首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new “direct extraction” method for measuring soil microbial biomass nitrogen (biomass N) is described. The new method (fumigation-extraction) is based on CHC13 fumigation, followed by immediate extraction with 0.5 M K2SO4 and measurement of total N released by CHC13 in the soil extracts. The amounts of NH4-N and total N extracted by K2SO4 immediately after fumigation increased with fumigation time up to 5 days. Total N released by CHC13 after 1 day fumigation (1 day CHC13-N) and after 5 days fumigation (5 day CHC13-N) were positively correlated with the flush of mineral N (FN) in 37 soils that had been fumigated, the fumigant removed and the soils incubated for 10 days (fumigation-incubation). The regression equations were 1 day CHC13-N = (0.79 ± 0.022) FN and 5 day CHC13-N = (1.01 ± 0.027) FN, both regressions accounting for 92% of the variance in the data.In field soils previously treated with 15N-labelled fertilizer, the amounts of labelled N, measured after fumigation-extraction, were very similar to the amounts of labelled N mineralized during fumigation-incubation; both were about 4 times as heavily labelled as the soil N as a whole. These results suggest that fumigation-extraction and fumigation-incubation both measure the same fraction of the soil organic N (probably the cytoplasmic component of the soil microbial biomass) and that measurement of the total N released by CHC13 fumigation for 24 h provides a rapid method for measuring biomass N.  相似文献   

2.
In a very acid upland clay surface soil and with glucose added to give initial C/N weight ratios (added glucose-C: NO3-N) in the soil of 0, 2 and 5, the rates of evolution of N2 and N2O were maximum at C/N = 2 but were significantly less at 0 and 5. The total N2 and N2O production was highest at C/N = 0, confirming that increasing amounts of glucose immobilised more nitrate into the biomass. As with added NO?3-N, the time lag, preceding a maximum ‘steady state’ rate of N20 evolution, increased regularly with increasing glucose. Within this ‘steady state’ period, the gaseous CO2-C/(N2+ N2O)-N weight ratio in the effluent gas are between 1.0 and 1.3, which corresponds well with the stoichiometric ratios of 1.07 and 1.29 for the reduction of NO?3 to N2O and N2 respectively. Before and after this period, this gaseous C/N ratio was much higher. Denitrification was not observed in subsurface soil even after adding 100 mg kg?1glucose-C although it contained 4 times as much indigenous nitrate as the surface soil. Inoculating this soil with increasing amounts of the surface soil, up to 15 per cent by weight, induced substantial increases in the rates and amounts of denitrification. The effects of increasing the soil pH. of introducing increasing oxygen concentrations in the influent gas. and the fate of added NH+4-N, are briefly reported here. In these experiments. NO?2-N did not accumulate in the incubated soil nor was there any NH3in the effluent gas. Evolution of N2 only occurred when N2O evolution was in its final stages.  相似文献   

3.
Summary The chloroform fumigation-incubation method (CFIM) was used to measure the microbial biomass of 17 agricultural soils from Punjab Pakistan which represented different agricultural soil series. The biomass C was used to calculate biomass N and the changes occurring in NH4 +-N and NO3 -N content of soils were studied during the turnover of microbial biomass or added C source. Mineral N released in fumigated-incubated soils and biomass N calculated from biomass C was correlated with some N availability indexes.The soils contained 427–1240 kg C as biomass which represented 1.2%–6.9% of the total organic C in the soils studied. Calculations based on biomass C showed that the soils contained 64–186 kg N ha–1 as microbial biomass. Immobilization of NCO3 -N was observed in different soils during the turnover of microbial biomass and any net increase in mineral N content of fumigated incubated soils was attributed entirely to NH4 +-N.Biomass N calculated from biomass C showed non-significant correlation with different N availability indexes whereas mineral N accumulated in fumigated-incubated soils showed highly significant correlations with other indexes including N uptake by plants.  相似文献   

4.
土壤微生物体氮测定方法的研究   总被引:29,自引:4,他引:25  
用熏蒸-0.5mol/LK2SO4 直接浸取NH4+-N法 (简称薰蒸 铵态氮法 ) ,熏蒸 淹水培养法和熏蒸 通气培养法测定了有机质、全氮和C/N比差异较大的 15种土壤的铵态氮增量 (FN)。结果表明 ,它们之间有极显著的正相关 ,在反映土壤微生物体氮上有相同趋势。两种培养方法测定的FN 近乎一致 ,由此而计算的微生物体氮也几乎相同。对红油土铵态氮法测定值仅为两种培养法的 1/ 10。把铵态氮法中的FN 校正后 ,其结果与 2种培养法测定的微生物体氮同样近乎一致。用 3种方法测定的微生物体氮均与土壤有机碳存在显著正相关性。淹水培养和铵态氮法水分条件易控制 ,又无NH3的挥发损失 ,比通气培养法更加优越。对培养试验和长期肥料定位试验的土样测定结果表明 ,土壤中易矿化新鲜有机物料也会使熏蒸 淹水培养法测定的FN 显著下降 ,由此而计算的微生物体氮也显著减少 ,但熏蒸 铵态氮法测定的FN 不受新鲜有机物质的影响。与土壤微生物数目进行比较后发现 ,土壤中含易分解有机物质少或微生物体氮含量低时 ,选用熏蒸 淹水培养法测定误差小 ;当土壤中富含新鲜有机物质时 ,熏蒸 铵态氮法测定的结果更加可靠。用这两种方法在同类土壤上测定的FN 的比值相对稳定 ,微生物体氮 (BN)的平均比值为 0.98~1.01,不受施肥的影响  相似文献   

5.
The incidence and severity of take-all disease, due to Gaeumannomyces graminis (Sacc.) Arx & Olivier var. tritici Walker, was observed on spring barley plants growing in soil in two glasshouse experiments. Soil amendments of NH+4-N significantly increased the number of diseased plants and roots during the first month after germination in comparison with controls unamended with N (P < 0.05). No significant difference in the incidence of take-all disease was detected between more mature barley plants growing in soil amended with either NH+4 or NO?3-N and unamended controls. The least take-all disease in 3 month-old barley plants was observed when N was supplied as foliar sprays of urea at 0.5 mg N kg?1 soil (P < 0.01). There was no significant correlation between the degree of infection and the NH+4-N to NO?3-N ratio in the rhizosphere soil  相似文献   

6.
Laboratory incubations of sieved (<2mm) forest humus were used to study the response of C and N mineralization to perturbation. Considerable variation in the ratio of mineralized C to mineralized N was observed. This ratio widened with increasing temperature. At constant temperature, addition of P stimulated CO2-C evolution and reduced NH4+-N production, also widening the C:N ratio of substrate mineralized. Addition of weak base stimulated mineralization of N more than C, reducing the C:N ratio of substrate mineralized. Addition of weak acid, mineral-N, or excessive amounts of water inhibited CO2-C evolution while stimulating production of NH4+-N, resulting in a “negative correlation” between the two, and reducing the C:N ratio of substrate mineralized still further.Results were interpreted in terms of effects on microbial biomass. A relatively benign treatment (P addition) may promote microbial growth and respiration, reducing net N availability. A moderate perturbation (addition of weak base) favors new organisms growing partly at the expense of microbial necromass. These organisms will mineralize some necromass-N, increase net N mineralization, and reduce the C:N ratio of substrate mineralized. Under severe conditions (addition of acid) the C:N ratio of substrate mineralized approaches that of the microbial biomass itself, suggesting that the biomass is the primary substrate mineralized. Microbial mortality is likely to be a significant factor affecting the supply of N in field situations, and should be included in any general model of soil N mineralization processes.  相似文献   

7.

Purpose

Nitrous oxide (N2O) production and reduction rates are dependent on the interactions with each other and it is therefore important to evaluate them within the context of simultaneously operating N2O emission and reduction. The objective of this study was to quantify the simultaneously occurring N2O emission and reduction across a range of subtropical soils in China, to gain a mechanistic understanding of potential N2O dynamics under the denitrification condition and their important drivers, and to evaluate the potential role of the subtropical soils as either sources or sinks of N2O through denitrification.

Materials and methods

Soils (45, from a range of different land uses and soil parent materials) were collected from the subtropical region of Jiangxi Province, China, and tested for their potential capacity for N2O emission and N2O reduction to N2 during denitrification. N2O emission and reduction were determined in a closed system under N2 headspace after the soils were treated with 200?mg?kg?1 NO 3 ? -N and incubation at 30?°C for 28?days. The soil physical and chemical properties, the temporal variations in headspace N2O concentration, and NO 3 ? -N and NH 4 + -N concentrations in the soil slurry were measured.

Results and discussion

Variations in N2O concentration (N) over incubation time (t) were consistent with an equation in which average R 2?=?0.84?±?0.11 (p?<?0.05): $ N = A \times \left( {1 - \exp \left( { - {k_1} \times t} \right)} \right) - B \times \exp \left( {{k_2} \times t} \right) $ , where A is the total N2O emission during the incubation, B is a constant, and k 1 and k 2 are the N2O emission constant and reduction constants, respectively. The results of the simulation showed that k 1 was greater than k 2. The reduced amount of NO 3 ? -N in the first 7?days of incubation and the N2O emission rate (the percentage of A value relative to the amount of NO 3 ? -N reduced during the 28-day incubation, R n) were able to explain 82.9?% (p?<?0.01) of the variation in total N2O emission (A) during the incubation for the soil samples studied, indicating that the total amount of N2O emitted was determined predominately by denitrification capacity. Soil organic carbon content and soil nitrogen mineralization are the key factors that determine differences in the amounts of reduced NO 3 ? -N among the soil samples. The R n value decreased with increasing k 2 (p?<?0.01), indicating that soils with higher N2O reduction capacity under these incubation conditions would emit less N2O per unit of denitrified NO 3 ? -N than the other soils. Results are valuable in the evaluation of net N2O emissions in the subtropical soils and the global N budget.

Conclusions

In a closed, anaerobic system, variations in N2O concentration in the headspace over the incubation time were found to be compatible with a nonlinear equation. Soil organic carbon and the amount of NH 4 + -N mineralized from the organic N during the first 7?days of incubation are the key factors that determine differences in the N2O emission constant (k 1), the N2O reduction constant (k 2), the total N2O emission during the incubation (A) and the N2O emission rate (R n).  相似文献   

8.
Extraction of soil nitrate nitrogen (NO3 ?-N) and ammonium nitrogen (NH4 +-N) by chemical reagents and their determinations by continuous flow analysis were used to ascertain factors affecting analysis of soil mineral N. In this study, six factors affecting extraction of soil NO3 ?-N and NH4 +-N were investigated in 10 soils sampled from five arable fields in autumn and spring in northwestern China, with three replications for each soil sample. The six factors were air drying, sieve size (1, 3, and 5 mm), extracting solution [0.01 mol L?1 calcium chloride (CaCl2), 1 mol L?1 potassium chloride (KCl), and 0.5 mol L?1 potassium sulfate (K2SO4)] and concentration (0.5, 1, and 2 mol L?1 KCl), solution-to-soil ratio (5:1, 10:1, and 20:1), shaking time (30, 60, and 120 min), storage time (2, 4, and 6 weeks), and storage temperature (?18 oC, 4 oC, and 25 oC) of extracted solution. The recovery of soil NO3 ?-N and NH4 +-N was also measured to compare the differences of three extracting reagents (CaCl2, KCl, and K2SO4) for NO3 ?-N and NH4 +-N extraction. Air drying decreased NO3 ?-N but increased NH4 +-N concentration in soil. Soil passed through a 3-mm sieve and shaken for 60 min yielded greater NO3 ?-N and NH4 +-N concentrations compared to other treatments. The concentrations of extracted NO3 ?-N and NH4 +-N in soil were significantly (P < 0.05) affected by extracting reagents. KCl was found to be most suitable for NO3 ?-N and NH4 +-N extraction, as it had better recovery for soil mineral N extraction, which averaged 113.3% for NO3 ?-N and 94.9% for NH4 +-N. K2SO4 was not found suitable for NO3 ?-N extraction in soil, with an average recovery as high as 137.0%, and the average recovery of CaCl2 was only 57.3% for NH4 +-N. For KCl, the concentration of extracting solution played an important role, and 0.5 mol L?1 KCl could fully extract NO3 ?-N. A ratio of 10:1 of solution to soil was adequate for NO3 ?-N extraction, whereas the NH4 +-N concentration was almost doubled when the solution-to-soil ratio was increased from 5:1 to 20:1. Storage of extracted solution at ?18 °C, 4 °C, and 25 °C had no significant effect (P < 0.05) on NO3 ?-N concentration, whereas the NH4 +-N concentration varied greatly with storage temperature. Storing the extracted solution at ?18 oC obtained significantly (P < 0.05) similar results with that determined immediately for both NO3 ?-N and NH4 +-N concentrations. Compared with the immediate extraction, the averaged NO3 ?-N concentration significantly (P < 0.05) increased after storing 2, 4, and 6 weeks, respectively, whereas NH4 +-N varied in the two seasons. In conclusion, using fresh soil passed through a 3-mm sieve and extracted by 0.5 mol L?1 KCl at a solution-to-soil ratio of 10:1 was suitable for extracting NO3 ?-N, whereas the concentration of extracted NH4 +-N varied with KCl concentration and increased with increasing solution-to-soil ratio. The findings also suggest that shaking for 60 min and immediate determination or storage of soil extract at ?18 oC could improve the reliability of NO3 ?-N and NH4 +-N results.  相似文献   

9.
The aim of this study was to compare microbial activities in the litter (L), fermentation (F) and humified (H) layers of the forest floor under silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.). Soil pH, C-to-N ratio, respiration rates, concentration of NH4-N, net N mineralization and nitrification rates, gross NH4+ production and consumption rates and amounts of C (Cmic) and N (Nmic) in the microbial biomass were determined from samples taken from the L, F and H layers under silver birch, Norway spruce and Scots pine. The forest floors under birch and spruce were more active than that under pine, having higher respiration and net N mineralization rates, and higher Cmic and Nmic values than pine forest floor. Differences between tree species were smaller in the H layer than in the L and F layers. The L layer had the highest rates of respiration for all tree species, while rates of net N mineralization were highest in the F layer for birch and spruce. Pine showed negligible net N mineralization in all layers. Concentration of NH4-N was the best predictor of rate of net N mineralization (r=0.748). In general, Cmic and Nmic were higher in the L and F layers than in the H layer, as were their relative proportions of total C (Ctot) and N (Ntot), respectively. Cmic correlated positively with soil respiration (r=0.980) and Nmic with concentration of NH4-N (r=0.915).  相似文献   

10.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

11.
Understanding the responses of soil C mineralization to climate change is critical for evaluating soil C cycling in future climatic scenarios. Here, we took advantage of a multifactor experiment to investigate the individual and combined effects of experimental warming and increased precipitation on soil C mineralization and 13C and 15N natural abundances at two soil depths (0–10 and 10–20?cm) in a semiarid Inner Mongolian grassland since April 2005. For each soil sample, we calculated potentially mineralizable organic C (C 0) from cumulative CO2-C evolved as indicators for labile organic C. The experimental warming significantly decreased soil C mineralization and C 0 at the 10–20-cm depth (P?<?0.05). Increased precipitation, however, significantly increased soil pH, NO 3 ? -N content, soil C mineralization, and C 0 at the 0–10-cm depth and moisture and NO 3 ? -N content at the 10–20-cm depth (all P?<?0.05), while significantly decreased exchangeable NH 4 + -N content and 13C natural abundances at the two depths (both P?<?0.05). There were significant warming and increased precipitation interactions on soil C mineralization and C 0, indicating that multifactor interactions should be taken into account in future climatic scenarios. Significantly negative correlations were found between soil C mineralization, C 0, and 13C natural abundances across the treatments (both P?<?0.05), implying more plant-derived C input into the soils under increased precipitation. Overall, our results showed that experimental warming and increased precipitation exerted different influences on soil C mineralization, which may have significant implications for C cycling in response to climate change in semiarid and arid regions.  相似文献   

12.
Soils stored in stockpiles during opencast mining operations accumulate significant quantities of ammonium (of the order of 200 μg NH4+-N g?1 soil) within the predominantly anaerobic cores of mounds. Upon stockpile dismantling and land restoration, this NH+4-N is rapidly oxidized to NO?3-N, which is readily lost from newly restored soil ecosystems by leaching and denitrification. Experiments were set up to examine how these significant reserves of mineral N might be conserved in such situations. Application of the nitrification inhibitor dicyandiamide was successful in minimizing NO3?-N lost by leaching, though large concentrations of NH4+-N were detected in drainage waters. Straw incorporation decreased nitrate leaching by up to 40%; biomass C was some 40% greater in straw-amended than in unamended soils after 14 weeks, though biomass N was similar in both. Addition of nitrogen-free organic materials (glucose, starch and cellulose) produced different results, with glucose amendment showing the greatest reduction in nitrate leaching in the short term (due to an apparent stimulation of denitrification) whereas addition of cellulose resulted in the most effective conservation of nitrogen over 14 weeks; this was due, at least in part, to uptake of mineral N by the soil microbial biomass.  相似文献   

13.
Composition and properties of leachates from farmyard manure heaps Besides some rheological characteristics, the Ntotal, NH4+-N, NO3? -N, P, K+, dry matter and ash content, as well as chemical oxygen demand and conductivity of farmyard manure leachates were examined. The K+ concentration was highest with an average of 5921 mg l?1, followed by Ntotal (1139 mg l?1, 66% of it as NH4+-N and 4% NO3?-N) and P (334 mg l?1). All parameters were highest in leachates of fresh manure and lowest at the end of a 6 months storage period. During the storage, the P concentration in leachates showed a decrease of 67.7%, followed by a decrease in Nt (-57.3%) and K+ (-24.0%). In leachates from a manure with an relatively high initial Nt content of 0.51% and a low C:N ratio of 16.8 the Nt concentration was 0.5–1 times higher than that of a manure with 0.44% Nt and a C:N ratio of 19.9. The viscosity and the thixotropy of leachates were both relatively high at the beginning of the manure's storage period, which led to a strongly developed blocking of porous systems. These properties that contribute to explain the high retention rate of nutrients in the top soil layer at manure storage sites, decreased with an increase in storage time.  相似文献   

14.
The uptake of N by ryegrass grown in pot culture on a range of soils differing widely in content of nonexchangeable NH4-N (topsoils: 117 to 354 mg kg?1 soil; subsoils: 117 to 270 mg kg?1 soil) was measured to indicate whether the amounts of NH4-N released from clay minerals were correlated with soil NH4-N. After two cuts soil analysis revealed that the amounts of mobilized nonexchangeable NH4-N were between 3.5 and 25.2 mg kg?1 from topsoils and between 0 and 8.2 mg kg?1 from subsoils. There was no correlation between soil nonexchangeable NH4-N content and release. The NH4-N extracted with 1 N HCl and the actual N uptake of the plants correlated highly significant. Assuming that the whole of the NH4-N released was taken up by ryegrass, NH4-N accounted for 11.2 to 75.0% of total N uptake from topsoils and 0 to 37.3% from subsoils. The release of nonexchangeable NH4-N was increased by the application of nitrate.  相似文献   

15.
Sandy loam soil, with added glucose, was incubated anaerobically under N2 and subjected to repeated 1-h C2H2 reduction assays. In the presence of 1% glucose the addition of 50 μg NH4+ ?N/g or of 20 μg NO?3 N/g (untreated soil contained 1.2 μg NH+4?N and 7.10 μg NO?3-N/g) caused at least some suppression of nitrogenase activity. Activity developed when the KCl-extractable soil inorganic nitrogen concentration dropped below 35 μg/g. In the presence of 0.1 or 0.05% glucose the addition of 5 μg NH+4?N/g caused some suppression of nitrogenase activity. However, activity developed when the soil NH4+-N concentration dropped below about 4 μg/g. With 0.1% glucose and 5 μg added NO?2 N/g, activity did not develop until the soil NO?2 -N concentration dropped to zero. Added NO?3 N was rapidly reduced and denitrified to NO?2- N, N2O-N and NH+4 N and furthermore caused some inhibition of CO2 evolution. The data from NH4?-addition experiments are consistent with a nitrogenase repression/ derepression threshold of 4 and 35μg NH+4-N/g at 0.05 and 1% glucose concentrations, respectively. The data from NO?2- and NO?3-addition experiments suggest a combination of repression and toxicity effects in the presence of added NO?3 N.  相似文献   

16.
Biodegradation rates of oily waste in soil can be limited by mineral nutrients, particularly N and P. A laboratory incubation experiment was carried out to investigate the influence of N forms, nitrate (NO? 3-N) vs ammonium nitrogen (NH+ 4-N), and sources, i.e., the conjugate cations/anions, on C mineralization rate (CMR) was determined daily by measuring the CO2 evolved using gas chromatography. The CMR and the cumulative C mineralized (CCM) varied with the form and/or the source of N applied. The greatest enhancement in CMR occurred in the NO? 3-treatments in which the source conjugate cation was Ca+2. The addition of P fertilizer further enhanced C mineralization rates irrespective of the form and/or the source of N added. The results show that up to 45% of the added oily waste mineralized as CO2-C in 28 d. The residual P and N (NO? 3-N plus NH+ 4-N) data showed that approximately 90% of the added P and N were utilized for oil decomposition. The amount of residual NO? 3-N appeared to have an inverse relationship with CCM. The NO? 3-N utilization occurred at the expense of NH+ 4-N and this was particularly high in the treatments which received P.  相似文献   

17.
Immobilization of N was measured in a fumigated and in an unfumigated soil by adding (15NH4)2SO4 and following the disappearance of inorganic label from the soil solution and its simultaneous conversion to soil organic N. Calculations based on the measurement of organically-bound 15N gave more consistent values for immobilization than did calculations based on the measurement of the disappearance of label from solution. The fumigated soil immobilized 6.6 μg N g?1 N g?1 soil in 10 days at 25°C, the unfumigated control 4.8 μg. The corresponding gross mineralization rates were 34.9 and 5.6 μg N g?1 soil in 10 days.Addition of 58 μg N as (15NH4)2SO4 to the fumigated soil increased the quantity of the ynlabelled NH4-N extracted at the end of 10 days from 33.8 to 37.8 μg Ng?1 soil, i.e. there was a positive Added Nitrogen Interaction (ANI). The added labelled N produced this ANI, not by increasing the rate of mineralization of organic N, but by standing proxy for unlabelled N that otherwise would have been immobilized.A procedure for calculating biomass N from the size of the flush of mineral N caused by fumigation is proposed. Biomass N (BN) is calculated from the relationship BN = F'N/0.68 where F'N is [(N in fumigated soil incubated for 10 days — (N in unfumigated soil incubated for 10 days)].  相似文献   

18.
Anaerobic ammonium oxidation (anammox process) widely occurs in paddy soil and may substantially contribute to permanent N removal; however, little is known about the factors controlling this process. Here, effects of temperature, pH, organic C, and substrates on potential rate of anammox and the relative contribution of anammox to total N2 production in a paddy soil were investigated via slurry incubation combined with 15N tracer technique. Anammox occurred over a temperature range from 5 to 35 °C with an optimum rate at 25 °C (1.7 nmol N g?1 h?1) and a pH range from 4.8 to 10.1 with an optimum rate at pH 7.3 (1.7 nmol N g?1 h?1). The presence of glucose and acetate (5–100 mg C L?1) significantly inhibited anammox activities and the ratio of anammox to total N2 production. The response of potential rates of anammox to ammonium concentrations fitted well with Michaelis-Menten relationship showing a maximum rate (Vmax) of 4.4 nmol N g?1 h?1 and an affinity constant (Km) of 6.3 mg NH4+-N L?1. Whereas, nitrate addition (5–15 mg 15NO3?-N L?1) significantly inhibited anammox activities and the ratio of anammox to total N2 production. Our results provide useful information on factors controlling anammox process and its contribution to N loss in the paddy soil.  相似文献   

19.
Abstract

Laboratory incubations were conducted to investigate nitrous oxide (N2O) production from a subtropical arable soil (Typic Plinthodults) incubated at different soil moisture contents (SMC) and with different nitrogen sources using a 10% (v/v) acetylene (C2H2) inhibitory technique at 25°C. The production of N2O and CO2 was monitored during the incubations and changes in the contents of KCl-extractable NO? 3-N and NH+ 4-N were determined. The production of N2O increased slightly with an increase in SMC from 40% water-holding capacity (WHC) to 70% WHC, but increased dramatically at 100% WHC. After incubation the NO? 3-N content increased even at a SMC of 100% WHC. At a SMC of 100% WHC, the addition of NH+ 4-N promoted the production of N2O and CO2, whereas the addition of NO? 3-N decreased N2O production. Compared with the incubation without C2H2, the presence of C2H2 increased NH+ 4-N content, but decreased NO? 3-N content, and there was no significant difference in N2O production. These results indicate that heterotrophic nitrification contributes to N2O production in the soil.  相似文献   

20.
Significance of microbial biomass and non-exchangeable ammonium with respect to the nitrogen transformations in loess soils of Niedersachsen during the growing season of winter wheat. I. Change of pool sizes Nitrogen transformations in loess soils have been examined by laboratory and field experiments. After straw application (· 8 t · ha?1), N in microbial biomass (Nmic) increased by about 20 mg · kg?1 soil (· 90 kg N · ha?1 · 30 cm?1) after 9 days of incubation (20 °C). Another laboratory experiment yielded an increase of about 400 mg of NH4+-N · kg?1 fixed by minerals within 1 h after addition of 1 M NH4+-acetate. Defixation of the recently fixed NH4+ after addition of 1 M KCl amounted to only 60 mg · kg?1 within 50 days. In a field experiment with winter wheat 1991, an increase in Nmic of about 80 kg N · ha?1 · 30 cm?1 was observed from March to June. After July, growth of the microbes was limited by decreased soluble carbon concentrations in the rhizosphere. Different levels of mineral N-fertilizer (0, 177 and 213 kg N · ha?1) did not affect significantly the microbial biomass. The same field experiment yielded a decrease of non-exchangeable ammonium on the “zero”-fertilized plot in spring by 200 kg N · ha?1 · 30 cm?1. The pool of fixed ammonium increased significantly after harvest. After conventional mineral N-fertilizer application (213 kg N · ha?1). NH4+-defixation was only about 120 kg N · ha?1 · 30 cm?1 until July.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号