.17?±?0.10?μmol N2?h?1 from the PETIS image data. The decreasing rates of assimilated nitrogen were also estimated to be 0.012?±?0.011?μmol?N2?h?1. In conclusion, we successfully observed nitrogen fixation in soybean plants with nodules non-invasively and quantitatively using [13N]N2 and PETIS.  相似文献   

15.
The phenomenon that rhizosphere processes significantly control soil organic matter (SOM) decomposition, also termed rhizosphere priming effect (RPE), is now increasingly recognized as significant as the effects of soil temperature and moisture on SOM decomposition. However, the exact mechanisms responsible for RPE remain largely unknown. Particularly, some reports have suggested that the quality of rhizodeposits may play a significant role in causing different levels of RPE among various plant species. However, direct evidence for the “rhizodeposit quality hypothesis” has been lacking. Here we tested the hypothesis by investigating RPE on soil carbon (C) and nitrogen (N) mineralization of two soybean (Glycine max L. Merr.) isolines differing only in their ability to form nodules and to fix N2, and thus differing in tissue N concentration and rhizodeposit quality. We used a continuous 13C-labeling method for measuring RPE on soil organic C decomposition, and employed an N-budgeting method for quantifying RPE on soil net N mineralization. We found that the rhizodeposits from nodulated soybean produced a stronger RPE (53% vs. 26%) on soil organic C decomposition than the rhizodeposits from non-nodulated soybean at the maturity stage when nodulated soybean had significantly higher plant tissue N concentration but similar plant biomass, while both soybean isolines produced a similar RPE (33–34%) at the vegetative stage when there was no difference in plant tissue N concentration or plant biomass. The levels of RPE on soil net N mineralization were similar between the two isolines, ranging from 25% at the vegetative stage to 38–46% at the maturity stage. Moreover, RPE on soil organic C decomposition was not linearly proportional to RPE on soil net N mineralization. These results indicate that higher rhizodeposit quality is one of the most likely causes to the higher RPE of the nodulated soybean compared to the non-nodulated soybean. Further investigations of rhizodeposit quality and quantity between the two soybean isolines are warranted to further test this rhizodeposit quality hypothesis.  相似文献   

16.
Summary Leptochloa fusca (L.) Kunth (kallar grass) has previously been found to exhibit high rates of nitrogen fixation. A series of experiments to determine the level of biological nitrogen fixation using 15N isotopic dilution were carried out in nutrient solution and saline soil. In the nutrient solution, E. coli inoculated plants were taken as non-nitrogen-fixing control. It was observed that nearly 60%–80% of the plant N was derived from atmospheric fixation. Estimations based on the N difference method gave much lower values (18%–35%). In experiments with saline soil which was initially sterilized with chloroform fumigation, a mixed culture of N2-fixing rhizospheric isolates from kallar grass roots was inoculated and planted to kallar grass. Uninoculated treatments were regarded as controls. The soil was previously labelled with 15N by adding cellulose and (15NH4)2SO4. The results of these studies showed fixation values of 6%–32% when estimated by 15N dilution, whereas by the N difference method 54% of the plant N was estimated to be derived from fixation. This discrepancy is due to the increase in root proliferation due to inoculation, which results in greater uptake of soil N. The distribution of 15N in different fractions of the soil-N indicted isotopic dilution due to bacterial fixation of atmospheric N2.  相似文献   

17.
Background : Rice production in low‐input systems of West Africa relies largely on nitrogen supply from the soil. Especially in the dry savanna agro‐ecological zone, soil organic N is mineralized during the transition period between the dry and the wet seasons. In addition, in the inland valley landscape, soil N that is mineralized on slopes may be translocated as nitrate into the lowlands. There, both in‐situ mineralized as well as the laterally translocated nitrate‐N will be exposed to anaerobic conditions and is thus prone to losses. Aim : We determined the dynamics of soil NO3‐N along a valley toposequence during the dry‐to‐wet season transition period and the effects of soil N‐conserving production strategies on the grain yield of rainfed lowland rice grown during the subsequent wet season. Methods : Field experiments in Dano (Burkina Faso) assessed during two consecutive years the temporal dynamics and spatial fluxes of soil nitrate along a toposequence. We applied sequential and depth‐stratified soil nitrate analysis and nitrate absorption in ion exchange resin capsules in lowlands that were open to subsurface interflow and in those where the interflow from the was intercepted. During one year only we also assessed the effect of pre‐rice vegetation on conserving this NO3‐N as well as on N addition by biological N2 fixation in legumes using δ15N isotope dilution. Finally, we determined the impact of soil N fluxes and their differential management during the transition season on growth, yield and N use of rainfed lowland rice. Results : Following the first rainfall event of the season, soil NO3‐N initially accumulated and subsequently decreased gradually in the soil of the valley slope. Much of this nitrate N was translocated by lateral sub‐surface flow into the valley bottom wetland. There, pre‐rice vegetation was able to absorb much of the in‐situ mineralized and the laterally‐translocated soil NO3‐N, reducing its accumulation in the soil from 40–43 kg N ha?1 under a bare fallow to 1–23 kg N ha?1 in soils covered by vegetation. Nitrogen accumulation in the biomass of the transition season crops ranged from 44 to 79 kg N ha?1 with a 36–39% contribution from biological N2 fixation in the case of legumes. Rice agronomic performance improved following the incorporation as green manure of this “nitrate catching” vegetation, with yields increasing up to 3.5 t ha?1 with N2‐fixing transition seasons crops. Conclusion : Thus, integrating transition season legumes during the pre‐rice cropping niche in the prevailing low‐input systems in inland valleys of the dry savanna zone of West Africa can temporarily conserve substantial amounts of soil NO3‐N. It can also add biologically‐fixed N, thus contributing to increase rice yields in the short‐term and, in the long‐term, possibly maintaining or improving soil fertility in the lowland.  相似文献   

18.
Abstract

The popular and widely used 15nitrogen (N)–isotope dilution method for estimating biological N fixation (BNF) of pasture and tree legumes relies largely on the ability to overcome the principal source of error due to the problem of selecting appropriate reference plants. A field experiment was conducted to evaluate the suitability of 12 non‐N2‐fixing plants (i.e., nonlegumes) as reference plants for estimating the BNF of three pasture legumes (white clover, Trifolium repens L.; lucerne, Medicago sativa; and red clover, Trifolium pratense L.) in standard ryegrass–white clover (RWC) and multispecies pastures (MSP) under dry‐land and irrigation systems, over four seasons in Canterbury, New Zealand. The 15N‐isotope dilution method involving field 15N‐microplots was used to estimate BNF. Non‐N2‐fixing plants were used either singly or in combination as reference plants to estimate the BNF of the three legumes. Results obtained showed that, on the whole, 15N‐enrichment values of legumes and nonlegumes varied significantly according to plant species, season, and irrigation. Grasses and herb species showed higher 15N‐enrichment than those of legumes. Highest 15N‐enrichment values of all plants occurred during late summer under dry‐land and irrigation conditions. Based on single or combined non‐N2‐fixing plants as reference plants, the proportion of N derived from the atmosphere (% Ndfa) values were high (50 to 90%) and differed between most reference plants in the MSP pastures, especially chicory (Cichorium intybus), probably because it is different in phenology, rooting depth, and N‐uptake patterns compared to those of legumes. The percent Ndfa values of all plants studied also varied according to plant species, season, and irrigation in the MSP pastures. Estimated daily amounts of BNF varied according to pasture type, time of plant harvest, and irrigation, similar to those shown by percent Ndfa results as expected. Irrigation increased daily BNF more than 10‐fold, probably due to increased dry‐matter yield of pasture under irrigation compared to dry‐land conditions. Seasonal and irrigation effects were more important in affecting estimates of legume BNF than those due to the appropriate matching of N2‐fixing and non‐N2‐fixing reference plants.  相似文献   

19.
Most published studies related to crop effects on denitrification are not continuous and are based on the growing period. The objective of this work was to evaluate the effect of different amounts of soybean stubble, under different soil moisture contents, on gaseous nitrogen (N) losses by denitrification from an agricultural soil. The following soil moisture treatments were reached by adding distilled water to soil cores of a typic Hapludoll: 50 and 100% of water‐filled porosity space (WFPS). Residue treatments included no application of residues, amendment with 2600 kg ha?1 of soybean residues, and amendment with 5200 kg ha?1 of soybean residues. Cumulative nitrous oxide + dinitrogen (N2O + N2) emissions displayed great variability, ranging between 0 and 581.91 µg N kg?1, which represented 0 to 3.93% of the N residue applied. Under 50% WFPS moisture conditions, statistical differences in cumulative N2O + N2 emissions between residue treatments were not detected (p = 0.21), whereas at saturation conditions, cumulative N2O + N2 emissions decreased with the application of increasing amounts of soybean residues (p = 0.017). Daily and cumulative N2O + N2 emissions significantly increased as soil moisture increased, except at soils amended with 5200 kg ha?1 of soybean residues; this lack of statistical difference was probably due to the immobilization of native mineral N. Under 50% WFPS soil moisture contents, aeration seemed to be the main factor controlling redox conditions, limiting the denitrification process, and preventing differences in N emissions between residue treatments. The application of soybean residues to saturated soils notably decreased N2O + N2 emissions by denitrification through a strong mineral N immobilization into organic and nondenitrifiable forms.  相似文献   

20.
The effects of soil incorporation with cereal straw (nil, 2.5, 5 and 10 t straw ha?1) and direct drilling on the proportion and amount of pea N derived from biological N fixation were investigated in three field experiments. Fixed N was determined by15N dilution using barley as a reference plant. The three sites were on acidic, red clay-loams in the cropping zone of southeastern Australia. Seasonal plant available soil N, as determined by the N accumulated in barley, was 31, 56 and 158 kg N ha?1, for the three sites. Incorporated straw reduced soil nitrate at sowing by 10–50 kg N ha?1 (0–30 cm), and 5 or 10 t straw ha?1 reduced barley uptake of N by 10–38 kg N ha?1. However, reducing plant available soil N was generally ineffective for increasing the N fixed by pea. Fixed N increased only at the site with the least plant-available N, and only one-third of the increase could be attributed to lower soil N uptake by pea. There was no evidence that direct drilling pea increased fixed N by decreasing crop uptake of soil N. It is proposed that a lower requirement for soil N by pea as compared to barley, and availability of mineral N beneath the soil layer treated with straw, minimise the effectiveness of straw incorporation for increasing the N fixed by pea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号