首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以荸荠为原料,采用超声波辅助水酶法提取荸荠多糖,探讨超声波辅助条件下提取时间、提取温度、α-淀粉酶添加量和料液比对荸荠多糖提取效果的影响;应用Box-Behnken设计四因素三水平试验,依据响应面分析确定最优的提取工艺条件。结果表明,荸荠多糖最佳提取工艺参数为提取温度56℃,提取时间47 min,料液比1∶14,α-淀粉酶添加量4.4×10~3 U,在此条件下荸荠多糖得率11.95%。  相似文献   

2.
以青龙衣为原料,利用超声辅助纤维素酶法对青龙衣多糖的提取工艺条件进行优化。探究了粉碎粒度、料液比、纤维素酶添加量、酶解时间、酶解温度和超声功率对青龙衣多糖提取量的影响,在单因素试验基础上,采用Design Expert 10.0.3.1进行试验设计和曲面响应法对最佳多糖提取条件进行优化,构建预测模型的二次多项式回归方程。结果表明,青龙衣多糖提取的最佳工艺条件为料液比1∶23,超声时间44 min,超声温度48℃,酶添加量1.55%。在该条件下青龙衣多糖实际提取量达到9.43±0.31 mg/g。超声辅助纤维素酶法提取青龙衣多糖的工艺条件简便、提取量高,为实际生产提供了理论依据和技术参考。  相似文献   

3.
研究了果胶酶法提取黑穗醋栗果实中活性多糖的最佳提取工艺,进行了单因素实验,考察温度、pH值、料液比及酶添加量对黑穗醋栗多糖提取率的影响;在此基础上,采用L9(43)正交试验,确定了最佳提取工艺条件:温度为60℃,pH值为4.5,料液比为1∶10,酶添加量为2.0%。在最佳工艺条件下,多糖的提取率为8.23%。  相似文献   

4.
为了优化复合酶提取黑松松针多糖的工艺,并考察其抑菌性,根据松针粉的结构特点选取纤维素酶、果胶酶高效提取黑松松针多糖,在单因素试验的基础上,采用正交试验对这两种酶提取松针多糖的条件(液料比、酶添加量、酶解温度、酶解时间、pH)进行优化。根据优化后的工艺条件,建立了双酶复合提取黑松松针多糖的工艺,且证实分步加酶法提取的多糖得率较高,即:液料比20∶1(mL/g),酶解温度50℃,pH 6.5,先添加2.5%纤维素酶,酶解时间2 h,后添加1.5%果胶酶,酶解时间1.5 h。此条件下得到的黑松松针多糖得率达6.17%,远高于单酶提取效果。松针多糖对大肠杆菌和枯草芽孢杆菌有较好的抑菌效果。该方法简便,可用于提取黑松松针多糖,为松针的开发利用提供技术基础和方法。  相似文献   

5.
桑黄多糖是桑黄子实体中的主要有效成分。对木瓜蛋白酶酶解辅助提取桑黄多糖的提取工艺进行优化,首先研究了酶添加量、提取温度、提取时间和料液比对桑黄多糖提取率的影响,在单因素试验基础上,通过正交试验优化得到了最优的酶解提取工艺。结果表明,提取温度、提取时间和料液比都对提取率有明显影响,且在所选取的范围内有最大值。在酶添加量为0.3%的基础上,最优工艺条件为提取时间40 min,提取温度50℃,料液比1∶40(g∶m L)。在此条件下桑黄多糖的提取率可达到1.52%。  相似文献   

6.
采用微波辅助水酶法提取黑芝麻油脂,研究液料比、微波处理功率、微波处理时间、酶的种类、酶添加量、酶解pH、酶解温度、酶解时间对黑芝麻油脂得率的影响,在单因素试验基础上,通过正交试验优化黑芝麻油脂的最佳提取工艺条件。结果表明,微波辅助水酶法提取黑芝麻油脂的最佳工艺条件为:液料比7∶1(mL/g),微波处理功率400 W,处理时间4 min,碱性蛋白酶的添加量0.10%(以黑芝麻粉计),pH 8.0,酶解温度50℃,酶解时间2 h。在此条件下,黑芝麻油脂得率可达207.43 g/kg,所提取出来的黑芝麻油呈淡黄色,液体气味清香,质地柔滑而不黏手,呈稳定均一的状态。  相似文献   

7.
研究了酶法提取枸杞多糖及脱色工艺方法。采用纤维素酶、木瓜蛋白酶复合处理提取枸杞多糖,采用正交试验确定最佳脱色工艺条件为:活性炭用量2%,脱色温度30℃,酶解液pH值5,脱色时间1.5 h。  相似文献   

8.
酶法提取五常原产地稻花香大米淀粉研究   总被引:1,自引:0,他引:1  
为了优化五常稻花香2号大米淀粉的酶法提取条件,采用Box-Benhnken的中心组合试验设计及响应面分析方法,研究了酶添加量、酶解时间和酶解温度3因素对大米淀粉中蛋白质残留量的影响。结果表明,最佳工艺参数为:酶添加量4.38 mg/g,酶解时间4.14 h,酶解温度50.96℃,料液比1∶6,蛋白质残留量为0.423%,为稻花香2号大米淀粉的工业化生产提供了理论依据。  相似文献   

9.
以马齿苋多糖得率为考察指标,通过单因素试验和正交试验优化马齿苋多糖纤维素酶和果胶酶双酶法提取工艺,并对其体外抗氧化活性进行了考察。结果表明,马齿苋多糖最佳提取工艺条件为:液料比25∶1(mL/g),纤维素酶和果胶酶的添加量分别为1.5%和2.0%,酶解温度50℃,酶解时间100 min,在该提取工艺下,马齿苋多糖得率为19.83 mg/g DW。体外DPPH·和·OH清除试验表明,马齿苋多糖对两者均有较好的清除作用,体外抗氧化活性强于VC。  相似文献   

10.
应用水提醇沉的方法,对柿子多糖的提取工艺进行了研究。通过单因素试验和正交试验,研究了料液比、提取时间、提取温度因素对柿子多糖提取效果的影响。结果表明,各因素影响作用的大小依次为:提取温度>料液比>提取时间;热水浸提法提取柿子多糖的最佳工艺条件为:料液比1:10,提取温度90℃,提取时间4 h,柿子多糖的得率为7.62%;用乙醇沉淀法的工艺条件为:4倍体积的体积分数为95%的乙醇,沉淀时间为12 h。  相似文献   

11.
以人参总皂苷和多糖提取得率为考察指标,采用酶解组合高速匀浆法同时提取人参中的两种重要成分,比较不同酶及组合对两者得率的影响,筛选出提取效果较好的果胶酶。通过单因素试验对酶解温度、酶解时间、酶解pH、酶添加量和人参粉末粒径分别进行优化,继而进行响应面试验,得到最佳酶解工艺为:酶解温度60℃,酶解pH 4.7,酶解时间4 h,酶添加量6%,人参粉末粒径约285μm,此时人参总皂苷得率为6.88%,多糖得率为28.58%。将提取后的渣料进行高速匀浆提取,以乙醇浓度、匀浆时间、固液比为变量设计正交试验,得到最佳提取条件为:乙醇浓度0%(蒸馏水),匀浆时间4 min,固液比1∶50(g/mL),此条件下人参总皂苷得率为2.56%,多糖得率为16.92%。两步提取法人参总皂苷得率9.44%,多糖得率45.50%,均高于现有方法的提取得率。  相似文献   

12.
对海带加工下脚料中多糖的酶解提取工艺和化学稳定性进行研究。在单因素试验基础上,采用响应面法对酶解辅助提取的工艺参数进行优化,得出4种酶解因素对海带加工下脚料中多糖提取量影响顺序依次为:复合酶添加量>pH >酶解时间>温度。最优工艺条件为:液料比40∶1(mL/g),酶解时间135 min,酶解温度55 ℃,酶解液pH 6.0,复合酶添加量2.0%。在该条件下,制得的海带多糖提取量为149.662 g/kg。化学稳定性试验表明,海带多糖提取物在高温和酸性环境下,具有良好的化学稳定性,对碱性环境稳定性较差,是一种化学稳定性较好的天然活性多糖。  相似文献   

13.
利用酶法提取玉米须中多糖功能成分,榨取苦瓜汁并经脱色处理,经科学调配后加工制成玉米须苦瓜复合饮料。结果表明,采用响应面试验设计和优化酶法提取玉米须多糖的最佳工艺条件为纤维素酶添加量4.2%,酶解温度50℃,pH值5.5,酶解时间2 h,多糖提取率为10.65%。采用单因素试验和正交试验,确定复合饮料的最佳配方为玉米须多糖提取液30%,苦瓜汁20%,木糖醇6%,柠檬酸0.15%,β-环状糊精0.3%,以及稳定剂组合CMC和黄原胶添加量分别为0.1%和0.1%,所制得的复合饮料口感清爽、风味独特。  相似文献   

14.
探讨运用响应面法优化超声波辅助酶法提取枇杷叶多糖工艺条件,在单因素试验基础上,选取果胶酶用量、酶解温度、酶解p H值和料液比为影响因子,枇杷叶多糖得率为响应值进行响应面分析。结果表明,超声波时间1 h,料液比1∶15,酶解时间2 h,果胶酶用量1.9%,酶解温度52℃,酶解pH值4.5,枇杷叶多糖的得率最高为4.97%。  相似文献   

15.
以蒲公英、雪梨为主要原料,研制蒲公英雪梨复合保健饮料,并探讨各因素对蒲公英浸提、雪梨汁酶解及饮料调配效果的影响。结果表明,蒲公英的最佳超声浸提条件为超声频率40 kHz,料液比1∶25,提取温度70℃,提取次数2次,提取时间1.5 h;雪梨汁的最佳酶解工艺为酶解时间2.0 h,酶解温度40℃,复合酶添加量0.6%,pH值3.5;饮料最佳调配工艺为雪梨汁添加量20%,冰糖添加量8%,苹果酸添加量0.15%,蒲公英浸提液添加量30%,蜂蜜添加量0.005%,制得的产品风味独特、营养丰富、质量最佳。  相似文献   

16.
为优化酶法-超声波提取葛根中葛根素的工艺条件,以单因素试验为基础,采用Plackett-Burman试验得出液料比、乙醇体积分数、超声时间、超声温度为葛根素提取的4个影响显著的因素;利用最陡爬坡试验,使结果接近最大响应值;最后运用Box-Behnken试验对葛根素提取工艺进行响应面优化。结果表明,葛根中葛根素提取的最佳工艺条件为:纤维素酶添加量0.4%,酶解时间70 min,液料比30∶1(mL/g),乙醇体积分数52%,超声时间31 min,超声温度64℃;在此工艺条件下葛根素得率为8.78 mg/g。以上结果说明,Plackett-Burman试验联合Box-Behnken分析能较好地优化酶法-超声波提取葛根中葛根素的工艺条件。  相似文献   

17.
对超声波辅助提取沙棘(Hippophae fhamnoides L)多糖的工艺进行优化。采用单因素试验考察提取时间、功率和料液比对沙棘多糖得率的影响,采用正交试验确定最佳工艺参数,并与水提法、微波法和酶法的提取效果进行对比研究。结果显示,超声波辅助提取沙棘多糖的最佳工艺条件为:提取时间45 min,功率100 W,料液比1:30,在此最佳工艺条件下,沙棘多糖得率最高为7.36%。  相似文献   

18.
以磨盘柿为试验原料,研究柿子多糖的超声波提取工艺及抗氧化活性。采用单因素和响应面试验方法研究料液比、提取温度、超声波功率及超声时间对柿子多糖提取效果的影响,以及柿子多糖对羟基自由基、超氧阴离子自由基、DPPH自由基的清除作用。结果表明,柿子多糖超声波提取的最佳工艺为:料液比1∶15(g/mL),提取温度55 ℃,超声功率300 W,提取时间15 min,在该条件下柿子多糖得率预测值为20.0%,验证值为19.9%,误差较小。柿子多糖对羟基自由基、超氧阴离子自由基和DPPH自由基具有较强的清除作用。采用响应面分析法优化柿子多糖的提取工艺,可以获得较高的柿子多糖得率,制备的柿子多糖能够有效清除自由基,可作为一种天然抗氧化剂加以开发并应用于功能食品中。  相似文献   

19.
旨在研究酶法辅助技术提取沙苑子三萜的工艺及体外抗氧化活性。在单因素实验的基础上,确定液料比、酶添加量、酶解温度、酶解时间4 个因素的Box-benhnken 的实验设计,以三萜的提取率为响应值,采用响应面法优化沙苑子三萜的提取工艺,建立并分析各因素与指标值的数学模型;采用自由基清除能力体系评价沙苑子三萜的抗氧化活性。优化分析所得的最佳工艺参数为:液料比为40 mL/g,酶添加量为500 μg/mL,酶解温度为40℃,酶解时间为50 min,三萜提取率理论值为8.08%,实际值为7.98%,其RSD 为0.12%。沙苑子三萜对DPPH自由基、O2 -·自由基、羟自由基及Fe3+具有较强的清除作用。因此,该方法高效、简单,可用作沙苑子三萜的提取;沙苑子三萜具有明显的体外抗氧化活性。  相似文献   

20.
旨在研究酶法辅助技术提取沙苑子三萜的工艺及体外抗氧化活性。在单因素实验的基础上,确定液料比、酶添加量、酶解温度、酶解时间4个因素的Box-benhnken的实验设计,以三萜的提取率为响应值,采用响应面法优化沙苑子三萜的提取工艺,建立并分析各因素与指标值的数学模型;采用自由基清除能力体系评价沙苑子三萜的抗氧化活性。优化分析所得的最佳工艺参数为:液料比为40 mL/g,酶添加量为500μg/mL,酶解温度为40℃,酶解时间为50 min,三萜提取率理论值为8.08%,实际值为7.98%,其RSD为0.12%。沙苑子三萜对DPPH自由基、O_2~-·自由基、羟自由基及Fe~(3+)具有较强的清除作用。因此,该方法高效、简单,可用作沙苑子三萜的提取;沙苑子三萜具有明显的体外抗氧化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号