首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present work was to establish the limiting factors affecting the biosynthesis of volatile esters present in virgin olive oil (VOO). Oil volatile fractions of the main Spanish olive cultivars, Arbequina and Picual, were analyzed. It was observed that acetate esters were the most abundant class of volatile esters in the oils, in concordance with the high content of acetyl-CoA found in olive fruit, and that the content of C6 alcohols is limited for the synthesis of volatile esters during the production of VOO. Thus, the increase of C6 alcohol availability during VOO production produced a significant increase of the corresponding ester in the oils in both cultivars at two different maturity stages. However, the increase of acetyl-CoA availability had no effect on the VOO volatile fraction. The low synthesis of these C6 alcohols seems not to be due to a shortage of precursors or cofactors for alcohol dehydrogenase (ADH) activity because their increase during VOO production had no effect on the C6 alcohol levels. The experimental findings are compatible with a deactivation of ADH activity during olive oil production in the cultivars under study. In this sense, a strong inhibition of olive ADH activity by compounds present in the different tissues of olive fruit has been observed.  相似文献   

2.
The effect of hot-water treatments of olive fruits before processing on the biosynthesis of virgin olive oil aroma was investigated by quantifying the variation within the major classes of volatile compounds. Data showed that hot-water treatments gave rise to changes in the volatile aroma profile of virgin olive oil from the three olive cultivars under study, Manzanilla, Picual, and Verdial. Different effects by thermal treatments were observed according to cultivar. In general, these changes are mainly due to a decrease in the contents of C(6) aldehydes and C(5) compounds. Contents of C(6) alcohols and esters remained constant or decreased slightly when the temperature of the treatment was increased. Thus, heat treatments seemed to promote a partial deactivation of the lipoxygenase/hydroperoxide lyase enzyme system, whereas other enzymatic activities, within the lipoxygenase pathway, such as alcohol dehydrogenase and alcohol acyltransferase, remained apparently unaffected as a consequence of heat treatments.  相似文献   

3.
The activity of olive microbiota during the oil extraction process could be a critical point for virgin olive oil quality. With the aim to evaluate the role of microbiological activity during the virgin olive oil extraction process, just before oil extraction freshly collected healthy olive fruits were immersed in contaminated water from an olive mill washing tank. The oils extracted were then compared with control samples from the same batch of hand-picked olives. The presence of lactic and enteric bacteria, fungi and Pseudomonas on the surface of olives was proved to be much higher in washed than in control olives, with increments in cfu/g between 2 and 3 orders of magnitude. The biogenesis of volatile compounds and the extraction of olive polyphenols and pigments were significantly influenced by the microbiological profile of olives even without any previous storage. In most cases the effect of olive microbiota on oil characteristics was greater than the effect exerted by malaxation time and temperature. Oils from microbiologically contaminated olives showed lower amounts of C5 volatiles and higher levels of C6 volatiles from the lipoxygenase pathway and some fermentation products. On the other hand, a decrease of chlorophylls, pheophytins, xanthophylls and the ratio chlorophyll/pheophytin was observed in these oils. Likewise, the microbiological activity during oil extraction led to significantly lower amounts of polyphenols, in particular of oleuropein derivatives. These differences in olive oil chemical composition were reflected in oil sensory characteristics by the decrease of the green and bitter attributes and by the modification of the oil color chromatic ordinates.  相似文献   

4.
Olive stoning during the virgin olive oil (VOO) mechanical extraction process was studied to show the effect on the phenolic and volatile composition of the oil. To study the impact of the constitutive parts of the fruit in the composition of olive pastes during processing, the phenolic compounds and several enzymatic activities such as polyphenoloxidase (PPO), peroxidase (POD), and lipoxygenase (LPO) of the olive pulp, stone, and seed were also studied. The olive pulp showed large amounts of oleuropein, demethyloleuropein, and lignans, while the contribution of the stone and the seed in the overall phenolic composition of the fruit was very low. The occurrence of crushed stone in the pastes, during malaxation, increased the peroxidase activity in the pastes, reducing the phenolic concentration in VOO and, at the same time, modifying the composition of volatile compounds produced by the lipoxygenase pathway. The oil obtained from stoned olive pastes contained higher amounts of secoiridoid derivatives such as the dialdehydic forms of elenolic acid linked to (3,4-dihydroxyphenyl)ethanol and (p-hydroxyphenyl)ethanol (3,4-DHPEA-EDA and p-HPEA-EDA, respectively) and the isomer of the oleuropein aglycon (3,4-DHPEA-EA) and, at the same time, did not show significant variations of lignans. The stoning process modified the volatile profile of VOO by increasing the C6 unsaturated aldehydes that are strictly related to the cut-grass sensory notes of the oil.  相似文献   

5.
The aim of this work was to determine whether the lipoxygenase (LOX) activity is a limiting factor for the biosynthesis of virgin olive oil (VOO) volatile compounds during the oil extraction process. For this purpose, LOX activity load was modified during this process using exogenous LOX activity and specific LOX inhibitors on olive cultivars producing oils with different volatile profiles (Arbequina and Picual). Experimental data suggest that LOX activity is a limiting factor for the synthesis of the oil volatile fraction, this limitation being significantly higher in Picual cultivar than in Arbequina, in line with the lowest content of volatile compounds in the oils obtained from the former. Moreover, there is evidence that this limitation of LOX activity takes place mostly during the milling step in the process of olive oil extraction.  相似文献   

6.
The aim of this work was to determine the transfer of the chloroplast pigment fractions during the virgin olive oil extraction process, in relation to different factors: the ripening stage of the olive fruits, the irrigation water applied to the olive tree, and the addition of natural microtalc (NMT) during the oil extraction process. Results showed that the percentage of chloroplast pigments transferred from the olive paste to the oil increases with the ripening of the olive fruit (raw material). An excess of the water irrigation applied to the olive tree shows a reduction in the biosynthesis of chloroplast pigments in olive fruits, which is reflected in a low concentration in the virgin oils. Furthermore, the percentage of pigment transfer from the olive paste to the oil during the extraction process is reduced by irrigation, mainly of the chlorophyll fraction. The addition of NMT during the malaxation step produced an increase in the percentage of the total pigments transferred from the olive paste to the oil, in relation to nonaddition.  相似文献   

7.
Enzymatic extracts from olive pulp (Olea europea L.) were used to characterize lipoxygenase (LOX) activity in order to determine its role in the biogenesis of the volatile compounds that influence the aroma of extra virgin olive oil. The LOX activity was tested spectrophotometrically at an optimal pH of 6.0 in three olive cultivars, Ascolana Tenera, Kalamata, and FS17. The trend of the LOX activity was determined as a function of pH and temperature; the kinetic constants of the enzyme were also determined. The highest LOX activity was observed in the FS17 fruit, which had the highest concentrations of C(5) and C(6) compounds (aldehydes, alcohols, and ketones), followed by Kalamata and Ascolana T., respectively. Given the direct relationship between enzymatic activity and the quantity of aromas measured in the fruit, it is hypothesized that olive LOX is involved in the formation of C(5) and C(6) volatile compounds. To study the mechanism of the movement of the aromas from the fruit to the oil, which was obtained by simple mechanical extraction, the headspace of the oil for each cultivar was analyzed as well as the aromatic composition in order to compare it with the aromas of the fruit.  相似文献   

8.
Emissions of low molecular weight aldehydes (LMWAs) from deep-frying of extra virgin olive oil, olive oil, and canola oil (control) were investigated at two temperatures, 180 and 240 degrees C, for 15 and 7 h, respectively. The oil fumes were collected in Tedlar bags and then analyzed by gas chromatography-mass spectrometry. Seven alkanals (C2-C7 and C9), eight 2-alkenals (C3-C10), and 2,4-heptadienal were found in the fumes of all three cooking oils. The generation rates of these aldehydes were found to be dependent on heating temperature, showing significant increases with increases in temperature. The LMWA emissions from both kinds of olive oils were very similar and were lower than those observed from canola oil under similar conditions. These results suggest that frying in any type of olive oil, independent of its commercial category, will effectively decrease the generation of volatile aldehydes in the exhaust. This fact is important because less expensive refined olive oil is usually used for deep-frying operations, whereas extra virgin olive oil is usually used as salad dressing.  相似文献   

9.
Fatty acid alkyl esters (FAAEs) are a family of natural neutral lipids present in olive oils and formed by esterification of free fatty acids (FFAs) with low molecular alcohols. Inappropriate practices during the olive oil extraction process and bad quality of the olive fruits promote their formation. Quantification can be done by isolation with a silica gel solid phase extraction cartridge followed by analysis on a gas chromatograph equipped with a programmed temperature vaporizer injector using a polar capillary column. The application of the method to more than 100 Spanish olive oils from different categories, varieties, and geographical origin allowed for establishing the average content of FAAEs and distinguishing the Spanish protected denomination of origin (PDO) and extra virgin olive oils from other categories of olive oils. Those other categories of oils can be subjected to a mild refining process, which leads to blending with extra virgin olive oils. Studies on low quality oils subjected to mild refining showed that FAAEs remain after that process. Thereby, blends of extra virgin olive and mildly refined low quality olive oils can be detected by their alkyl ester concentrations.  相似文献   

10.
A simple and precise analytical method was developed for the simultaneous determination of squalene and methyl, ethyl, propyl, and butyl esters of fatty acids present in olive and olive pomace oils. A fraction containing squalene and fatty acid alkyl esters was isolated from the oil by solid phase extraction on silica gel cartridges and quantitatively analyzed by gas chromatography. A modification of the procedure allowed the isolation of squalene and esters separately. Repeatability and recovery of the method were good. The method was applied to extra and lampant virgin olive oil categories and also to oils obtained from olive pomace by second centrifugation and solvent extraction. Extra virgin olive oils contained low amounts of fatty acid methyl and ethyl esters, while oils obtained from altered olive or olive pomace showed high concentrations of fatty acid alkyl esters, mainly ethyl esters. Correlation between oil acidity and ethyl esters concentration was poor.  相似文献   

11.
The partition coefficient (K(p)) of the natural phenolic antioxidant compounds in the olive fruit between aqueous and olive oil phases was determined. The antioxidants of olive oil are either present in the olive fruit or formed during the olive oil extraction process. The antioxidants impart stability to and determine properties of the oil and are valuable from the nutritional point of view. The olive oil antioxidants are amphiphilic in nature and are more soluble in the water than in the oil phase. Consequently, a large amount of the antioxidants is lost with the wastewater during processing. The determination of antioxidants was performed using HPLC, and the K(p) was estimated to be from as low as 0.0006 for oleuropein to a maximum of 1.5 for 3,4-DHPEA-EA (di-hydroxy-phenyl-ethanol-elenolic acid, oleuropein aglycon). Henry's law fitted very well to the experimental data. The partition coefficients were also estimated by applying the activity coefficients of the antioxidants in the two phases using a predictive group contribution method, the UNIFAC equation. The K(p) values estimated with UNIFAC method were of the same order of magnitude but varied from the experimental values. Nevertheless, this method may be a rough predictive tool for process optimization or design. Because the K(p) values were very low, some changes in the process are recommended in order to achieve a higher concentration of antioxidants in the oil. A temperature increase may lead to increasing the partition coefficient. Also, limiting the quantity of water during oil extraction could be a basis for designing alternative processes for increasing the antioxidant concentration in the olive oil.  相似文献   

12.
The relationship between the content of nonesterified polyunsaturated fatty acids and the contents of oil aroma compounds that arise during the process to obtain virgin olive oil (VOO) was studied in two olive cultivars, Picual and Arbequina, producing oils with distinct aroma profiles and fatty acid compositions. Results suggest that the biosynthesis of VOO aroma compounds depends mainly on the availability of nonesterified polyunsaturated fatty acids, especially linolenic acid, during the process and then on the enzymatic activity load of the lipoxygenase/hydroperoxide lyase system. Both availability of substrates and enzymatic activity load seem to be cultivar-dependent.  相似文献   

13.
The processing factors (pesticide concentration found in olive oil/pesticide concentration found in olives) of azinphos methyl, chlorpyrifos, lambda-cyhalothrin, deltamethrin, diazinon, dimethoate, endosulfan, and fenthion were determined in olive oil production process in various laboratory-scale olive oil extractions based on three- or two-phase centrifugation systems in comparison with samples collected during olive oil extractions in conventional olive mills located at different olive oil production areas in Greece. Pesticide analyses were performed using a multiresidue method developed in our laboratory for the determination of different insecticides and herbicides in olive oil by solid-phase extraction techniques coupled to gas chromatography detection (electron capture detection and nitrogen phosphorus detection), optimized, and validated for olive fruits sample preparation. Processing factors were found to vary among the different pesticides studied. Water addition in the oil extraction procedure (as in a three-phase centrifugation system) was found to decrease the processing factors of dimethoate, alpha-endosulfan, diazinon, and chlorpyrifos, whereas those of fenthion, azinphos methyl, beta-endosulfan, lambda-cyhalothrin, and deltamethrin residues were not affected. The water content of olives processed was found to proportionally affect pesticide processing factors. Fenthion sulfoxide and endosulfan sulfate were the major metabolites of fenthion and endosulfan, respectively, that were detected in laboratory-produced olive oils, but only the concentration of fenthion sulfoxide was found to increase with the increase of water addition in the olive oil extraction process.  相似文献   

14.
Thermal stabilities of main enzymes involved in the biosynthesis of virgin olive oil (VOO) aroma through the lipoxygenase (LOX) pathway were studied in crude enzymatic preparations. Kinetic parameters of thermal inactivation for LOX were determined graphically and were shown to be compatible with the presence of two LOX isoenzymes (LOXlab and LOXres) having different thermal stabilities and displaying relative activities of 88 and 12% each. Data on hydroperoxide lyase (HPL) suggest the existence of just one HPL isoform. Thermal stabilities of LOX and HPL enzymatic activities in crude preparations seem to explain the observed decrease of volatile contents in VOO aroma as a consequence of heat treatments of olive fruit. Moreover, differences in thermal stability of LOXlab and LOXres would justify the distinct pattern of reduction of C6 and C5 compound contents observed in the aroma of these oils.  相似文献   

15.
The aim of this work was to characterize the thermal inactivation parameters of recombinant proteins related to the biosynthesis of virgin olive oil (VOO) volatile compounds through the lipoxygenase (LOX) pathway. Three purified LOX isoforms (Oep2LOX1, Oep1LOX2, and Oep2LOX2) and a hydroperoxide lyase (HPL) protein (OepHPL) were studied. According to their thermal inactivation parameters, recombinant Oep1LOX2 and Oep2LOX2 could be identified as the two LOX isoforms active in olive fruit crude preparations responsible for the synthesis of 13-hydroperoxides, the main substrates for the synthesis of VOO volatile compounds. Recombinant Oep2LOX1 displayed a low thermal stability, which suggests a weak actuation during the oil extraction process considering the current thermal conditions of this industrial process. In addition, recombinant OepHPL could be identified as the HPL activity in crude preparations. The thermal stability was the highest among the recombinant proteins studied, which suggests that HPL activity is not a limiting factor for the synthesis of VOO volatile compounds.  相似文献   

16.
The production of olive oil yields a considerable amount of waste water, which is a powerful pollutant and is currently discarded. Polyphenols and other natural antioxidants, extracted from olives during oil extraction process, partially end up in the waste waters. Experimental and commercial olive oil waste waters from four Mediterranean countries were analyzed for a possible recovering of these biologically interesting constituents. Identification and quantitation of the main polyphenols were carried out by applying HPLC-DAD and HPLC-MS methods. Representative samples of ripe olives were also analyzed at the same time to correlate, if possible, their polyphenolic profiles with those of the corresponding olive oil waste waters. The results demonstrate that Italian commercial olive oil waste waters were the richest in total polyphenolic compounds with amounts between 150 and 400 mg/100 mL of waste waters. These raw, as yet unused, matrices could represent an interesting and alternative source of biologically active polyphenols.  相似文献   

17.
Static headspace (SHS), headspace solid phase microextraction (HS-SPME), headspace sorptive extraction (HSSE), and direct thermal desorption (DTD) were applied to the analysis of four French virgin olive oils from Corsica. More than 60 compounds were isolated and characterized by GC-RI and GC-MS. SHS was not suited to the characterization of olive oil volatile compounds because of low sensitivity. The SPME and HSSE techniques were successfully applied to olive oil headspace analysis. Both methods allow the characterization of volatile compounds (mainly C(6) aldehydes and alcohols), which contribute significantly to the "green" flavor note of virgin olive oils. The PDMS stir bar showed a higher concentration capacity than a DVB/CAR/PDMS SPME fiber due to the higher volume of polymeric coating. DTD was a very good tool for extracting volatile and especially semivolatile compounds, such as sesquiterpenes, but requires a significant investment like that for HSSE. Finally, SPME may be a more appropriate technique for routine quality control due to its operational simplicity, repeatability, and low cost.  相似文献   

18.
Structured lipid (SL) was synthesized from extravirgin olive oil (EVOO) and conjugated linoleic acid (CLA) via a lipase-catalyzed reaction. CLA provides a variety of health benefits, but it is not consumed in free fatty acid form. The synthesized SL olive oil contained 42.5 mol % CLA isomers, and the major isomers were cis-9,trans-11-CLA (16.9 mol %) and trans-10,cis-12-CLA (24.2 mol %). The antioxidant activity determined by the radical scavenging capacity with the 2,2-diphenyl-1-picrylhydrazyl radical was lower in SL olive oil than in EVOO. The oxidative stability was also lower in SL olive oil since it had a higher peroxide value, rho-anisidine value, and 2-thiobarbituric acid reactive substances values during 20 days of storage at 60 degrees C. This observation could be due to the reduction in the natural phenolic compounds (97%) and tocopherols (56%), and the incorporated CLA with two conjugated double bonds in the SL olive oil. The oxidative stability of SL olive oil was increased by added rosemary extracts at concentrations of 100, 200, and 300 ppm. The present study suggests that the SL olive oil may be a suitable way to incorporate or deliver CLA into human diets. However, the addition of a proper antioxidant would be required for improving its oxidative stability.  相似文献   

19.
Alcohol acyltransferase catalyzes the esterification of volatile alcohols with acyl-CoA derivatives to produce volatile esters typically present in the aroma of some fruits. This enzyme was detected in extracts from the pericarp tissues of ripe olive fruits using hexanol and acetyl-CoA as the substrates. Alcohol acyltransferase showed a very low activity level in these fruits, with an optimum pH value at 7.5 and high K(m) values for hexanol and acetyl-CoA. The substrate specificity of this enzyme for various alcohols was also studied. The involvement of the studied enzyme in the biogenesis of the volatile esters present in the aroma of virgin olive oil was discussed.  相似文献   

20.
Virgin olive oils were subjected to simulated common domestic processing, including frying, microwave heating, and boiling with water in a pressure cooker. The impact of these processes on polyphenol content and physicochemical characteristics of oils was assessed. Thermal oxidation of oils at 180 degrees C caused a significant decrease in hydroxytyrosol- and tyrosol-like substances. In contrast, oils heated for 25 h still retained a high proportion of the lignans 1-acetoxypinoresinol and pinoresinol. Thermal oxidation also resulted in a rapid degradation of alpha-tocopherol and the glyceridic fraction of oils. Microwave heating of oils for 10 min caused only minor losses in polyphenols, and the oil degradation was lower than that in thermoxidation assays. Again, lignans were the least affected polyphenols and did not change during microwave heating. Boiling a mixture of virgin olive oil and water in a pressure cooker for 30 min provoked the hydrolysis of the secoiridoid aglycons and the diffusion of the free phenolics hydroxytyrosol and tyrosol from the oil to the water phase. Losses of polyphenols were detected only at pH lower than 6. Moreover, alpha-tocopherol and the glyceridic fraction of oils were not modified during this process. It is worth noting that all the heating methods assayed resulted in more severe polyphenols losses and oil degradation for Arbequina than for Picual oil, which could be related to the lower content in polyunsaturated fatty acids of the latter olive cultivar. These findings may be relevant to the choice of cooking method and olive oil cultivar to increase the intake of olive polyphenols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号