共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Combining high fiber strength with high yield in upland cotton (Gossipium hirsutum L.) was been difficult. The cross combination, 69–120 × 6M-10, was chosen for this study because of the divergence of parents for fiber strength, seeds per boll and crop maturity. Forty F2 plants were selected in 1974 solely on the basis of visual yield and 20 plants were randomly chosen to serve as a bulk check. The F3 progenies, the bulk check, the parents and a commercial check were tested in 1975. From these results, five groups were established, consisting of four (10%) progenies each to represent high seed/boll, low seeds/boll, high fiber strength, low fiber strength and high yield in the 1976 test of F4 progenies. This experiment was conducted to (a) compare the contributions of yield components to lint yield among groups of early generation progenies (F3 and F4) and (b) determine the phenotypic correlations between yield and quality attributes. The yield components, bolls/m2, seeds/boll, fibers/seed, mean fiber length and micronaire, were included as well as fiber strength.No significant lint yield differences were found among the five groups. Progenies within groups did, however, differ in lint yield. The low and high seeds boll groups gave similar yield and fiber quality results. The low and high fiber strength groups gave similar yield but longer fiber was obtained with the high strength group.Stepwise regression analyses estimates show that the number of bolls produced per unit area, although the major contributor to lint yield for all groups, contributed only 66.9% of the total variation in the progeny group selected for high yield, with fibers/seed, mean fiber length, micronaire and seeds/boll accounting for 13.2%, 8.1%, 6.0%, and 5.8%, respectively. Correlations between the various yield components and fiber strength were low and mainly insignificant, indicating that minor alterations might be made in later generations without serious consequences.Potential gains from second-stage selective pressure upon yield-per-boll components following initial selection for lint yield are discussed. 相似文献
2.
Chengqi Li Xiaoyun Wang Na Dong Haihong Zhao Zhe Xia Rui Wang Richard L. Converse Qinglian Wang 《Breeding Science》2013,63(2):154-163
Making use of the markers linked closely to QTL for early-maturing traits for MAS (Marker-assisted selection) is an effective method for the simultaneous improvement of early maturity and other properties in cotton. In this study, two F2 populations and their F2:3 families were generated from the two upland cotton (Gossypium hirsutum L.) crosses, Baimian2 × TM-1 and Baimian2 × CIR12. QTL for early-maturing traits were analyzed using F2:3 families. A total of 54 QTL (31 suggestive and 23 significant) were detected. Fourteen significant QTL had the LOD scores not only > 3 but also exceeding permutation threshold. At least four common QTL, qBP-17 for bud period (BP), qGP-17a/qGP-17b (qGP-17) for growth period (GP), qYPBF-17a/qYPBF-17b (qYPBF-17) for yield percentage before frost (YPBF) and qHFFBN-17 for height of first fruiting branch node (HFFBN), were found in both populations. These common QTL should be reliable and could be used for MAS to facilitate early maturity. The common QTL, qBP-17, had a LOD score not only > 3 but also exceeding permutation threshold, explaining 12.6% of the phenotypic variation. This QTL should be considered preferentially in MAS. Early-maturing traits of cotton are primarily controlled by dominant and over-dominant effects. 相似文献
3.
Association mapping for seed cotton yield,yield components and fibre quality traits in upland cotton (Gossypium hirsutum L.) genotypes 下载免费PDF全文
Suresh S. Handi Ishwarappa S. Katageri Sateesh Adiger Mangesh P. Jadhav Sivarama P. Lekkala Vijay B. Reddy Lachagari 《Plant Breeding》2017,136(6):958-968
Association mapping has revolutionized human genetics and is increasingly used in plant genetics. It is an efficient way of determining the genetic basis of complex traits. In cotton so far numerous association mapping studies are available as compared to many other important crops. In our study, mapping was performed using cotton 63K infinium beadchip with 201 germplasm lines. Through fast STRUCTURE analysis, lines were grouped into 12 subgroups and revealed genome sharing among the groups. The critical value (R2) was set to 0.243 as threshold to claim LD between two loci. About 3.13% marker pairs recorded significantly high LD (R2 = 1), and 8.19% of marker pairs were in the range of 0.3 to 0.99 R2. In MLM, 349 significant marker–trait associations were detected as against 642 in GLM because of effectiveness in eliminating false associations in MLM. A total of 68 markers explained >10% phenotypic variation for yield and fibre quality traits. Phenotypic variation explained by markers was smaller, suggesting that they might be associated with minor QTLs. 相似文献
4.
Identifying QTL for fiber quality traits with three upland cotton (Gossypium hirsutum L.) populations 总被引:2,自引:0,他引:2
Qianshun Shao Fengjiao Zhang Shiyi Tang Yong Liu Xiaomei Fang Dexin Liu Dajun Liu Jian Zhang Zhonghua Teng Andrew H. Paterson Zhengsheng Zhang 《Euphytica》2014,198(1):43-58
Cotton fiber quality was quantitative trait, controlled by multiple genes. Identification of stable quantitative trait loci (QTL) effectively contributing to favorable fiber quality traits would provide the key basis for marker-assisted selection used in molecular breeding projects. Three upland cotton F2 populations were established with a common parent Chinese cultivar Yumian 1 and three American commercial cultivars/lines (Acala Maxxa, CA3084 and TAM94L-25), each of which had unique fiber quality characteristic that was favorable economically. Three whole genome genetic maps were constructed with 323, 302 and 262 SSR loci for population (Yumian 1 × Acala Maxxa), (Yumian 1 × CA3084), and (Yumian 1 × TAM 94L-25) respectively, spanning 1,617.2, 1,639.9 and 1,441.4 cM. Based on these genetic maps and three generation phenotypic data of fiber quality traits (F2, F2:3 and F2:4), 77 QTL were detected, including 19 for fiber length, 14 for fiber uniformity, 17 for micronaire, 10 for fiber elongation, and 17 for fiber strength. Among these QTL, 46 QTL were significant QTL and 31 were putative QTL, including that one QTL (qFL05.1) and four QTL (qFL23.1, qFM06.1, qFM06.2 and qFE25.1) were detected across three and two populations respectively; two QTL qFL10.1 (Yumian 1 × TAM 94L-25) and qFL15.1 (Yumian 1 × Acala Maxxa) were detected in three generations; qFM23.1, qFE18.1 and qFS21.2 detected in population (Yumian 1 × CA3084), qFE10.1, and qFS10.2 detected in population (Yumian 1 × TAM 94L-25), and qFS15.1 detected in population (Yumian 1 × Acala Maxxa), were all detected in two generations. Alleles underlying these stable QTL were valuable candidate gene for fine mapping, cloning, and favorable gene pyramiding projects. Our study also verified that QTL mapping of fiber quality traits using multiple populations with a common parent had higher efficiency compared to single population crossed with two parents and favorable alleles contributed to QTL effect could be conferred by parents with inferior fiber quality traits. 相似文献
5.
以新疆海岛棉军海1号为受体,利用农杆菌菌液喷雾法(Floral spray)和质粒注射法(Plasmid injection)导入外源Bt基因。经过对转化植株T1和T2代大田筛选和PCR、Southern检测,并经孟德尔遗传规律符合度分析,结果表示:农杆菌菌液喷雾法T0代成铃率比质粒注射法高8.3百分点;两种方法均可获得转基因植株,农杆菌菌液喷雾法较质粒注射法转化率高3.4百分点;农杆菌菌液喷雾处理后代较符合孟德尔遗传规律且单拷贝插入几率高。因此,农杆菌菌液喷雾法优于质粒注射法。 相似文献
6.
Within-boll yield components are the most basic contributors to lint and seed yield of cotton (Gossypium hirsutum L.), which is a major source of natural fiber and edible oil throughout the world. Little information is available on genetic effects and heterosis of these traits in cotton. Three cotton cultivars and six breeding lines differing in within-boll yield components were used for this study. Parents and their F1 progeny with reciprocals from a 3×6 factorial mating design were grown at Jiangxi Agricultural University experimental farm in 2008 and 2009. Seven within-boll yield components and two boll bur characters were analyzed under an additive-dominance genetic model with genotype and environment interaction. Additive effects were significant for all traits and dominance effects were significant for all traits except seed mass per seed. Genetic variances for lint mass per seed, SM/S and boll bur weight were primarily additive variances ranging from 39.6 to 58.9 %. Lint mass per boll and seed number per boll variances were primarily due to dominance genetic effects ranging from 36.4 to 48.8 %. Dominance and additive effects were equally important for boll weight, seed mass per boll and boll bur percentage. Additive and additive × environment effects were more important than other effects for lint percentage. A802-1 had the best mean performance and additive effects increasing BW, SM/B, S/B and SM/S, but reduced LP and LM/S. A9-1 and Lu40534 had additive effects associated with increasing LP. The two crosses A9-1×Lu40534 and Tezsh×33B were detected with favorable heterozygous dominant effects and heterosis over best parent for BW, LP, LM/B, SM/B and S/B. Favorable genotypic and phenotypic correlations were identified between within-boll lint yield components (LM/B, LM/S) and within-boll seed yield components (SM/B, S/B, SM/S). These results indicate that simultaneous genetic improvement of multiple within-boll yield components can be expected in breeding populations derived from these cotton cultivars and breeding lines. 相似文献
7.
8.
Cold water irrigation and growth in low temperature phytotron are two commonly used methods to evaluate cold tolerance of rice at the seedling stage and the cold sensitive seedlings exhibit different injury symptoms, respectively. However, so far no one has systematically dissected the differences of cold tolerance at seedling stage in rice under the two cold environments. We used a recombinant inbred line (RIL) population derived from a cross of a cold-tolerant japonica cultivar, Lijiangxintuanheigu and a cold sensitive indica cultivar, Sanhuangzhan-2 for this study. The cold sensitive seedlings exhibited leaf yellowing after cold water irrigation and leaf rolling during growth in the low temperature phytotron. Leaf yellowing and leaf rolling in RILs was significantly correlated, but the correlation coefficient was low. A total of four quantitative trait locus (QTLs) on chromosomes 1, 6, 9 and 12 were detected using leaf yellowing and percent seedling survival as indicators of cold tolerance after cold water irrigation, while five QTLs on chromosomes 7, 8, 9, 11 and 12 were detected using leaf rolling and percent seedling survival as indicators of cold tolerance during growth in the low temperature phytotron. The two QTLs, qCTS-9 and qCTS-12 were detected using different evaluation indicators under the two cold environments. Our results suggest that rice cold tolerance mechanisms at the seedling stage differ between the two environments, but the detection of common QTL implies the existence of overlap in the metabolic pathways for cold tolerance. The two common QTLs have potential value in rice breeding. 相似文献
9.
10.
新疆海岛棉的丛生芽诱导和茎尖遗传转化的研究 总被引:2,自引:0,他引:2
以新疆海岛棉新海17号、新海14号、85H为材料,对海岛棉器官发生再生体系和遗传转化进行研究。结果表明:茎尖系统再生能力强,茎尖组培成苗率可达90.5%。在MSB5培养基中,6-BA浓度为0.5 mg ·L-1时,芽诱导率最高;但每个外植体的出芽数所需的最佳浓度是1.5 mg·L-1;当浓度为2.0 mg ·L-1时,开始有抑制出芽的现象;每个外植体最多能诱导4个芽。用农杆菌介导法转化棉花的茎尖,对侵染的损伤和Kan的耐受能力强,对Kan棉花的茎尖选择压达100 mg· L-1;抗性绿苗率可达88.9%。 相似文献
11.
The effectiveness of honeycomb pedigree selection (HPS) as compared to conventional pedigree selection (CPS) was studied in
one intraspecific (G. hirsutum L. × G. hirsutum L.) cross population (population I) and one interspecific (G. hirsutum L. × G. barbadense L.) cross population (population II). Combined selection for yield and lint quality traits was applied for four cycles at two
locations for population I and atone location for population II. Finally, the best F6 lines derived by each method, together with the unselected population derived by single seed descent (SSD) and three check
cultivars, were tested in comparative experiments, separately for each cross, at the same locations. In both populations the
analysis of variance indicated significant differences among the groups of the material tested for seed cotton yield, mean
boll weight, micronaire reading, staple length, and uniformity ratio. No significant differences were found with respect to
plant height, lint percentage, and fiber strength in population I and with respect to lint percentage and fiber strength in
population II. In population I, on the basis of mean seed cottonyield and number of superior lines derived by each method
as compared to the check varieties and the unselected SSD population, HPS-lines were superior to CPS-lines for seedcotton
yield, fiber length and boll weight. HPS-lines, however, did not differ significantly in seedcotton yield from the best check
cultivar Eva. Finally, the material derived by CPS was earlier in maturity than the material derived by HPS and SSD. Also
in population II, on the basis of mean seedcotton yield and number of superior lines derived by each method as compared to
the unselected SSD population, HPS-lines were superior to CPS-lines. No significant differences, however, were identified
between the material of the two methods for lint quality traits. It was concluded that in both populations HPS was more effective
than CPS in identifying lines with high yielding ability and good lint quality. This superiority of HPS is attributed, at
least partially, to its effectiveness in early generation selection.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
12.
H. Tan F.E. Callahan X.-D. Zhang M. Karaca S. Saha J.N. Jenkins R.G. Creech D.-P. Ma 《Euphytica》2003,134(1):1-7
Sequence analyses of numerous plant disease resistance genes have revealed the presence of conserved motifs common to this
class of genes, namely a nucleotide binding site (NBS) and leucine rich repeat region. In this study, thirty-three resistance
gene analogs (RGAs) were cloned and sequenced from cotton (Gossypium hirsutum L.) following PCR with degenerate primers designed from the conserved NBS motif of plant resistance (R) genes. Phylogenetic
analysis of the predicted amino acid sequences grouped the RGAs into four distinct classes from which several subgroups were
delineated based on nucleic acid sequences. Gene database searches with the consensus protein sequences of each of the four
classes and respective subgroups of cotton RGAs revealed their conserved NBS domains and homology to RGAs and known resistance
genes from a variety of plant genera. Given the complete lack of knowledge regarding molecular organization of R genes in
cotton, the cloned RGAs described here may be useful as probes to map, characterize, and manipulate R genes of the cotton
genome.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
13.
海岛棉棉铃发育过程中糖与纤维素含量变化 总被引:1,自引:0,他引:1
以两个主栽海岛棉品种新海21提高系和新海28(YX-193和XH-28)为材料,在南疆膜下滴灌条件下于2006和2007年对海岛棉棉铃发育过程中糖与纤维素含量的变化进行了研究。结果表明,随铃龄的增长,铃壳、种子和纤维中糖含量变化呈单峰曲线,即自花后快速上升,21~28 d达到最大值,随后迅速下降,到吐絮期降至最低;纤维素于花后14 d左右开始大量合成,含量至吐絮期达最大值;纤维中可溶性固形物含量随着铃龄增加不断减小。棉铃不同部位的可溶性糖、还原糖含量及转移率表现为纤维>种子>铃壳。YX-193铃壳、种子两种糖的转移率较XH-28略高,说明它“装载”和“转运”能力强,有利于纤维发育。 相似文献
14.
Summary The mean aim of this study was to identify an effective method of predicting cross-potential in respect of yield improvement of the cowpea (Vigna unguiculata (L.) Walp.) through hybridization and subsequent selection.Three prediction tests based on data collected from experiments with ten cowpea lines and the F1 and F2 generations of all possible crosses between these lines were evaluated. The three prediction tests were based on: i Yields of prospective parents. ii. General combining abilities estimated from F1 and parental data iii. Frequencies of superior plants in F2 populationsEach of the three procedures was used to identify the crosses with the lowest or highest yield potential, i.e. those crosses most likely to produce the greatest number of lines with yields higher or lower than those of either parent. Crosses selected on the basis of these criteria were evaluated in the following growing season on the basis of biometrical analysis of F2 and backcross populations and the performance of the respective F3 and F4 generations.Six different crosses were selected from the 45 tested on the basis of the three prediction tests. Analyses of F2 and backeross populations from each cross provided estimates of [d] the difference in parental means and 1/2D the additive genetic component which, in turn, were used to predict the frequency of transgressive inbred lines obtained by single-seed descent from the F2. Both crosses selected on the basis of F2 data were expected to produce a much higher frequency of transgressive lines than those selected on the basis of parental yields. The high potential cross selected on the basis of general combining ability was expected to produce a higher frequency of transgressive lines than the corresponding low yield potential cross. Replicated trails of F3 bulks of the selected crosses showed that high yield potential crosses were significantly higher yielding than low yield potential crosses for all prediction criteria. In a trial with 22F4 lines of each of the two crosses selected on the basis of parental yields and frequency of high yielding F2 plants, the high yield potential cross in each case had a greater mean and variance for seed yield than the corresponding low yield potential cross.It was concluded that parental yields provide a sound basis for an initial screening of prospective parents. This screening should identify a high yielding line which can be crossed with a number of contrasting lines to produce F2 populations for the final screening phase. 相似文献
15.
海岛棉NBS-LRR类抗病基因同源序列的克隆与定位 总被引:3,自引:0,他引:3
植物R基因产物存在非常类似的结构域,如NBS、L,RR、STK、LZ、TM、TIR等。依据保守序列设计引物寻找抗病基因类似物(Resistance Gene Analog,RGA),从而定位或克隆抗病基因在理论上是可行的,这种方法称为R基因同源克隆法。RGA往往与已知抗病基因具有很高的相似性,均含有LRR、NBS或蛋白激酶中的保守基序,有的与已知抗病基因连锁,或是抗性基因家族中的成员,抑或与已知抗病基因无关,它们最有可能参与植物抗病反应过程中的信号识别、信息传导等途径,并且与植物抗病基因具有密切的关系,但RGA并非等同于植物R基因。将RGA作为分子标记整合到植物分子连锁图谱中,或将其作为探针筛选基因组文库,获得候选抗病基因则不失为一条克隆基因的捷径。利用已知R基因的保守序列设计引物进行PCR扩增,已经在植物中分离到了许多与已知R基因同源的DNA序列,并且有很多RGA作为标记定位在抗病位点附近,有点被证明与抗病性状共分离。小麦抗叶锈基因Lrl0的分离是利用该方法进行抗病基因克隆的首次报道。本研究依据N,L6,RPS2等NBS类抗病基因的NBS保守区设计简并性引物扩增棉花基因组DNA,在517bp左右获得特异性扩增条带。回收PCR产物,连接转化共得到800个克隆。经酶切筛选、嵌套引物鉴定获得252个候选RGA克隆。测序后获得11条RGA序列,这些序列的大小在500—527bp之间,其中3条序列中含有1或2个终止子。所有11个RGA序列都含有NBS保守区的Kinase海岛棉1a(GGVGKTT)、kinase-2(VLDD)、kinase-3a(GSRII)及跨膜区(GLPLA)等保守结构域,与已知抗病基因的保守结构具有较高的吻合程度。本研究所获得的RGA与大豆、棉花、腰豆等作物中已经克隆的NBS类RGA的核苷酸序列有很高的相似性。其中8条可通读的RGA序列推导出的氨基酸序列同已知抗病基因L6、RPMl、SRPS2、N表现出从25%——58%的相似性。本研究以海陆杂交F2群体作为定位群体,应用RFLP方法将获得的7条RGA序列定位在棉花基因组中。Gbrga2和Gbrga8定位于第11同源群的三个位点:连锁群1302的端点及连锁群A03距端点59.2cM处。在连锁群1302中与pAR286E4C标记定位在同一位点,与Unig22d03bE6D标记相距5.6cM在连锁群A03中与pARlllE3C标记共同定位在端点,同时定位在Unig26804E5D(22D)标记下游1.7cM处和Gate4DB08bE3D(14D)标记上游8.6cM处。Gbrga508和Gbrga535定位于第4同源群的两个位点,D染色体组的第20号染色体上距端点175.3eM处,与Unig27A04E5C标记和M16—118E1C标记分别相距2.7cM和3.8cM;Gbrga508和Gbrga535同时还定位于A染色体组第5号染色体上距端点142.9cM处,与G1025aE5C标记和Gate2CFllE3C标记相距2.6cM和1.2cM。Gbrga522,Gbrga568和Gbrga39定位于第4连锁群D染色体组的第20号染色体上距端点5.5cM处。与Unig24H03E6C标记和P13—6E3D标记分别相距1.0cM和2.0cM。海岛棉RGA的获得、在基因组的定位,对于棉花NBS类R基因的起源和进化,利用分子标记辅助育种以及棉花抗病基因的克隆,提供了重要的背景。 相似文献
16.
Paolo Ranalli 《Euphytica》1996,87(2):127-132
Summary The effect of a recurrent selection procedure for improving seed yield per plant was evaluated in common bean. Progress was registered after three cycles of recurrent selection with S2 progeny evaluation performed on the grain yield/plant. Gain from selection was estimated by field testing 45 random S2 lines from each of the C0, C1 and C2 populations. Response to selection for seed yield/plant was 6 g from C0 to C1 and 4.4 g from C1 to C2. The seed yield improvement was due principally to an increase in pods/plant; little contribution was provided by the 1000-seed weight and seeds/pod traits. Broad-sense heritability and genotypic variance for grain yield remained high in all cycles which suggests further gain from additional selection cycles. Grain yield/plant is significantly correlated to pods/plant and seeds/pod traits in all cycles, indicating that plants with favourable combinations of these traits could be identified. The proposed recurrent selection procedure appears to be effective in improving the population and extracting superior genotypes for varietal development. 相似文献
17.
以南疆主栽海岛棉品种为材料,分析不同花期铃部器官同化物质积累动态、再度分配及吐絮棉铃的分配率。结果表明:同化物积累随时间呈“S”型曲线,用Logistic方程进行拟合均达到显著水平。同化物积累达最大值所需时间表现为棉纤维>种子>铃壳,新海28比优系193提前5~10 d;同化物再度分配随着花期的推移,铃壳率不断增大,子重率、经济系数、子棉/壳重逐渐减小。铃壳对子棉增重的贡献率,新海28大于优系193;棉铃的胚珠数、种子数、结子效率随开花时间的推移逐步增大,新海28单铃子房胚珠数、单铃种子数比优系193略低,而结子效率稍高;新海28具有开花早,铃期短,铃壳率小,结子效率高,铃壳同化物质的再分配对子棉增重的贡献率、子重率、经济系数、子棉与干重的比值均大于优系193,这是其早开花、早结铃、早吐絮及丰产的遗传生理基础。 相似文献
18.
Cottonseed is a rich source of high quality protein, but its value as an animal feed is limited by gossypol, a toxic polyphenolic compound contained in glands located throughout the plant. This compound helps protect the plant from pests. Totally glandless varieties have been developed, but not adopted as these plants are left vulnerable to pests. This study describes a breeding strategy to decrease the levels of gossypol in the seed while maintaining a high enough concentration of toxin in vegetative plant parts to offer protection from pests. Preliminary studies indicated that crosses between varieties with different gland densities and distributions produced a range of glanding patterns. By selecting within the resulting progeny, we have identified F7 generation progeny that have <0.30% total gossypol in the seed, while still possessing glands at critical locations on the vegetative plant parts. These new lines will be a valuable source of germplasm for developing low seed gossypol varieties. Seed from these varieties would provide a new source of inexpensive protein for animal feeding rations. 相似文献
19.
Verticillium dahliae Kleb.is a necrotrophic plant pathogen which causes serious soil borne vascular disease in cotton.The molecular basis the defense response of cotton to this pathogen is poorly understood. 相似文献
20.
Ranjith Pathirana 《Euphytica》1995,82(1):73-78
Summary Four hundred sesame (Sesamum indicum L.) lines selected by five methods from five crosses were tested for yield and other agronomic characters in F6 and F7. More high yielding lines were isolated by the bulk method and in the cross involving two local cultivars when two seasons means and performance in each individual season were considered. The cross involving two exotic cultivars did not produce a single line superior to local recommended variety. The 80 highest yielding lines recorded a 10.8% increase in yield compared to the mean of 400 lines. Thirty five lines were among the top 20% both seasons with a 13.2% increase in yield. Highly significant seasonal and population effects were recorded. There were no significant differences among the methods of selection although the yield differences among lines were highly significant. Interactions of seasons × populations, seasons × methods, populations × methods and seasons × populations × methods were highly significant. The results indicate that simple and less expensive bulk method may be used with equal success as the pedigree, single seed descent or early generation testing methods when selecting for yield in segregating sesame populations. The importance of inclusion of a high yielding, locally adapted cultivar in the crossing programmes for yield breeding of sesame has also been revealed.Abbreviations BM
Bulk method
- EGT
Early generation testing
- G × E
Genotype × environment
- MSS
Modified single seed descent
- PM
Pedigree method
- SSD
Single seed descent 相似文献