首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Background, aim, and scope  Earthworms make a major contribution to decomposition in ecosystems where they are present, mainly acting in the drilosphere, that is, galleries, burrows, casts, and middens. Earthworm middens are hot-spots of microbial activity and nutrient dynamics and represent a suitable model for studying earthworm-mediated influences on soil microbial communities by alteration of the patch structure of the microbial environment. We studied the structure and activity of the microbial communities in the soil system formed by middens of Lumbricus terrestris and the soil below and surrounding them and the role of earthworms in maintaining these structures through time. Material and methods  We set up an experiment in which middens were either left (control) or removed from their original place (translocated) and left in a nearby area free of earthworm activity for 2 months. After 1 and 2 months we sampled middens, soil below them, and surrounding soil. We analyzed the phospholipid fatty acid (PLFA) profiles and measured respiratory fluxes of CO2 and CH4. Results  Microbial communities of middens clearly differed from those of soil below and surrounding soil samples, showing higher bacterial and fungal PLFAs (p < 0.0001 and p < 0.01, respectively); furthermore, changes in microbial communities were stronger in control middens than in translocated middens. Moreover, gram positive and negative bacterial PLFAs were greater in translocated than control middens (p < 0.0001 and p < 0.001, respectively), as well as total organic carbon (p < 0.001). Microbial activity was higher in middens than in soil below and surrounding soil samples both for CO2 (p < 0.0001) and CH4 (p < 0.0001). Discussion  Soil bioturbation by the earthworm L. terrestris was strong in their middens, but there was not any effect on soil below and surrounding soil. Microbial communities of middens maintain their biomass and activity when earthworms were not present, whereas they decreased their biomass and increased their activity when earthworms were present. Conclusions  Earthworms strongly enhanced microbial activity measured as CO2 production in middens, which indicates that there are hot spots for soil microbial dynamics and increasing habitat heterogeneity for soil microorganisms. Moreover, our data strongly support the fact that the impact of this earthworm species in this soil is restricted to their middens and increasing soil heterogeneity. Recommendations and perspectives  Our data indicate that it is not clear if earthworms enhance or depress microbial communities of middens since the microbial activity increased, but did not modify their biomass and this was not dependent on soil organic C content. These results indicate no competence for C pools between this anecic earthworm and microorganisms, which has been found for other earthworm species, mainly endogeics. Conversely, they suggest some type of facilitation due to the release of additional nutrient pools in middens when earthworms are present, through the digestion of middens' material or the addition of casts produced from other food sources.  相似文献   

2.
Lumbricus terrestris' middens contain large concentrations of organic material and have been characterized as microenvironments distinct from the surrounding soil. The direct and indirect consequences of midden formation on nutrient cycling dynamics and organic matter pools in various ecosystem types have not received much consideration. Therefore, we focused on the differences in C and N dynamics between midden and bulk soil samples in four corn (Zea mays L.) agroecosystems, a rotational pasture and a deciduous forest, in June, July and August of 1996, in Ohio, USA. Paired earthworm midden and bulk soil samples were analyzed for mineral N (NH4+-N and NO3--N), dissolved organic N, microbial biomass N (MBN) and carbohydrate C (CarbC). Additionally, coarse litter, fine litter, particulate organic matter, and soil organic matter fractions were separated and analyzed for total C, total N and C:N ratios. Mineral and dissolved N levels were higher in the midden soil relative to those in the bulk soil for all ecosystem types, except for only NO3--N levels in two highly fertilized agroecosystems and in the pasture. MBN, CarbC, and total C and N levels for all organic fractions were significantly greater in the earthworm midden samples relative to these in the bulk samples across all ecosystem types. The plan defined by principal component analysis clearly separated two main groups: (1) includes the forest, the pasture and the less fertilized cornfields and the midden effect is to increase slightly the organic matter content and strongly the inorganic N content, and (2) includes the heavily fertilized agroecosystems and the midden effect is also to increase the organic matter content but to decrease the inorganic N content. We concluded that L. terrestris' middens significantly raised overall soil C and N levels relative to the bulk soil, in a variety of ecosystem types, and, given the abundance of earthworm middens, these macrosites should receive important attention when evaluating nutrient cycling processes at the systems level.  相似文献   

3.
We studied the effect of amendment of sewage sludge biosolids on enzyme activity in soil and earthworm (Lumbricus terrestris) casts. Enzyme activities and contents of nutrients and organic matter of surrounding soil were compared with the corresponding properties of earthworm casts. This short time experiment was conducted at 20 ± 0.5 °C in the laboratory, simulating field conditions of biosolid treatments. In general, all of doses of biosolid treatments influenced the enzyme activity and contents of nutrients and organic matter of earthworm casts and surrounding soil. Enzyme activity such as urease (UA), alkaline phosphatase (APA), and arylsulfatase (ASA) and the contents of organic matter and nutrients N and P in earthworm casts and surrounding soil increased with increasing biosolid application. Without biosolid additions, enzyme activities in cast of L. terrestris exceeded those in the soil. In contrast, when biosolid was added, DHA in casts was lower than the soil. Activities of UA and APA were consistently higher in L. terrestris casts than in soil of all biosolid treatments. Biosolid amendments generally increased ASA at low doses, but at higher doses, ASA decreased. In general, organic matter and contents of N and P were higher in surface casts of L. terrestris and soils than in the control soil. Activities of UA, APA, the contents of organic carbon and nutrients N and P in soil and casts showed positive correlations. On the contrary, ASA and DHA were negatively correlated with the contents of organic matter and nutrients.  相似文献   

4.
蚯蚓对土壤温室气体排放的影响及机制研究进展   总被引:3,自引:1,他引:3  
卢明珠  武海涛  吕宪国  管强 《土壤学报》2015,52(6):1209-1225
土壤是温室气体的重要源和汇。蚯蚓是土壤物质循环的重要参与者,能够直接或间接影响土壤CO2、N2O和CH4等温室气体的产生和释放。蚯蚓呼吸产生的CO2,是土壤呼吸的重要组成部分;蚯蚓自身肠道、分泌液、消化物和排泄物等微环境促进反硝化过程释放N2O。蚯蚓还通过取食、掘穴、排泄等活动,改变土壤理化性质、微生物组成和活性及其他土壤动物的组成,影响地上植物生长,调节土壤分解、矿化、硝化、反硝化和甲烷生成及氧化等生态过程,间接影响土壤温室气体的排放。蚯蚓对土壤温室气体排放的影响逐渐受到重视,但目前研究仍以室内培养和单因子环境条件的模拟为主,缺少野外原位实验和多环境因子的交互实验研究。长期监测和同位素示踪技术,是深入探讨蚯蚓影响温室气体排放机制的重要手段。温室气体类型上,CO2和N2O是研究热点,CH4研究比较罕见。未来研究,应重视不同生态类群蚯蚓与土壤理化特征、微生物组成、其他类群土壤动物和地上植物间的交互作用,加强机制研究,并关注土壤污染环境下蚯蚓功能性状的变化;综合评价蚯蚓对土壤温室气体排放和土壤碳氮固定的影响,科学评估蚯蚓活动对土壤碳氮释放的促进或减缓作用。  相似文献   

5.
Knowledge of the effects of species diversity within taxonomic groups on nutrient cycling is important for understanding the role of soil biota in sustainable agriculture. We hypothesized that earthworm species specifically affect nitrogen mineralization, characteristically for their ecological group classifications, and that earthworm species interactions would affect mineralization through competition and facilitation effects. A mesocosm experiment was conducted to investigate the effect of three earthworm species, representative of different ecological groups (epigeic: Lumbricus rubellus; endogeic: Aporrectodea caliginosa tuberculata; and anecic: Lumbricus terrestris), and their interactions on the bacterial community, and on nitrogen mineralization from 15N-labelled crop residue and from soil organic matter.Our results indicate that L. rubellus and L. terrestris enhanced mineralization of the applied crop residue whereas A. caliginosa had no effect. On the other hand, L. rubellus and A. caliginosa enhanced mineralization of the soil organic matter, whereas L. terrestris had no effect. The interactions between different earthworm species affected the bacterial community and the net mineralization of soil organic matter. The two-species interactions between L. rubellus and A. caliginosa, and L. rubellus and L. terrestris, resulted in reduced mineral N concentrations derived from soil organic matter, probably through increased immobilization in the bacterial biomass. In contrast, the interaction between A. caliginosa and L. terrestris resulted in increased bacterial growth rate and reduced total soil C. When all three species were combined, the interaction between A. caliginosa and L. terrestris was dominant. We conclude that the effects of earthworms on nitrogen mineralization depend on the ecological traits of the earthworm species present, and can be modified by species interactions. Knowledge of these effects can be made useful in the prevention of nutrient losses and increased soil fertility in agricultural systems, that typically have a low earthworm diversity.  相似文献   

6.
In comparison to the surrounding soil, hot spot effects of middens of the epianecic earthworm Lumbricus terrestris were determined under different field conditions on a loamy sand. The impact of 3 different management systems was studied: 1. unmulched; 2. straw mulching; 3. intermediate crop: Sinapis alba. Furthermore, we considered 2 different crops (bean, lupine) and their growth stages. We monitored different enzyme activities and abiotic parameters of soil at 6 sampling dates between April and August 1998 parallel to abundances of microfauna (soil protozoa) and mesofauna (Enchytraeidae, Collembola, mites). The analysis of earthworm middens revealed enhanced enzyme activities and increased mesofaunal abundances. Differences between midden and reference samples were significant during the whole vegetation period and became maximal during ripening of crops. We found a distinct but not significant increase in individual numbers of soil flagellates in midden areas during leafing and heading of crops. Values of the studied parameters tended to be higher in bean plots but generally the crop impact on midden properties was not significant. Our results showed a significant positive synergistic effect between earthworm middens and intermediate crop. Straw mulching supported the hot spot effects of middens.  相似文献   

7.

Purpose

Endogeic earthworms play a significant role in biogeochemical cycles due to the large amount of soil they ingest, and because after transit through their guts, casts usually show differences in nutrient contents and microbial populations with bulk soil. Here, we studied how three endogeic earthworm species, Postandrilus majorcanus, Postandrilus sapkarevi and Postandrilus palmensis, inhabiting soils in Majorca island (Balearic Islands, W Mediterranean), modify nutrient pools and microbial communities of soil.

Materials and methods

To do this, we analysed C, N and P pools, microbial biomass (phospholipid fatty acids, PLFA) and microbial activity (fluorescein diacetate hydrolysis, FDA) in paired samples of bulk soil and fresh casts.

Results and discussion

The mineral and organic N contents were generally enhanced in casts produced by all three earthworm species. However, inorganic P and organic C contents were only higher in P. sapkarevi (32 %, only P) and P. majorcanus casts (100 % for both soil nutrient pools) than in bulk soil. Bacterial and fungal biomass were only higher than in bulk soil in P. majorcanus casts (65 and 100 %, respectively), but without effects on microbial activity, that was lower in P. palmensis casts (26 %). Earthworm gut transit strongly influenced the soil microbial community structure, resulting in differences between casts and soils.

Conclusions

The increased nutrient mineralization (6-, 1.3- and 1.4-fold for N, C and P, respectively) in casts produced by these earthworm species is of particular importance because of the amount of casts released and the seasonal variations in earthworm activity, which may favour plant growth.  相似文献   

8.
Riparian buffers, located in the transition zone between terrestrial and aquatic ecosystems, are a hotspot for nitrogen (N) removal through denitrification. Earthworms are abundant in riparian buffers and may enhance denitrification. This study investigated earthworm demographics of three earthworm functional groups (anecic, epigeic, and endogeic) and denitrifier activity in temporarily flooded and non-flooded riparian soils from April to October 2012 in southern Quebec, Canada. Nine earthworm species, mostly endogeic, were found in the temporarily flooded soil, while only six earthworm species were found in the non-flooded soil. On average, there were 11.7 times more earthworms with 12.4 times greater biomass (P<0.05) found in the temporarily flooded soil than in the non-flooded soil. The denitrification enzyme activity (DEA) was of similar magnitude in temporarily flooded and non-flooded soils, with temporal variation associated with rainfall patterns. Endogeic earthworm biomass was positively correlated (P<0.05) with DEA, while epigeic earthworm biomass was positively correlated (P<0.05) with 16S rRNA gene copies and nosZ gene copies from bacteria, indicating an association between earthworm functional groups and denitrifier activity in riparian soils. Stepwise multiple regressions showed that DEA in riparian soils could be predicted using soil moisture, inorganic N concentration, and earthworm functional groups, suggesting that endogeic and epigeic earthworms contributed to denitrifier activity in riparian soils.  相似文献   

9.
The ability of earthworm Lumbricus terrestris L. to suppress the multiplication of Beet necrotic yellow vein virus (BNYVV) transmitted by Polymyxa betae and its effects on soil microbial activity were investigated under controlled conditions. BNYVV-infested and a combination of earthworm with BNYVV-infested soil were compared to non-infested soils for their effects on plant and root weights and virus content of two different sugar beet cultivars by using partially resistant (cv. Leila) and susceptible (cv. Arosa) cultivars to the rhizomania disease. Soil testing with sugar beet baiting plants followed by enzyme-linked immunosorbent assay (ELISA) was used to diagnose virus. The results of the statistical analyses showed that total fresh plant and root weights were negatively correlated with BNYVV infection. Addition of L. terrestris significantly enhanced plant and root weights. The earthworm-added soils had higher microbial activity such as basal soil respiration and dehydrogenase activity. The presence of earthworms in the soil did not statistically suppress BNYVV infection (< 0.05). Sugar beet production may be enhanced by using resistant cultivars with adding L. terrestris into soil where rhizomania is present.  相似文献   

10.
A mechanistic understanding of soil microbial biomass and N dynamics following turfgrass clipping addition is central to understanding turfgrass ecology. New leaves represent a strong sink for soil and fertilizer N, and when mowed, a significant addition to soil organic N. Understanding the mineralization dynamics of clipping N should help in developing strategies to minimize N losses via leaching and denitrification. We characterized soil microbial biomass and N mineralization and immobilization turnover in response to clipping addition in a turfgrass chronosequence (i.e. 3, 8, 25, and 97 yr old) and the adjacent native pines. Our objectives were (1) to evaluate the impacts of indigenous soil and microbial attributes associated with turf age and land use on the early phase decomposition of turfgrass clippings and (2) to estimate mineralization dynamics of turfgrass clippings and subsequent effects on N mineralization of indigenous soils. We conducted a 28-d laboratory incubation to determine short-term dynamics of soil microbial biomass, C decomposition, N mineralization and nitrification after soil incorporation of turfgrass clippings. Gross rates of N mineralization and immobilization were estimated with 15N using a numerical model, FLAUZ. Turfgrass clippings decomposed rapidly; decomposition and mineralization equivalent to 20-30% of clipping C and N, respectively, occurred during the incubation. Turfgrass age had little effect on decomposition and net N mineralization. However, the response of potential nitrification to clipping addition was age dependent. In young turfgrass systems having low rates, potential nitrification increased significantly with clipping addition. In contrast, old turfgrass systems having high initial rates of potential nitrification were unaffected by clipping addition. Isotope 15N modeling showed that gross N mineralization following clipping addition was not affected by turf age but differed between turfgrass and the adjacent native pines. The flush of mineralized N following clipping addition was derived predominantly from the clippings rather than soil organic N. Our data indicate that the response of soil microbial biomass and N mineralization and immobilization to clipping addition was essentially independent of indigenous soil and microbial attributes. Further, increases in microbial biomass and activity following clipping addition did not stimulate the mineralization of indigenous soil organic N.  相似文献   

11.
Biopores are hotspots of nutrient mobilisation and shortcuts for carbon (C) into subsoils. C processing relies on microbial community composition, which remains unexplored in subsoil biopores. Phospholipid fatty acids (PLFAs; markers for living microbial groups) and amino sugars (microbial necromass markers) were extracted from two subsoil depths (45–75 cm ; 75–105 cm) and three biopore types: (I) drilosphere of Lumbricus terrestris L., (II) 2-year-old root biopores and (III) 1.5-year-old root biopores plus six 6 months of L. terrestris activities. Biopore C contents were at least 2.5 times higher than in bulk soil, causing 26–35 times higher Σ PLFAs g-1 soil. The highest Σ PLFAs were found in both earthworm biopore types; thus, the highest soil organic matter and nutrient turnover were assumed. Σ PLFAs was 33% lower in root pores than in earthworm pores. The treatment affected the microbial community composition more strongly than soil depth, hinting to similar C quality in biopores: Gram-positives including actinobacteria were more abundant in root pores than in earthworm pores, probably due to lower C bioavailability in the former. Both earthworm pore types featured fresh litter input, promoting growth of Gram-negatives and fungi. Earthworms in root pores shifted the composition of the microbial community heavily and turned root pores into earthworm pores within 6 months. Only recent communities were affected and they reflect a strong heterogeneity of microbial activity and functions in subsoil hotspots, whereas biopore-specific necromass accumulation from different microbial groups was absent.  相似文献   

12.
Energy crops are increasingly cultivated in agricultural management systems world-wide. A substitution of food crops (e.g. cereals) by energy crops may generally alter the biological activity and litter decomposition in soil due to their varying structural and chemical composition and subsequently modify soil functioning. A soil microcosm experiment was performed to assess the decomposition and microbial mineralization of different energy crop residues in soil compared to a food crop, with or without earthworms. Residues of the energy crops winter rape (Brassica napus), maize (Zea mays), miscanthus (Miscanthus giganteus) and the food crop oat (Avena sativa) were each provided as food source for a mixed earthworm population, each consisting of one individual of Lumbricus terrestris, Aporrectodea caliginosa, and Octolasion tyrtaeum. After 6 weeks, the rate of litter loss from the soil surface, earthworm biomass, microbial biomass-C and -N, microbial activity, and enzyme activities were determined. The results emphasized, that litter loss and microbial parameters were predominantly promoted by earthworms and were additionally influenced by the varying structural and chemical composition of the different litter. Litter decay by earthworms was highest in N-rich maize litter treatment (C-N ratio 34.8) and lowest in the case of miscanthus litter (C-N ratio 134.4). As a consequence, the microbial biomass and basal respiration in soils with maize litter were higher, relative to other litter types. MBC-MBN ratio in soil increased when earthworms were present, indicating N competition between earthworms and microorganisms. Furthermore, enzyme activities responded in different ways on the varying types of litter and earthworm activity. Enzymes involved in the N-cycle decreased and those involved in the C-cycle tended to increase in the presence of earthworms, when litter with high C-N ratio was provided as a food source. Especially in the miscanthus treatments, less N might remain for enzymatic degradation, indicating that N competition between earthworms and microorganisms may vary between different litter types. Especially, an expansion of miscanthus in agricultural management systems might result in a reduced microbial activity and a higher N deficit for microorganisms in soil.  相似文献   

13.
The genesis and architecture of the structures built by ants and earthworms differ markedly, suggesting that—in addition to having different physical and chemical properties—the resident microbial community should also have unique properties. We characterized the inorganic N, biomass C, C mineralization rate, and functional diversity of the microbial communities of earthworm casts, earthworm burrow soil, ant mounds, and bulk soil from an agricultural field. Mound soil was most enriched in inorganic N and had the lowest pH, moisture content, and C mineralization rate. Functional diversity was evaluated by determining the ability of microorganisms to grow on 31 substrates using Biolog®EcoPlates in combination with a most probable number (MPN) approach. Casts had MPNs that were one to two orders of magnitude higher than burrow, mound and bulk soil for most substrates. Casts also had the highest MPNs for particular substrate guilds relative to bulk soil, followed by mound and burrow soil. Indices of substrate diversity and evenness were highest for casts, followed by burrow, mound, and bulk soil. Differences in the type of habitat provided by the structures built by ants and earthworms result in the differential distribution of nutrients, microbial activity, and metabolic diversity of soils within an agricultural field that affect soil fertility and quality.  相似文献   

14.
The effect of the endogeic earthworm species Octolasion tyrtaeum (Savigny) on decomposition of uniformly 14C-labelled lignin (lignocellulose) was studied in microcosms with upper mineral soil (Ah-horizon) from two forests on limestone, representing different stages of succession, a beech- and an ash-tree-dominated forest. Microcosms with and without lower mineral soil (Bw-horizon) were set-up; one O. tyrtaeum was added to half of them. It was hypothesised that endogeic earthworms stabilise lignin and the organic matter of the upper mineral soil by mixing with lower mineral soil of low C content. Cumulative C mineralization was increased by earthworms and by the addition of lower mineral soil. Effects of the lower mineral soil were more pronounced in the beech than in the ash forest. Cumulative mineralization of lignin was strongly increased by earthworms, but only in the beech soil (+24.6%). Earthworms predominantly colonized the upper mineral soil; mixing of the upper and lower mineral soils was low. The presence of lower mineral soil did not reduce the rates of decomposition of organic matter and lignin; however, the earthworm-mediated increase in mineralization was less pronounced in treatments with (+8.6%) than in those without (+14.1%) lower mineral soil. These results indicate that the mixing of organic matter with C-unsaturated lower mineral soil by endogeic earthworms reduced microbial decomposition of organic matter in earthworm casts.  相似文献   

15.
Abstract

Changes produced in the microbiological properties of earthworm Lumbricus terrestris casts and surrounding soil by the addition of various organic wastes such as wheat straw (WS), tea production waste (TEW), tobacco production waste (TOW), cow manure (CM), and hazelnut husk (HH) were evaluated in an incubation experiment. Twenty‐one days after organic waste treatment, analyses of microbial biomass (Cmic), basal soil respiration (BSR), metabolic quotient (qCO2), and enzyme activities (dehydrogenase, catalase, β‐glucosidase, urease, alkaline phosphatase, and arylsulphatase) were carried out on collected cast and soil samples. Addition of organic wastes to the soil increased values of Cmic, BSR, and enzyme activities in soil and earthworm casts, indicating activation by microorganisms. Except for catalase activity, these values of microbiological parameters in casts were higher than in surrounding soil at all waste treatments and control. The addition of organic wastes caused a rapid and significant increase in organic carbon, total nitrogen, and microbiological properties in both soils; this increase was especially noticeable in soils treated with TEW.  相似文献   

16.
Mineralization of organic matter and microbial activities in an intensively cultivated acid, N-rich peat soil planted with Salix sp. cv. aquatica were examined for 3 yr. The soil was amended with wood ash or NPK fertilizers providing N as ammonium nitrate or urea. The wood ash amendment (10 tons ha?1) increased soil pH from 4.6 to 5.5 and increased markedly all microbial activities measured, resulting in increased mineralization and N availability, and in loss of 9% total soil N during the first year. The addition of ammonium nitrate caused a corresponding though less pronounced increase in N mineralization. Cellulose decomposition increased in all amended soils, reaching rates 53–86% higher than in non-amended soil. Potential N2 fixation (C2H2 reduction) by free-living organisms was increased by the ash-amendment. Potential denitrification rates were positively correlated (r = 0.98) with the presence of water-soluble organic-C, which was more abundant in ash-amended and non-amended soils than in the soils fertilized with N.  相似文献   

17.
During the last several decades, colonization of soil by exotic earthworms and their effects on soil properties and biodiversity have been reported in forests of North America. In some northern hardwood stands, acid soils or harsh climate may have prevented earthworm colonization. However, climatic change and the increasing use of liming to restore the vigor of declining sugar maple (Acer saccharum Marsh.) stands, situated on base-poor soils in USA and Canada, could make many of these sites more suitable for earthworm colonization. We tested survival and reproduction of two exotic earthworm species (Lumbricus terrestris and Amynthas hawayanus) in unlimed and limed soils at the northern limit of the northern hardwood forest distribution in Canada. Improving soil parameters of base-poor, acidic soils by liming positively influenced activity, survivability and reproductive output of L. terrestris in this northern hardwood forest. In contrast, the high mortality and low vigor of L. terrestris observed in the unlimed plots show that soils in this area with a pH of 4.3 are not favorable to this species. Our results suggest that A. hawayanus was very active prior to winter at both soil pHs, but was not able to complete its life cycle during one year at this latitude. Both earthworm species significantly reduced organic C and total N, and increased the C/N ratio of the forest floor. Given that forest liming activities are increasing in proximity to human activities, there is high probability that some earthworm species, such as L. terrestris, will invade limed northern hardwood forests in the next decades, with possible consequences for soil organic matter turnover, nutrient cycling and forest biodiversity and dynamics.  相似文献   

18.
Summary Total populations of bacteria and fungi, dehydrogenase activity (as a measure of total potential microbial activity), and urease and phosphatase activities were determined in earthworm casts and surrounding laterite soils planted to pineapple. The casts contained higher microbial populations and enzyme activities than the soil. Except for fungal populations, statistically significant (P = 0.05) increases were found in all other parameters. Microbial populations and enzyme activities showed similar temporal trends with higher values in spring and summer and lower values in winter. The earthworm casts contained higher amounts of N, P, K and organic C than the soil (P = 0.05). Selective feeding by earthworms on organically rich substrates, which break down during passage through the gut, is likely to be responsible for the higher microbial populations and greater enzyme activity in the casts.  相似文献   

19.
The influence of two experimental soil treatments, Z93 and W91, on nitrogen transformations, microbial activity and plant growth was investigated in soil microcosms. These compounds are commercially marketed fermentation products (Agspectrum) that are sold to be added to field soils in small amounts to promote nitrogen and other nutrient uptake by crops in USA. In laboratory microcosm experiments, soils were amended with finely ground alfalfa-leaves or wheat straw, or left unamended, in an attempt to alter patterns of soil nitrogen mineralization and immobilization. Soils were treated in the microcosms with Z93 and W91 at rates equivalent to the recommended field application rates, that range from 0.2 to 1.1 l ha−1, (0.005-0.03 μl g−1 soil). We measured their effects on soil microbial activity (substrate-induced respiration (SIR), dehydrogenase activity (DHA) and acid phosphatase activity (PHOS)), soil nitrogen pools (microbial biomass N, mineral N, dissolved organic N), and transformations (net N mineralization and nitrification, 15N dilution of the mineral N pool, and accumulation of mineral N on ion-exchange resins), and on wheat plant germination and growth (shoot and root biomass, shoot length, N uptake and 15N enrichment of shoot tissues), for up to 56 days after treatment. To follow the movement of nitrogen from inorganic fertilizer into plant biomass we used a 15N isotopic tracer. Most of the soil and plant responses to treatment with Z93 or W91 differed according to the type of organic amendment that was used. Soil treatment with either Z93 or W91 influenced phosphatase activity strongly but did not have much effect on SIR or DHA. Both chemicals altered the rates of decomposition and mineralization of organic materials in the soil, which was evidenced by significant increases in the rates of the decomposition of buried wheat straw, and by the acceleration of net, rates of N mineralization, relative to those of the controls. Soil nitrate availability increased at the end of the experiment in response to both chemical treatments. In alfalfa-amended soils, the final plant biomass was decreased significantly by treatment with W91. Increased plant growth and N-use efficiency in straw-amended soil, resulting from treatments with Z93 or W91, was linked to increased rates of N mineralization from indigenous soil organic materials. This supports the marketing of these compounds as promoters of N uptake at these low dosage inputs.  相似文献   

20.
The diet of earthworms includes soil organic matter, soil microbes and other microfauna, but the relative contribution of these dietary components to earthworm nutrition is not well known. Analysis of fatty acid (FA) profiles can reveal trophic relationships in soil food webs, leading to a better understanding of the energy and nutrient flows from microbiota to earthworms. The objective of this study was to determine the origin of FAs assimilated by the earthworm Lumbricus terrestris L. We analysed the pattern of FAs in: (i) the bulk soil, (ii) soil in the earthworm gut, (iii) the absorptive tissue of the earthworm gut wall, and (iv) the muscular layers of the earthworm body wall. Multivariate analyses performed on the FA profiles suggest that the microbial community in the earthworm gut differs from that in bulk soil. Diverse bacterial and fungal derived FAs, which earthworms cannot synthesize, were found in the earthworm gut wall and body wall, and in the neutral lipids (storage lipids) of the gut wall. The major compounds isolated were 20:4ω6, 20:5ω3 and 18:2ω6, followed by the monoenoic 18:1ω7 and 18:1ω9c, and the saturated 18:0. The microbial FA assemblage in the gut wall resembled the gut soil more than the bulk soil, and the body wall of L. terrestris showed the same microbial derived FA pattern as the gut wall, although at reduced concentrations. We propose the existence of a specific microbial community in the earthworm gut that provides FAs to the earthworm. It appears that L. terrestris may derive more of its energy and nutrients from gut specific microbiota than from microbiota already present in the ingested soil, based on the trophic relationships revealed through FA analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号