首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Angus and Wagyu steers consuming high-roughage diets exhibit large differences in adipose tissue fatty acid composition, but there are no differences in terminal measures of stearoyl-CoA desaturase (SCD) activity or gene expression. Also, adipose tissue lipids of cattle fed corn-based diets have greater MUFA:SFA ratios than cattle fed hay-based diets. We hypothesized that any changes in SCD gene expression and activity would precede similar changes in adipose tissue lipogenesis between short- and long-fed endpoints. Furthermore, changes in SCD activity and gene expression between production endpoints would differ between corn- and hay-fed steers and between Wagyu and Angus steers. Angus (n = 8) and Wagyu (n = 8) steers were fed a corn-based diet for 8 mo (short-fed; 16 mo of age) or 16 mo (long-fed; 24 mo of age), whereas another group of Angus (n = 8) and Wagyu (n = 8) steers was fed a hay-based diet for 12 mo (short-fed; 20 mo of age) or 20 mo (long-fed; 28 mo of age) to match the end point BW of the corn-fed steers. Acetate incorporation into lipids in vitro was greater (P < 0.01) in corn-fed steers than in hay-fed steers and tended (P = 0.06) to be greater in Wagyu than in Angus s.c. adipose tissue because the rate in Wagyu was twice that of Angus adipose tissue in the corn-fed, short-fed steers. There were diet x end point interactions for lipogenesis in i.m. and s.c. adipose tissues (both P < 0.01) because lipogenesis was 60 to 90% lower in the long-fed cattle than in short-fed cattle fed the corn-based diet. The greatest SCD enzyme activity in Angus s.c. adipose tissue was observed at 24 mo of age (corn-based diet), but activity in Wagyu adipose tissue was greatest at 28 mo of age (hay-based diet; breed x diet x end point interaction, P = 0.08). For short- vs. long-fed endpoints in Angus, s.c. adipose tissue SCD activity was less (hay diet) or the same (corn diet). Conversely, SCD gene expression was greatest in long-fed Wagyu steers fed the hay- or corn-based diets (breed x end point interaction; P < 0.01). Contrary to our hypotheses, SCD activity increased over time, whereas lipogenesis from acetate decreased. However, the developmental pattern of SCD gene expression and activity differed markedly between hay-fed Angus and Wagyu adipose tissues, which may explain the differences in the MUFA:SFA ratios observed in adipose tissues from these cattle.  相似文献   

2.
In this study, the interactions among breed of cattle, adipose tissue site and specific incubation conditions were investigated. Subcutaneous and i.m. adipose tissues were obtained from 10 Angus and 9 Santa Gertrudis steers immediately postmortem. Adipose tissue explants were incubated acutely for 2 h immediately at slaughter or after being cultured 48 h with or without 1 mU/ml insulin and 30 mg/ml bovine serum albumin; the incorporation of 14C-labeled acetate and glucose (5 mM, plus 5 mM unlabeled lactate) into lipid fractions was measured. AT the same chronological age, Angus steers had a more youthful lean maturity score, higher USDA marbling score and higher USDA quality grade (P less than .05) than did carcasses from Santa Gertrudis steers. The lower marbling score of the Santa Gertrudis steers was paralleled by smaller i.m. adipocytes (P less than .05) relative to Angus steers. Pentose cycle reductase and NADP-malate dehydrogenase activities were greater in Angus i.m. adipose tissue than in Santa Gertrudis i.m. adipose tissue, which would provide more reducing equivalents (NADPH) and glycerol for fatty acid biosynthesis and triacylglycerol esterification. Correspondingly, Angus i.m. adipose tissue exhibited a greater rate of lipogenesis from acetate and glucose (P less than .05) than did Santa Gertrudis i.m. adipose tissue in acute incubations. The presence of insulin resulted in higher rates of lipogenesis from acetate in Angus s.c. adipose tissue than in Santa Gertrudis s.c. adipose tissue after 48 h of explant culture. These data indicate that i.m. and s.c. adipose tissues exhibit aspects of lipid metabolism unique to each tissue and suggest that breed-related differences in adipose tissues may explain the divergent responses to insulin observed in different laboratories.  相似文献   

3.
We tested the hypothesis that fatty acid biosynthesis and adipocyte diameter and volume would be greater in s.c. and i.m. adipose tissues of calf-fed steers than in yearling-fed steers at a constant BW, due to the greater time on feed for the calf-fed steers. Conversely, we predicted that the capacity for s.c. and i.m. preadipocytes to divide, as estimated by 3H-thymidine incorporation into DNA, would be greater in the less mature adipose tissues of calf-fed steers and in yearling-fed steers at 16 mo of age than in yearling-fed steers fed to 18 mo of age. Brangus steers were fed a corn-based finishing diet as calves (calf-fed; n = 9) or yearlings (n = 4) to 16 mo of age (CA yearling-fed); another group of yearlings (n = 5) was fed to a constant-BW end point of 530 kg (CW yearling-fed). Both groups of yearling-fed steers had free access to native pasture until 12 mo of age. At slaughter, the fifth to eighth thoracic rib section of the LM was removed, and fresh s.c. and i.m. adipose tissues were removed for in vitro incubations. There were no differences in the number of s.c. adipocytes/g or mean peak volumes of adipocytes across production groups (P > or = 0.14). However, s.c. adipose tissue of CA yearling-fed steers contained greater proportions of smaller adipocytes (<1,500 pL) than calffed or CW yearling-fed steers, and similar results were observed for i.m. adipose tissue. Acetate incorporation into total lipids was greater (P = 0.02) in s.c. adipose tissue of CA yearling-fed steers than in calf-fed or CW yearling-fed steers, and tended to be different (P = 0.10) across production groups in i.m. adipose tissue. The production system x cell fraction interaction was significant (P = 0.03) for s.c. adipose tissue DNA synthesis, which was greatest in adipocytes from CA yearling-fed steers, whereas there were no differences across production system in stromal vascular (SV) DNA synthesis. For i.m. adipose tissue, DNA synthesis was greatest in adipocytes and SV cells from CA yearling-fed calves, and was greater in SV cells than in adipocytes (both P = 0.01). Therefore, stage of adipose tissue development more strongly influenced fatty acid synthesis, adipocyte volume, and DNA synthesis than age at sampling, final BW, or time on the finishing diet.  相似文献   

4.
We hypothesized that stearoyl-CoA desaturase (SCD) enzyme activity would not correlate with fatty acid indices of SCD activity in steers fed different grains. Forty-five Angus steers (358 +/- 26 kg BW) were individually fed for 107 d diets differing in whole cottonseed (WCS) supplementation (0, 5, or 15% of DM) and grain source (rolled corn, flaxseed plus rolled corn, or ground sorghum grain) in a 3 x 3 factorial arrangement. Flaxseed- and corn-fed steers had greater (P < 0.01) G:F (0.119 and 0.108, respectively) than sorghum-fed steers (0.093). Marbling score was decreased by WCS (P = 0.04), and LM area was decreased (P < 0.01) by sorghum. Plasma 14:0, 16:0, 16:1n-7, and 18:2n-6 were greatest in corn-fed steers, whereas plasma 18:3n-3 and 20:5n-3 were greatest in the flax-seed-fed steers (P < 0.01). Plasma 18:1trans-11 was least in sorghum-fed steers, and plasma cis-9,trans-11 CLA was barely detectable, in spite of high intestinal mucosal SCD enzyme activity (118 to 141 nmol*g tissue(-1).7 min(-1)). Interfascicular (i.f.) and s.c. cis-9,trans-11 CLA remained unchanged (P > or = 0.25) by treatment, although 18:1trans-11 was increased (P < or = 0.02) in steers fed corn or flaxseed. Steers fed flaxseed also had greater (P < 0.01) i.f. and s.c. concentrations of 18:3n-3 than steers fed the other grain sources. Oleic acid (18:1n-9) was least and total SFA were greatest (P < 0.01) in i.f. adipose tissue of steers fed 15% WCS. Lipogenesis from acetate in s.c. adipose tissue was greater (P < 0.01) in flaxseed-fed steers than in the corn- or sorghum-fed steers. Steers fed flaxseed or corn had larger i.f. mean adipocyte volumes (P < 0.01) than those fed sorghum and tended (P = 0.07) to have larger s.c. adipocyte volumes. Several fatty acid indices of SCD enzyme activity were decreased (P < or = 0.03) by WCS in i.f. adipose tissue, including the 18:2cis-9,trans-11/ 18:1trans-11 ratio. The 18:2cis-9,trans-11/18:1trans-11 ratio also tended to be decreased (P = 0.09) in s.c. adipose tissue by flaxseed; however, SCD enzyme activities in i.f. and s.c. adipose tissue were not affected by dietary WCS (P > or = 0.47) or grain source (P > or = 0.37). Differences in SFA seemed to be independent of SCD enzyme activity in both adipose tissues, suggesting that duodenal concentrations of fatty acids were more important in determining tissue fatty acid concentrations than endogenous desaturation by SCD.  相似文献   

5.
Ronnel [0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate] is an organophosphate pesticide with growth-promoting properties. Experiments were conducted to determine effects of ronnel on oxidation of and fatty acid synthesis from acetate and glucose as indices of metabolic activity in subcutaneous adipose tissue and skeletal muscle from 6-, 12- and 18-mo-old steers. Ronnel depressed metabolic activity in adipose tissue from 6- and 12-mo-old steers without concomitantly decreasing metabolic activity in skeletal muscle. Production of CO2 and fatty acids from acetate and glucose in tissues from 18-mo-old steers was influenced less by ronnel than in tissues from younger steers. Interactions of ronnel with thyroxine or growth hormone on acetate oxidation and conversion to fatty acids in adipose tissue also were investigated. Thyroxine increased acetate oxidation and decreased fatty acid synthesis. Ronnel interfered with the metabolic effects of thyroxine. Growth hormone, with or without ronnel, did not affect metabolic activity of adipose tissue. Ronnel seemingly alters the partitioning of acetate and glucose between major metabolic processes in adipose tissue and skeletal muscle.  相似文献   

6.
We conducted 3 independent experiments to demonstrate functional G-coupled protein receptor 43 (GPR43) and GPR120 in bovine intramuscular (i.m.) and subcutaneous (s.c.) adipose tissues. We hypothesized that media volatile fatty acids and long-chain fatty acids would affect cAMP-activated protein kinase-alpha (AMPKα) protein expression and cAMP concentrations differently in i.m. and s.c. adipose tissue. Experiment 1: oleic acid (18:1n-9) decreased phosphorylated AMPKα protein (p-AMPKα) and the p-AMPKα/AMPKα protein ratio in i.m. preadipocytes, increased the p-AMPKα/AMPKα protein ratio in bovine satellite cells, and had no effect in s.c. preadipocytes. Experment 2: ex vivo explants from the 5th to 8th longissimus thoracic rib muscle section of Angus crossbred steers were cultured 48 hr in media containing 0.25 µM ciglitizone, 5 mM glucose, and 5 mM acetate, in the absence or the presence of 100 µM oleic acid. Oleic acid increased acetate incorporation into fatty acids and GPR43 gene expression in i.m. adipose tissue (P < 0.05), but oleic acid had no effect on fatty acid synthesis or GPR43 expression in s.c. adipose tissue. Experiment 3: fresh s.c. and i.m. adipose tissue from the 5th to 8th longissimus thoracic rib muscle section of Angus crossbred steers was transferred immediately to 6-well culture plates containing 3 mL of KHB/Hepes/5 mM glucose. Samples were preincubated with 0.5 mM theophylline plus 10 μM forskolin for 30 min, after which increasing concentrations of acetate or propionate (0, 10−3, 10−2.3, and 10−3 M) in the absence or the presence of 100 μM oleic acid or 100 µM palmitic acid (16:0) were added to the incubation media. Acetate had no effect on forskolin-stimulated cAMP production in s.c. adipose tissue but decreased cAMP in i.m. adipose tissue (P < 0.05); this indicates a functional GPR43 receptor in i.m. adipose tissue. The combination of 10−2 M acetate and oleic acid decrease cAMP production in s.c. adipose tissue, consistent with GPR120 receptor activity, but oleic acid and palmitic acid attenuated the depression of cAMP production caused by acetate in i.m. adipose tissue. Palmitic acid depressed cAMP production in s.c. adipose tissue, and increased cAMP production in i.m. adipose tissue (P < 0.05). Propionate had no effect on cAMP production in s.c. or i.m. adipose tissue. These results provide evidence for functional GPR43 receptors in i.m. adipose tissue and GPR120 receptors in s.c. adipose tissue, both of which would suppress lipolysis.  相似文献   

7.
The effects of propylene glycol (PEG) on performance, ruminal fermentation, blood glucose and insulin, carcass traits, and abundance of IGF-1 mRNA in LM and leptin mRNA in adipose tissue were examined in 20 Korean native steers, with 10 each in control and PEG-fed groups, respectively. Propylene glycol mixed with concentrate diet was provided daily at a rate of 2.5 mL/kg BW(0.75). Experimental animals were fed a concentrate diet to 1.8% of BW twice daily plus rice straw ad libitum during the 4-mo period before marketing. Daily DMI and ADG did not differ between control and PEG-fed steers. Steers receiving PEG displayed an increase (P = 0.044) in propionate concentration, whereas acetate concentration decreased (P = 0.032). Although blood glucose was not affected, serum insulin was increased (P = 0.047) by PEG feeding. Propylene glycol did not affect carcass weight, 13th-rib fat depth, marbling score, or lipid content of LM. The backfat of PEG-fed steers did not differ in leptin mRNA from control steers, whereas increased leptin mRNA was found in i.m. fat with PEG feeding. There was no treatment effect on the level of IGF-1 mRNA in the LM of the tested steers. These results indicate that the amount of PEG fed to steers was not sufficient to improve marbling score through enhanced ruminal propionate and insulin. The role of increased i.m. leptin mRNA level in PEG-fed steers remains to be further elucidated.  相似文献   

8.
Two experiments were conducted to determine the effects of anabolic implants on performance, changes in ultrasound measurements, carcass quality, cellularity of i.m. and s.c. adipose depots, and mRNA expression of acetyl CoA carboxylase (ACC), stearoyl CoA desaturase (SCD), and lipoprotein lipase (LPL) in i.m. adipose tissue of finished beef cattle. Angus heifers (experiment 1: n = 10; 411 kg of BW) and steers (experiment 2: n = 18; 279 kg of BW) were randomly allotted as control (C) or implanted with Synovex-Plus (SP) at d 0 and midway through the finishing period. The cattle were fed a high-concentrate diet and were weighed at approximately 28-d intervals. Heifers and steers were finished for 108 and 133 d, respectively. At slaughter, a section of the LM (sixth to ninth rib) was removed, and i.m. adipose tissue was dissected for mRNA analysis. Subcutaneous and i.m. adipose tissues also were collected for determination of cellularity. At 48 h postmortem, carcass data were collected, and a steak (12th rib) was removed for analysis of lipid and fatty acid composition. Body weight did not differ (P > 0.10) between treatments until after reimplanting of the heifers (d 55) or steers (d 73). Average daily gain was 36 and 16% faster (P < or = 0.01) for implanted heifers and steers, respectively, compared with their control counterparts. Implanting resulted in larger (P < or = 0.10) HCW and LM area for heifers and steers. However, implanting did not affect (P > 0.10) dressing percent, fat thickness, percentage of KPH, yield grade, or marbling score. Intramuscular lipid content and concentrations of major fatty acids did not differ (P > 0.10) between treatments. Percentage of SC adipocytes was greater at larger diameters ( > 150 microm), whereas the majority of i.m. adipocytes were at small to middle diameters (50 to 150 microm). The number of i.m. adipocytes per gram of tissue was greater (P < 0.05) for SP than C and also were greater (P < 0.05) than the number of s.c. adipocytes in SP heifers. In experiment 2, adipocytes per gram of tissue tended to be greater (P = 0.07) for SP than C and were greater (P < 0.01) for i.m. than s.c. In experiment 1, average cell diameter and volume did not differ (P > 0.10) between treatments and tissues, but in experiment 2 both cellularity traits were greater (P < 0.01) for s.c. than for i.m.. Implanting did not alter mRNA expression of ACC, SCD, or LPL in i.m. adipose tissue. This study shows that anabolic implants do not appear to have direct effects on i.m. lipid deposition.  相似文献   

9.
Eighteen steers were used to evaluate the effect of supplemental corn oil level to steers grazing endophyte-free tall fescue on fatty acid composition of LM, stearoyl CoA desaturase (SCD) activity and expression as well as cellularity in s.c. adipose. Corn oil was supplemented (g/kg of BW) at 0 (none), 0.75 (medium), and 1.5 (high). Cottonseed hulls were used as a carrier for the corn oil and were supplemented according to pasture availability (0.7 to 1% of BW). Steers were finished on a rotationally grazed, tall fescue pasture for 116 d. Fatty acid composition of LM, s.c. adipose, and diet was determined by GLC. Total linoleic acid intake increased linearly (P < 0.01) with corn oil supplementation (90.7, 265.1, and 406.7 g in none, medium, and high, respectively). Oil supplementation linearly reduced (P < 0.05) myristic, palmitic, and linolenic acid percentage in LM and s.c. adipose. Vaccenic acid (C18:1 t11; VA) percentage was 46 and 32% greater (linear, P = 0.02; quadratic, P = 0.01) for medium and high, respectively, than none, regardless of tissue. Effect of oil supplementation on CLA cis-9, trans-11 was affected by type of adipose tissue (P < 0.01). In the LM, CLA cis-9, trans-11 isomer was 25% greater for medium than for none and intermediate for high, whereas CLA cis-9, trans-11 CLA isomer was 48 and 33% greater in s.c. adipose tissue for medium and high than for none, respectively. Corn oil linearly increased (P 0.05) the percentage of total SFA, MUFA, or PUFA but linearly increased (P = 0.03) n-6:n-3 ratio from 2.4 to 2.9 in none and high, respectively. Among tissues, total SFA and MUFA were greater in s.c. adipose than LM, whereas total PUFA, n-6, and n-3 fatty acids and the n-6:n-3 ratio were lower. Trans-10 octadecenoic acid, VA, and CLA trans-10, cis-12 were greater (P < 0.01) in s.c. adipose than in LM. Oil supplementation did not alter (P > 0.05) stearoyl CoA desaturase activity or mRNA expression. Corn oil supplementation to grazing steers reduced the percentages of highly atherogenic fatty acids (myristic and palmitic acids) and increased the percentages of antiatherogenic and anticarcinogenic fatty acids (VA and cis-9, trans-11 CLA).  相似文献   

10.
The present study was conducted to determine whether insulin and clenbuterol affected either short-term (2-h) incubations or long-term (48-h) tissue cultures of i.m. and s.c. adipose tissue explants. Samples were taken from control steers and steers fed 7 mg.head-1.d-1 clenbuterol for 50 d, after which time the drug was withdrawn from the diet for 90 d prior to slaughter. Neither short-term incubations nor long-term explant cultures contained bovine serum albumin (BSA). Insulin (6.67 x 10(-9) M) had no effect (P greater than .05) on lipogenesis in s.c. and i.m. adipose tissue in 2-h tissue incubations of fresh adipose tissue. There was a substantial decrease in activity during the culture period, which was ameliorated somewhat in s.c. adipose tissue by the presence of insulin in the culture media. Clenbuterol exposure for 48 h in vitro decreased the production of lipids from acetate in both adipose tissue depots but had no effect in short-term adipose tissue incubations. Results from the present study confirm that omitting BSA from incubation media does not enhance the responsiveness of bovine s.c. adipose tissue or the less mature i.m. adipose tissue to insulin. Insulin may maintain greater cell viability in 48-h explant cultures.  相似文献   

11.
Human acylation-stimulating protein (hASP) up-regulates triacylglycerol synthesis in human adipocytes. The objectives of this research were 1) to determine the effect of hASP on triacylglycerol synthesis in bovine adipose explants and 2) to determine whether nutritional status influences the sensitivity of adipose tissue to hASP. Fresh s.c. adipose tissue was sectioned into 20- to 30-mg explants and incubated for 1 to 6 h in M199 media containing 3% BSA and either 0.75 mM [1-14C]palmitate, 0.75 mM [9, 10-3H]oleate, or 2.5 mM [1-14C] acetate, as well as hASP and(or) insulin. The explants were extracted, and lipid fractions were separated by TLC and quantified by liquid scintillation. Acetate incorporation into lipids increased 15 to 30%, and palmitate or oleate incorporation increased 10 to 25%, when explants were exposed to hASP, although this response was not significant in every experiment. Insulin increased triacylglycerol synthesis in some experiments, but not in others. Our interpretation is that acylation-stimulating protein (ASP) can mildly enhance triacylglycerol synthesis in bovine adipose tissue. To fulfill the second objective, nine 9-mo-old steers were housed individually for two periods of 3 wk each. During the first period, four of the nine steers were fed to 50% of NEm requirement and the other five consumed the same diet ad libitum. After the first period, all steers consumed feed ad libitum for 2 wk and were assigned the opposite ration for the second period. Steers gained 40.5 kg BW when allowed ad libitum access to feed but lost 30.2 kg BW when feed intake was restricted (SE = 7.84; P < 0.01). At the end of each period, s.c. adipose tissue was sectioned into explants and incubated as described above. Four explants per steer per period were used to test effects of insulin (0 and 1 nM) and hASP (0, 0.01, 0.1, and 1 microM). Insulin did not influence incorporation of acetate or oleate. Acetate incorporation (P < 0.32) was 0.99, 1.03, 1.04, and 1.10 nmol x mg(-1) h(-1) (SE = 0.13) and oleate incorporation (P < 0.01) was 0.347, 0.357, 0.353, and 0.420 nmol x mg(-1)h(-1) (SE = 0.022) for 0, 0.01, 0.1, and 1 microM hASP, respectively. Feed restriction reduced (P < 0.01) acetate and oleate incorporation by 95 and 40%, respectively. No interactions among feed intake, insulin, and hASP were detected. In conclusion, the effect of hASP on fatty acid esterification is not influenced by feed restriction.  相似文献   

12.
We proposed that stearoyl-CoA desaturase (SCD) activity dictates fatty acid composition of adipose tissue and muscle in beef cattle, regardless of ruminal or hepatic fatty acid hydrogenation or desaturation. Twelve Angus steers were assigned to a calf-fed (CF) group and slaughtered at weaning (8 mo of age; n=4), 12 mo of age (n=4), or 16 mo of age (n=4). Twelve steers were assigned to a yearling-fed (YF) group and slaughtered at 12 mo of age (n=4), 16 mo of age (n=4), and 17.5 mo of age (n=4; 525 kg, market weight). Data were analyzed based on time on the corn-based finishing diet, with terminal age as a covariate, and orthogonal polynomial contrasts were tested on the main effects of treatment group and time on the finishing diet. Fatty acids from duodenal digesta, plasma, liver, LM, and subcutaneous and intramuscular adipose tissue were measured, and SCD gene expression was measured in intramuscular and subcutaneous adipose tissues. In duodenal digesta, palmitic and linoleic acids increased by 100% over the sampling period, α-linolenic acid decreased over the sampling period, and trans-vaccenic acid was greater in YF than in CF steers (all P < 0.01). The proportion of α-linolenic acid decreased over time in all tissues, including liver. The SCD index (ratio of SCD fatty acid products to SCD fatty acid substrates) increased over time in LM and in intramuscular and subcutaneous adipose tissues. The SCD:glyceraldehyde 3-phosphate dehydrogenase mRNA ratio was virtually undetectable at the initial sampling periods in subcutaneous adipose tissue of YF and CF steers, and it increased over time (P < 0.01). The SCD index and SCD:glyceraldehyde 3-phosphate dehydrogenase ratio were greater in intramuscular adipose tissue of CF steers than in that of YF steers. The SCD index did not change over time in liver and decreased over time in duodenal digesta. We conclude that, unlike essential fatty acids, the SFA and MUFA composition of adipose tissue is regulated by adipose tissue fatty acid desaturation, with little contribution from hepatic or duodenal fatty acids.  相似文献   

13.
14.
The association between feed intake and lipogenic activity in adipose tissue was investigated in growing cattle. Twenty-five 300-kg steers were allotted by BW to one of five levels of intake of a single high-energy corn-corn silage-based diet. Steers were adapted to diets over 4 wk and intakes were adjusted weekly to achieve steady but varying rates of growth. Daily intakes (% of BW) averaged .92, 1.15, 1.64, 2.28 and 2.69 and resulted in growth rates over the final 3 wk of -.28, .07, .71, 1.67 and 1.69 kg/d, respectively. Lipogenic activities in biopsied tissue and circulating concentrations of glucose and insulin were lowest at maintenance feeding and below but increased linearly (P less than .01 for lipogenesis; P less than .1 for glucose and insulin) as intake increased above maintenance. Mean minimal and maximal rates (mumoles.-min(-1).10(6) cells(-1)) or concentrations were fatty acids synthesis ([14C]acetate---fatty acid)), .065 and .723; fatty acid synthetase (NADPH oxidized), .266 and 2.97; lipoprotein lipase (fatty acid released), .048 and .359; glucose (mg/dl), 60.4 and 70.7 and insulin (ng/ml), .70 and 1.66. In a preliminary study with the same 25 steers fed ad libitum, nearly 25% of the variability in adipose tissue lipogenesis was accounted for by variation in feed intake. Results indicate that activities of lipogenic enzymes and lipogenic capacity in growing steers coordinately adapt to the level of feed consumed and that nutrient availability and(or) insulin concentrations may participate in this adaptation.  相似文献   

15.
16.
An experiment was conducted to 1) evaluate the effects of diet (alfalfa hay vs high concentrate) on adipose tissue cellularity and rates of in vitro lipogenesis and 2) determine if there was a relationship between in vitro lipogenic rates from acetate and lactate and rates of L- or D-lactate disappearance from plasma. Number of adipose cells/g of tissue decreased with time on experiment; however, hay-fed steers had fewer, but larger cells/g of subcutaneous adipose tissue compared with concentrate-fed steers (.78 +/- .04 vs 1.20 +/- .13 X 10(-6)/g, respectively). These results, however, are likely due to a higher (approximately 25%) intake of dry matter and metabolizable energy by the hay-fed steers. Carcass data obtained at slaughter (460 kg) indicated that the concentrate-fed steers had as much or more adipose tissue compared with the hay-fed steers. Characteristics describing D- or L-lactate disappearance from plasma were not highly correlated with lactate utilization for fatty acid synthesis. Utilization of acetate as a substrate for fatty acid synthesis in vitro was correlated (r = .64) with the rate of lactate utilization for fatty acid synthesis.  相似文献   

17.
Data from species other than cattle indicate that ghrelin and GH secretagogue receptor (GHS-R) could play a key role in fat deposition, energy homeostasis, or glucose metabolism by directly affecting liver and adipose tissue metabolism. Beef steers (n = 72) were used to test the hypothesis that plasma ghrelin and leptin concentrations and abundance of the GHS-R in liver, muscle, and adipose tissues differ in steers exhibiting differences in composition of gain. At trial initiation (d 0), 8 steers were slaughtered for initial carcass composition. The remaining 64 steers were stratified by BW, allotted to pen, and treatment was assigned randomly to pen. Steers were not implanted with anabolic steroids. Treatments were 1) a low-energy (LE) diet fed during the growing period (0 to 111 d) followed by a high-energy (HE) diet during the finishing period (112 to 209 d; LE-HE) or 2) the HE diet for the duration of the trial (1 to 209 d; HE-HE). Eight steers per treatment were slaughtered on d 88, 111, 160, and 209. Carcass ninth, tenth, and eleventh rib sections were dissected for chemical composition and regression equations were developed to predict compositional gain. Liver, muscle, and subcutaneous adipose tissues were frozen in liquid nitrogen for subsequent Western blotting for GHS-R. Replicate blood samples collected before each slaughter were assayed for ghrelin and leptin concentrations. When compared at a common compositional fat end-point, the rate of carcass fat accretion (g·kg of shrunk BW(-1)) was greater (P < 0.001) in HE-HE steers whereas the rate of carcass protein accretion (g·kg of shrunk BW(-1)) was less (P < 0.001) compared with LE-HE steers. When compared at a common compositional fat end-point, plasma leptin, ghrelin, and insulin concentrations were greater (P < 0.05) for HE-HE compared with LE-HE steers. Abundance of the GHS-R, to which ghrelin binds, increased over time in liver and adipose tissue but did not differ as a result of treatment. Plasma ghrelin concentrations were increased for cattle continuously fed the HE diet as they became increasingly fatter; however, abundance of the GHS-R in liver, muscle, and subcutaneous adipose tissue was not different between treatment groups. The role of ghrelin in cattle metabolism warrants further investigation as it could have a significant effect on composition of BW gain, feed efficiency, and metabolic disorders such as ketosis and fatty liver.  相似文献   

18.
Our objective was to determine effects of dietary high-oleate (Oleate; 76% 18:1) or high-linoleate (Linoleate; 78% 18:2) safflower seeds on fatty acids in muscle and adipose tissue of feedlot lambs. White-faced ewe lambs (n = 36) were fed a beet pulp, oat hay, and soybean meal basal diet (Control), blocked by BW, and allotted randomly to dietary treatments. Cracked safflower seeds were used in isocaloric and isonitrogenous replacement of beet pulp, oat hay, and soybean meal so that Oleate and Linoleate diets contained 5.0% additional fat. Fatty acids were determined in semitendinosus, longissimus dorsi (longissimus), and adipose tissue from the tail head (tailhead adipose tissue), adjacent to the 12th rib (s.c. adipose tissue), and kidney and pelvic fat (KPH adipose tissue) depots. Fatty acid data were analyzed within muscle and adipose tissue as a split-block design. Single degree of freedom orthogonal contrasts were used to compare treatment effects. Average daily gain, feed efficiency, and carcass characteristics did not differ (P = 0.15 to 0.96) across dietary treatments. Adipose tissue saturated fatty acids were greater (P = 0.04) for Controls but were not different (P = 0.36) in muscle. Trans-vaccenic acid (18:1(trans-11)) increased (P < 0.0001) with safflower supplementation and was greater (P < 0.0001) in Linoleate than in Oleate for both tissue types. Linoleate lamb had greater (P < 0.0001) PUFA than Oleate lamb in muscle and adipose tissue. Conjugated linoleic acids (CLA; cis-9, trans-11 and trans-10, cis-12) were greater (P < 0.0001) in muscle and adipose tissue of lambs fed safflower seeds. Lambs fed Linoleate had greater (P < 0.0001) CLA in adipose tissue and muscle than lambs fed Oleate. Saturated fatty acids were greater (P < 0.0001) in s.c. adipose tissue than in tailhead adipose tissue. Mono- and polyunsaturated fatty acids were greater (P < 0.0001) in tailhead adipose tissue than in s.c. adipose tissue. Weight percentages of 18:1(trans-11) ranked tailhead adipose tissue = KPH adipose tissue > s.c. adipose tissue and semitendinosus > longissimus, whereas CLA ranked tailhead adipose tissue > s.c. adipose tissue > KPH adipose tissue and semitendinosus > longissimus. Feeding mono- and polyunsaturated fatty acids increased tissue 18:1(trans-11) and CLA, which is a favorable change in regard to current human dietary guidelines.  相似文献   

19.
Phospholipids (soy lecithin) are important in the emulsification of lipids and may escape the rumen and influence the absorption of fatty acids in the small intestine. Our objectives were to determine the influence of dietary canola seed (high in unsaturated fatty acids) and soy lecithin in high-forage diets on total lipid content, cholesterol content, and fatty acid composition of carcass tissues. Forty-three Hampshire or Suffolk-sired ram lambs were weaned at 60 d of age (average 23.6 kg of BW) and assigned to a 2 x 2 factorial arrangement of treatments consisting of 1) basal diet (control = BAS), 2) BAS with 6% whole canola seed (CS), 3) BAS with 4.9% deoiled soy lecithin (SL), and 4) BAS with 6% CS and 4.8% SL (CSSL). The BAS diet consisted of 70% forage and 30% concentrate and contained 15% CP and 2.2 Mcal of ME/kg. Lambs were individually fed and given ad libitum access to feed to an average final BW of 52.1 kg. Longissimus muscle (LM) from the left side of each carcass posterior to the 13th rib (12 to 15 cm in length) was excised and the lean (LM) and corresponding subcutaneous (s.c.) adipose tissue were separated, frozen, and later used for lipid analysis by gas-liquid chromatography. In lean tissue, feeding lambs CS reduced (P less than .01) the proportion of total polyunsaturated fatty acids (PUFA) and feeding SL increased (P less than .01) the proportion of total PUFA. In s.c. adipose tissue, lambs fed CS had lower (P less than .01) saturated fatty acids (SFA) and lambs fed SL had increased (P less than .03) PUFA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Three-year-old Angus x Gelbvieh beef cows nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of initial BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of initial BW) at parturition were used in a 2-yr experiment (n = 36/yr) to determine the effects of BCS at parturition and postpartum lipid supplementation on cow adipose tissue lipogenesis. Beginning 3 d postpartum, cows within each BCS were randomly assigned to be fed hay and a low-fat control supplement or supplements with either cracked high-linoleate safflower seeds or cracked high-oleate safflower seeds until d 60 of lactation. Diets were formulated to be isonitrogenous and isocaloric, and safflower seed diets provided 5% DMI as fat. Adipose tissue biopsies were collected near the tail-head region of cows on d 30 and 60 of lactation. Dietary treatment did not affect (P > or = 0.43) adipose tissue lipogenesis. Body condition score at parturition did not affect acetate incorporation into lipid (P = 0.53) or activity of acetyl CoA carboxylase (P = 0.77) or fatty acid synthase (P = 0.18). Lipoprotein lipase activity and palmitate incorporation into triacyl-glycerol tended to be greater (P = 0.06), and palmitate esterification into total acylglycerols was greater (P = 0.01) in cows with a BCS of 4 at parturition. Mean activity of acetyl-CoA carboxylase (P < 0.001), lipoprotein lipase (P = 0.01), and rate of palmitate incorporation into monoacylglycerol (P = 0.02), diacylglycerol (P = 0.001), triacylglycerol (P = 0.003), and total acylglycerols (P = 0.002) were greater at d 30 than d 60, suggesting a greater proclivity for fatty acid biosynthesis and esterification by adipose tissue at d 30 of lactation. Although dietary lipid supplementation did not affect adipose tissue lipogenesis, results suggest that cows with a BCS of 4 at parturition have a greater propensity to deliver exogenously derived fatty acids to the adipocyte surface and incorporate preformed fatty acids into acylglycerols as stored adipocyte lipid. Additionally, cows in early lactation seemed to be able to synthesize and incorporate more fatty acids into stored lipid than cows during peak lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号