首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficacy of ivermectin, fenbendazole, pyrantel pamoate and doramectin was evaluated under field conditions at 2 sites in the Free State Province of South Africa. The study involved 25 horses at each site, divided into 5 groups of equal size. Ivermectin, fenbendazole and pyrantel pamoate were administered orally at doses of 0.2, 10 and 19 mg/kg respectively. Doramectin was administered by intramuscular injection at a dose of 0.2 mg/kg. Treatment efficacy was based on the mean faecal egg count reduction 14 days post treatment. At site A a faecal egg count reduction of 100% was found after treatment with ivermectin, fenbendazole and doramectin. A 96.1% reduction was found after treatment with pyrantel pamoate. At site B ivermectin and doramectin produced a 100% reduction in faecal egg counts, fenbendazole produced an 80.8% reduction and pyrantel pamoate a 94.1% reduction. Doramectin produced a 100% reduction in faecal egg counts at both sites, despite not being registered for use in horses. In addition, the results indicated reduced efficacy of fenbendazole at site B, which suggested benzimidazole resistance. Larval cultures showed that cyathostomes accounted for between 86 and 96% of pre-treatment parasite burdens at both sites. Other helminths identified in the faecal samples were Strongylus spp. and Trichostrongylus axei.  相似文献   

2.
REASONS FOR PERFORMING STUDY: Possible anthelmintic resistance on a breeding farm where a rapid rotation anthelmintic programme had been implemented for 9 years was investigated. Cyathostomins resistant to fenbendazole and pyrantel were documented by faecal worm egg count reduction test (FWECRT). OBJECTIVES: To 1) manage small strongyle transmission in a herd of horses in which resistance to both pyrantel pamoate and fenbendazole was identified and thereby reduce the risk of clinical disease in the individual animal, 2) monitor the change in resistance patterns over time and 3) monitor the efficacy of ivermectin over the study period. METHODS: Targeted ivermectin treatment of horses on the farm was instituted for mature horses with faecal worm egg counts (FWEC) > 200 eggs/g (epg) and for horses < age 2 years with FWEC > 100 epg. RESULTS: Over a 30 month period, targeted ivermectin treatment achieved acceptable control in mares, as judged by FWEC, and improved control of patent cyathostome infection in consecutive foal crops. Egg reappearance time (ERT) after treatment with ivermectin was < 8 weeks in mares and foals more frequently in the second year of the study than in the first year. Numbers of anthelmintic treatments were reduced by 77.6 and 533% in the mare and foal group, respectively. CONCLUSIONS: Targeted ivermectin treatment may be an economically viable method of managing multiple drug resistant cyathostominosis. POTENTIAL RELEVANCE: Use of ivermectin should be monitored closely for development of resistance.  相似文献   

3.
Thirty resident horses at a boarding stable in Alberta were used to evaluate the relative efficacies of ivermectin, oxibendazole, and pyrantel pamoate in reducing fecal egg output in adult horses under routine management conditions during spring and early summer, and to more clearly define the duration of suppression of fecal egg production following anthelmintic treatment. Horses were blocked according to pretreatment egg counts and randomly assigned to one of three treatments: pyrantel pamoate at 6.6 mg/kg body weight; oxibendazole at 10 mg/kg body weight; or ivermectin at 200 μg/kg body weight. All treatments were administered orally as a paste on day 0.Fecal samples were collected for examination by the modified Wisconsin procedure before treatment, and then at 4-11 day intervals up to day 72.

Very few if any strongyle eggs were found in the feces of any horses up to day 35. On days 42, 50 and 57, the geometric mean egg count for the ivermectin group was significantly (p<0.05) lower than that for the oxibendazole or pyrantel pamoate groups. Based on a survival curve analysis of the data, the mean number of days for recurrence of eggs in the feces was significantly longer for the ivermectin group than for the oxibendazole and pyrantel pamoate groups.

Under conditions encountered in this study, the posttreatment interval to resumption of fecal egg out-put in horses treated with ivermectin was eight to nine weeks, compared with five to six weeks for horses treated with oxibendazole or pyrantel pamoate.

  相似文献   

4.
The objective of the study was to investigate different aspects on the efficacy of three anthelmintics on cyathostomin nematodes of Swedish horses. A faecal egg count reduction (FECR) test was performed on 26 farms. Horses were treated orally with recommended doses of ivermectin, pyrantel pamoate or fenbendazole. Faecal samples were collected on the day of deworming and 7, 14 and 21 days later. No resistance was shown against ivermectin; the FECR was constantly >99%. The effect of pyrantel was assessed as equivocal in 6 farms 14 days after treatment; the mean FECR was 99%. As many as 72% of the fenbendazole-treated groups met the criteria for resistance; the mean FECR was 86%, ranging from 56% to 100%. A re-investigation of two farms where pyrantel resistance had been suspected clearly revealed unsatisfactory efficacy of pyrantel on one of these farms; the FECR varied from 72% to 89%. Twenty-six of the horses previously dosed with pyrantel or fenbendazole, and which still excreted ≥150 eggs per gram of faeces 14 days after treatment, were dewormed with ivermectin and fenbendazole or pyrantel in order to eliminate the remaining cyathostomins. A total of 13 cyathostomin species were identified from horses that initially received fenbendazole and seven species were identified from pyrantel-treated individuals. The egg reappearance period (ERP) following treatment with ivermectin and pyrantel was investigated on two farms. The shortest ERP after ivermectin treatment was 8 weeks and after pyrantel was 5 weeks. We conclude that no substantial reversion to benzimidazole susceptibility had taken place, although these drugs have scarcely been used (<5%) in horses for the last 10 years. Pyrantel-resistant populations of cyathostomins are present on Swedish horse farms, but the overall efficacy of pyrantel is still acceptable.  相似文献   

5.
OBJECTIVE: To determine the prevalence and clinical implications of anthelmintic resistance in cyathostomes of horses. DESIGN: Prospective study. ANIMALS: 80 horses on 10 farms in a 5-county region of northeast Georgia. PROCEDURE: On each farm, horses were stratified in descending order according to pretreatment fecal egg count (FEC), blocked into groups of 4, and then randomly assigned to 1 of 4 treatment groups: no treatment (controls), and treatment with pyrantel pamoate, fenbendazole, or ivermectin. Fecal samples were collected 24 hours prior to treatment and 2, 4, and 6 weeks after treatment for determination of FEC. Mean percentage of reduction in FEC was then calculated for each treatment group. For horses from each farm, the efficacy of each anthelmintic was categorized on the basis of mean percentage of reduction in FEC at 2 weeks after treatment (< 80% reduction = ineffective; 80 to 90% reduction = equivocal; and > 90% reduction = effective). RESULTS: Pyrantel pamoate was effective at reducing FEC in horses from 7 farms, ineffective in horses from 2 farms, and equivocal in horses from 1 farm. Fenbendazole was ineffective at reducing FEC in horses from 9 farms and equivocal in horses from 1 farm. Ivermectin was effective at reducing FEC in horses from all 10 farms. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that cyathostome resistance to fenbendazole is highly prevalent, and resistance to pyrantel pamoate is high enough to warrant concern. Resistance to ivermectin was not detected. On the basis of these data, it appears that ivermectin continues to be fully effective in horses. However, too few farms were used in this study to determine the prevalence of cyathostome resistance to ivermectin. Therefore, the efficacy of ivermectin should continue to be monitored closely.  相似文献   

6.
The efficacy of fenbendazole granules against Toxocara canis in naturally infected greyhounds housed in contaminated environments was evaluated. Eight pens, each containing three to seven greyhounds, 3-12 months of age, were randomly allotted into two treatment groups. Greyhounds in Group 1 were treated with fenbendazole granules mixed in their feed at 50 mg/kg/day for 3 consecutive days once a month for 4 months. Greyhounds in Group 2 were treated with pyrantel pamoate suspension at 5.0 mg/kg per os once a month for 4 months. Quantitative fecal examinations were performed on days 0, 10 and then on the first day of each monthly treatment. Greyhounds administered fenbendazole had fecal egg count reductions (FECRs) of 95.8 and 99.8% at 10 and 31 days following initial treatment, respectively. Greyhounds administered pyrantel pamoate had FECRs of 85.8 and 88.3% at 10 and 31 days after the first treatment, respectively. T. canis fecal egg counts conducted from Day 31 through Day 128 were significant lower in those greyhounds administered fenbendazole as compared to greyhounds administered pyrantel pamoate. Fenbendazole produced FECRs in greyhounds from Day 31 through Day 128 by 96.8-99.8%. Pyrantel pamoate reduced fecal egg counts during the same time period 71.4-98.3%.  相似文献   

7.
Prevalence of anthelmintic resistant cyathostomes on horse farms   总被引:9,自引:0,他引:9  
OBJECTIVE: To determine prevalence of anthelmintic resistance in cyathostome nematodes of horses in the southern United States. DESIGN: Cross-sectional study. ANIMALS: 786 horses on 44 farms and stables in Georgia, South Carolina, Florida, Kentucky, and Louisiana. PROCEDURE: Fecal egg count (FEC) reduction tests were performed on 44 large farms and stables. Horses on each farm were treated with an oral paste formulation of fenbendazole, oxibendazole, pyrantel pamoate, or ivermectin at recommended label dosages. A mixed linear model was fitted to the percentage reduction in FEC, accounting for differences among farms, states, ages, treatments, and treatment by state interactions. RESULTS: By use of a conservative measure of resistance (< 80% reduction), the percentage of farms with anthelmintic-resistant cyathostomes was 97.7%, 0%, 53.5%, and 40.5% for fenbendazole, ivermectin, oxibendazole, and pyrantel pamoate, respectively. Mean percentage reductions in FEC for all farms were 24.8%, 99.9%, 73.8%, and 78.6% for fenbendazole, ivermectin, oxibendazole, and pyrantel pamoate, respectively. Pairwise contrasts between states for each treatment revealed that in almost all instances, there were no significant differences in results between states. CONCLUSIONS AND CLINICAL RELEVANCE: The prevalence of resistance found in this study was higher than that reported previously, suggesting that anthelmintic resistance in equine cyathostomes is becoming a major problem. Furthermore, data from these 5 southern states, which are geographically and physiographically distinct, were remarkably similar. This suggests that drug resistance in cyathostomes is highly prevalent throughout the entire southern United States and probably nationwide.  相似文献   

8.
By collecting fecal samples every 2 weeks beginning at 2 months of age, 32 foals from a single Texas farm were monitored. The foals were administered ivermectin paste at the time of the first collection and again monthly. When foals had Parascaris egg counts higher 2 weeks after ivermectin treatment than at treatment, they were administered pyrantel pamoate at the manufacturer's recommended dose (6.6 mg/kg) or at twice the recommended dose (13.2 mg/ kg) when tapeworm eggs were also detected. An elevation or only minimal reduction (less than 75%) in Parascaris egg counts was seen 2 weeks after ivermectin treatment until the foals were 8 months of age, at which time there was an 85% reduction in fecal egg count after treatment. When pyrantel was administered at the manufacturer's recommended dose, a 42% to 84% reduction in egg counts occurred, but at 13.2 mg/kg there was a 98% to 100% reduction in fecal egg counts 2 weeks posttreatment. However, pyrantel failed to control strongylate egg counts even at the elevated dose, whereas ivermectin reduced strongylate fecal egg counts by greater than 99%, determined 2 weeks posttreatment. Pyrantel, but not ivermectin, lowered Parascaris egg counts. Ivermectin, but not pyrantel, lowered strongyle egg counts 2 weeks post administration. A single drug for all ages of horses approach to parasite control requires rethinking. Combinations of drugs or more careful evaluation of anthelmintics in foals may be necessary for continued parasite control.  相似文献   

9.
A study was undertaken at the Texas A&M Horse Center to evaluate and compare the effectiveness of three anthelmintics—ivermectin, fenbendazole, and a combination of ivermectin and pyrantel pamoate—on fecal egg count reductions of cyathostomes and Parascaris equorum in 30 naturally infected foals. The foals were randomized into three treatment groups, with individuals being rerandomized after each 8-week observation period. The treatments of ivermectin and fenbendazole were given at the manufacturer's recommended doses, and the pyrantel treatment was given at two times the manufacturer's recommended dose. Fecal egg counts were performed at the time of treatment and at 2-week intervals after treatment for a total of 8 weeks. Each foal received a total of three treatments during the course of the study. Fecal egg counts were performed by a modified McMaster's test, with a sensitivity of 25 eggs per gram of feces, and by the modified Wisconsin double centrifugal flotation technique, with a sensitivity of 0.2 eggs per gram of feces. Fecal egg reduction percentages were calculated. Analysis of the results showed that ivermectin, either used alone or with pyrantel, was a more effective anthelmintic for cyathostome (small strongyle) control than fenbendazole. Fenbendazole and pyrantel showed a higher initial reduction in Parascaris egg counts when compared with the ivermectin-only-treated group, but this difference lessened over time. The use of the combination treatment showed the best results for controlling both parasites, indicating that a combination of anthelmintics may be necessary to control parasites on some equine farms.  相似文献   

10.
Anthelmintic resistance was monitored over a 30 month period within a goat herd in eastern Virginia, USA. Resistance to ivermectin, levamisole and benzimidazole drugs was detected in Haemonchus contortus using the fecal egg count reduction test (FECRT). When levamisole use was discontinued for 1 year, susceptibility to levamisole appeared to return. Although a single treatment with fenbendazole was able to reduce fecal egg counts by only 50%, two doses administered in a 12 h interval increased efficacy to 92%, however, confidence intervals indicated that resistance was still present. When fecal egg counts were determined the following year after several treatment using this protocol, the efficacy of fenbendazole had fallen again to 57% reduction in fecal egg counts. The predominant genus present in cultured composite fecal samples was Haemonchus. Trichostrongylus, Cooperia and Teladorsagia were also present in smaller numbers.  相似文献   

11.
The aims of studies in 2002 and 2003 on three farms with 76 foals naturally infected with Parascaris equorum were to (i) identify if the nematode was resistant to ivermectin and moxidectin, and (ii) confirm the effectiveness of fenbendazole and pyrantel pamoate for the parasite. Twelve clinical trials, each with a Fecal Egg Count Reduction Test, were conducted on two Thoroughbred and one Standardbred farms in southwestern Ontario, Canada. In each trial, Parascaris eggs/g feces were estimated for each foal pre- and post-treatment using the Cornell-Wisconsin double flotation and Cornell-McMaster dilution techniques. On each farm and for each trial, foals were randomized into treatment groups. Treatments were ivermectin, moxidectin, fenbendazole, pyrantel pamoate administered at the manufacturers' recommended dosages, and some foals were untreated. The overall efficacy for ivermectin was 33.5% (19 foals) and for moxidectin 47.2% (28 foals). Fenbendazole (16 foals) and pyrantel pamoate (21 foals) were highly effective for P. equorum each at 97.6%. For fenbendazole, 15 foals had 100% and for pyrantel pamoate 17 foals had >97% with 14 at 100%.  相似文献   

12.
In the present survey, 276 horses bred on 16 farms located in central and southern Italy were investigated for the presence of drug resistant cyathostomes by a Fecal Egg Count Reduction Test (FECRT). Sixteen to 20 animals were selected on each farm and randomly assigned to one of four equally sized treatment groups. Groups were treated with fenbendazole, pyrantel pamoate, ivermectin or moxidectin. Resistance to fenbendazole was declared on six farms (37.5%) and suspected in two farms (12.5%), with FECR values ranging from 41% to 88.3%. Resistance to pyrantel was found in two farms (12.5%) and was suspected in one case (6.2%), with FECR values ranging from 43% to 85.4%. Macrocyclic lactones remained effective on all farms. Only cyathostome third stage larvae (L3) were found in fecal cultures after treatment. This paper reports the first wide survey conducted in Italy for anthelmintic resistance in equine cyathostomes. The results indicate that multiple drug resistant equine cyathostomes are present in the central and southern regions of Italy. These data call for a geographically and numerically broader investigation of horse farms in all regions and for the development and implementation -among veterinarians, owners and managers of a plan to reduce the expansion of these anthelmintic resistant populations and control these important parasites.  相似文献   

13.
Anthelmintic products form the basis of helminth control practices on horse stud farms at present. Regular evaluation of the efficacy of these products is advisable, as it will provide information on the worm egg reappearance period and the resistance status in the worm population. The aim of this study was to evaluate the efficacy of doramectin, pyrantel pamoate, ivermectin and moxidectin on a Thoroughbred stud farm in the Western Cape Province, South Africa. The study also compared the anthelmintic efficacy of two moxidectin formulations administered at their recommended dosages (an injectable, at 0.2 mg/kg, not registered for horses, and an oral gel at 0.4 mg/kg, registered for horses). Two mixed-sex groups of 30 yearlings and 40 weaners were tested in 2001 and 2002, respectively, divided into 3 and 4 groups of equal size. In 2001, moxidectin was one of 3 drugs administered orally and at a dose rate of 0.4 mg/kg. In 2002, pyrantel pamoate and ivermectin were orally administered at 19 and 0.2 mg/kg. Moxidectin and doramectin (the latter not registered for horses) were administered by intramuscular injection at a dose of 0.2 mg/kg, the dosage registered for other host species. The faecal egg count reduction test was used to determine the anthelmintic efficacies in both years. Each animal acted as its own control and the arithmetic mean faecal egg count and lower 95% confidence limit was calculated for each of the groups. A 100% reduction in the faecal egg counts and a 100% lower 95% confidence limit was recorded for moxidectin (0.4 mg/kg) in 2001. In 2002, a 99% and 96% reduction was recorded for pyrantel pamoate and ivermectin, respectively. In the same year doramectin and moxidectin (both injectable and given at 0.2 mg/kg) did not have any effect on worm egg counts. Of the 4 drugs tested in 2002, only pyrantel pamoate recorded lower 95% confidence limits above 90%.  相似文献   

14.
The efficacy of paste and granule formulations of pyrantel pamoate against concurrent infections of Toxocara cati and Ancylostoma tubaeforme in cats was examined in a controlled trial. Three groups of 8 cats received either no medication (controls) or pyrantel pamoate in paste or granule formulations at a dosage of 20 mg/kg of body weight. After administration of the paste formulation, fecal egg counts of A tubaeforme and T cati were decreased by 98.6 and 96.4%, respectively, and 100% of hookworms and 93.5% of ascarids were removed from the intestine. After administration of the granule formulation, fecal egg counts of A tubaeforme and T cati were decreased by 99.4 and 78.2%, respectively, and 100% of adult hookworms and 88.9% of ascarids were removed. All reductions of egg counts and worm numbers were significant (P less than 0.01). The clinical safety of pyrantel pamoate was evaluated in 4- to 6-week-old kittens. Three groups of 10 kittens received either no medication (controls) or pyrantel pamoate in paste or granule formulations at the rate of 100 mg/kg for 3 consecutive days. Adverse effects were not observed in young kittens following administration of the high dose of pyrantel pamoate.  相似文献   

15.
Reduced efficacy of anthelmintics in young compared with adult horses   总被引:3,自引:0,他引:3  
Studies on a Thoroughbred breeding farm in Ohio from 1982 to 1988 demonstrated the value of three anthelmintic pastes (ivermectin, oxibendazole, pyrantel pamoate) in controlling benzimidazole resistant cyathostomes (small strongyles) in adult horses. However, a comparison of drug efficacy in suppressing faecal egg counts for the full period between treatments showed a significant reduction in efficacy of all drugs in yearling horses compared with adults. Mean faecal egg counts of adult horses were generally kept below 100 eggs per gram (epg) of faeces when using oxibendazole or pyrantel pamoate at four to five week intervals and ivermectin at eight week intervals. By contrast, mean counts of young horses rose as high as 655 epg (oxibendazole), 729 epg (pyrantel pamoate) and 852 epg (ivermectin) within the same time period after treatment. Individual counts of treated yearlings sometimes exceeded 3,000 epg. Three distinct mechanisms appeared to be involved in the poor results in young horses. These were 1) anthelmintic refuge, 2) anthelmintic resistance, and 3) anthelmintic avoidance.  相似文献   

16.
A study was conducted to investigate the efficacy of six anthelmintics in a herd of dairy goats. Pretreatment larval cultures indicated that the goats were infected with Haemonchus contortus and Trichostrongylus colubriformis. Three separate treatment regimens were administered. In each trial, mature nonlactating goats were allocated into two treatment groups and a control group. Treatment groups received thiabendazole (TBZ) or levamisole (LEV), mebendazole (MBZ) or fenbendazole (FBZ), and morantel tartrate (MOR) or ivermectin (IVR). LEV, MOR, and IVR reduced fecal strongyle egg counts by 99% to 100% of pretreatment values. The benzimidazole (BZD) drugs changed pretreatment fecal egg counts by +2% to -32%. Results of posttreatment larval culture demonstrated the presence of H contortus larvae following the administration of BZD drugs.  相似文献   

17.
The increase of anthelmintic resistance in the last years in the nematode population of veterinary importance has become a major concern. The objective of the present study was to evaluate the efficacy of the main anthelmintic drugs available in the market against small strongyles of horses in Brazil. A total of 498 horses from 11 horse farms, located in the states of Paraná, São Paulo, Rio de Janeiro and Minas Gerais, in Brazil, were treated with ivermectin, moxidectin, pyrantel and fenbendazole, orally at their recommended doses. The fecal egg count reduction test (FECRT) was used to determine the product's efficacy and fecal culture was used to determine the parasite genus. Reduction on anthelmintic efficacy was found for fenbendazole in all horse farms (11/11), pyrantel in five yards (5/11) and ivermectin had low efficacy in one of the yards studied (1/11). Multidrug resistance of up to 3 drugs classes was found in one of the tested farms (1/11). Cyathostomin were the most prevalent parasite. The results showed that resistance to fenbendazole is widespread; the efficacy of pyrantel is in a critical situation. Although the macrocyclic lactones compounds still showed high efficacy on most farms, suspected resistance to macrocyclic lactones is of great concern.  相似文献   

18.
Aims of this study with 13 equids naturally infected with Anoplocephala perfoliata were to document (i) a critical test with a period of 48 h from treatment to necropsy to assess the efficacy of an anthelmintic against the tapeworm, (ii) the efficacy of pyrantel pamoate oral paste at 13.2 mg pyrantel base/kg body weight, and (iii) the time after treatment when fecal egg counts would best estimate the tapeworm's prevalence in a herd. Feces passed in successive 12-h periods after treatment were examined for tapeworms. At necropsy, tapeworms in equids were identified as attached to the mucosa or unattached and, with a stereoscope, as normal or abnormal. At the time of treatment and at 6-h intervals thereafter, fecal samples were taken for egg counts. The efficacy of pyrantel pamoate was 96.6%; in 1 equid the efficacy was 75.3%, and in 8 it was 100%. "Major fragments" (worms without a scolex) accounted for 10% of the tapeworms recovered; they were not included in the efficacy analysis but should be. In 3 untreated equids necropsied, tapeworms were in the cecum, and 21.3% were detached. This protocol, when compared with a 24-h one without examination of feces, was more efficient in the treatment of trial animals and reduced underestimation and overestimation of an anthelmintic's efficacy. However, a protocol similar to this 48-h critical test but with a 24- or 36-h post-treatment period should be investigated. The mean egg count peaked 18 to 24 h after treatment and the samples taken at that time would provide the best estimate of prevelance of tapeworms in a herd. The Cornell-Wisconsin centrifugal flotation technique had a sensitivity and specificity of 100% at 18 h and 92% and 100%, respectively, at 24 h.  相似文献   

19.
CASE DESCRIPTIONS: 16 horses treated daily with pyrantel tartrate (2.64 mg/kg [1.2 mg/lb], PO) as part of a prophylactic anthelmintic program. CLINICAL FINDINGS: Fecal worm egg counts (FWECs) were obtained on all 16 horses. Mean FWEC was 478 eggs/g (epg; range, 0 to 4,075 epg). Three of the 16 horses were responsible for 85% of the total fecal egg output for the herd on the day of sampling. Six horses had FWECs < 200 epg. Three horses that had arrived within 4 months of the sampling date had FWECs < 100 epg. TREATMENT AND OUTCOME: An FWEC reduction test was initiated the day after FWECs were obtained; all horses with FWECs > 100 epg (9 horses) were treated with pyrantel pamoate (6.6 mg/kg [3 mg/lb], PO), and 14 days later, the FWEC was repeated. During the 14-day period, all horses received pyrantel tartrate (2.64 mg/kg, PO) daily. Fecal worm egg count reduction was calculated for each horse. Mean FWEC reduction for the group was 28.5% (range, increase of 21% in FWECs 14 days after treatment to a decrease of 100% in FWEC 14 days after treatment). CLINICAL RELEVANCE: Farms should be monitored for cyathostomes resistant to pyrantel pamoate prior to use of pyrantel tartrate. Fecal worm egg counts should be monitored routinely in horses before and after treatment to ensure efficacy of cyathostome control measures.  相似文献   

20.
Three anthelmintic pastes were compared in terms of their ability to suppress the output of parasite eggs in the faeces of 108 grazing horses at four sites in Britain; the horses were treated once with either ivermectin, fenbendazole or pyrantel. At each site, the horses grazed together throughout the trials which took place during the summers of 1985 and 1986. The median periods before parasite eggs reappeared in faeces were 70 days for ivermectin, 14 days for fenbendazole and 39 days for pyrantel embonate. Geometric mean faecal egg counts in the groups treated with ivermectin and pyrantel were significantly less (P less than 0.05) than in the fenbendazole group on days 21, 28, 35 and 42 after treatment. On days 49, 56, 63 and 70 the mean egg counts in the ivermectin group were significantly lower (P less than 0.05) than those in either of the other groups. The results indicated that in order to ensure minimal contamination of pastures, grazing horses treated with ivermectin paste would have required a second treatment approximately 10 weeks after the first, and to achieve similar control with fenbendazole or pyrantel embonate, a second treatment would have been required after approximately two weeks and six weeks, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号