首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
为了解新疆马疱疹病毒1型(EHV-1)主要毒力基因遗传进化情况并构建TK基因缺失株,本研究以EHV-1 XJ2015株DNA为模板,对其主要毒力基因TK、gI和gE全长进行克隆、测序及生物信息学分析,并扩增TK基因左右重组臂TKL和TKR,构建质粒pUC-TKLR,将扩增后的增强绿色荧光蛋白(EGFP,含有CMV+polyA)插入pUC-TKLR质粒,构建TK基因缺失打靶质粒。TK、gI和gE基因同源性分析结果显示,XJ2015株与国外EHV-1分离株TK、gI和gE基因同源性均较高,分别为99.8%~100.0%、99.6%~100.0%和99.9%~100.0%;与EHV-3分离株同源性均最低,分别为72.9%、59.4%和62.1%;遗传进化分析显示,3个基因均与国外EHV-1同属于一个遗传进化分支,与EHV-9和EHV-4进化关系较近,但与EHV-3进化关系较远,表明XJ2015毒株与国外EHV-1毒株TK、gI、gE基因核苷酸上差异不明显,没有明显的地域性特征,功能基因保守且进化缓慢,同源基因功能相同或相近;经PCR扩增、酶切、测序及转染鉴定,本试验成功构建了用于TK基因缺失的打靶质粒pUC-TKLR-EGFP。通过对EHV-1主要毒力基因的分析及TK基因缺失打靶载体的构建,为新疆地区马鼻肺炎流行病学调查分析、TK基因缺失株的构建提供理论依据。  相似文献   

2.
In this work, a role for the genes encoding glycoproteins I (gI) and E (gE) and the US9 protein of bovine herpesvirus type 5 (BHV-5) in neuropathogenicity and reactivation of latent infections was examined. Calves infected intranasally with a gI/gE/US9 deleted recombinant shed up to 10(2.85) TCID50/ml infectious virus in nasal secretions. Calves infected with the wild type BHV-5 parental virus shed up to 10(5) TCID50/ml virus. No signs of disease were observed in calves infected with the recombinant virus, whereas those infected with wild type virus displayed respiratory and neurological signs. The recombinant was only able to reach the basal portions of the central nervous system. In contrast, wild type virus was found widespread within the brain. Reactivation with dexamethasone 60 days post-infection resulted in reactivation of wild type virus, whereas the recombinant virus could not be reactivated. These studies demonstrate that genes gI, gE and US9 of BHV-5 are important for its neuropathogenicity and its ability to reactive from latency.  相似文献   

3.
A panel of seven monoclonal antibodies (MAbs) directed against the bovine herpesvirus-1 (BHV-1) glycoprotein E (gE) was obtained. For that purpose, mice were either tolerized to BHV-1 gE-negative virus and then immunized with wild type BHV-1 or immunized with plasmid DNA expressing the gE and gI glycoproteins. The MAbs were characterized by their reactivity with the gE protein or the gE/gI complex and by competition experiments. Results showed that the MAbs were directed against three antigenic domains, two located on the gE glycoprotein and one on the gE/gI complex. Blocking experiments were performed with sera from experimentally vaccinated and infected cattle. A competition was observed between gE-positive bovine sera and six of the seven MAbs. The bovine sera thus recognized two of the three antigenic sites. Field sera were then tested in blocking enzyme-linked immunosorbent assay using one horseradish peroxidase-conjugated MAb. A specificity of 98.2% and a sensitivity of 98.2% compared to the commercially available test were observed.  相似文献   

4.
In 2009, a novel swine-origin H1N1 influenza A virus (S-OIV), antigenically and genetically divergent from seasonal H1N1, caused a flu pandemic in humans. Development of an effective vaccine to limit transmission of S-OIV in animal reservoir hosts and from reservoir hosts to humans and animals is necessary. In the present study, we constructed and evaluated a vectored vaccine expressing the H1 hemagglutinin of a recent S-OIV isolate using equine herpesvirus 1 (EHV-1) as the delivery vehicle. Expression of the recombinant protein was demonstrated by immunofluorescence and western blotting and the in vitro growth properties of the modified live vector were found to be comparable to those of the parental virus. The EHV-1-H1 vaccine induced an influenza virus-specific antibody response when inoculated into mice by both the intranasal and subcutaneous routes. Upon challenge infection, protection of vaccinated mice could be demonstrated by reduction of clinical signs and faster virus clearance. Our study shows that an EHV-1-based influenza H1N1 vaccine may be a promising alternative for protection against S-OIV infection.  相似文献   

5.
伪狂犬病病毒上海株gE和gI基因的克隆及序列分析   总被引:2,自引:0,他引:2  
参考Genebank发表的伪犬病病毒(Pseudorabies Virus,PRV)的gI和gE基因序列,自行设计并合成了两对引物,对PRV上海株(PRV-SH)进行PCR扩增,产物经琼脂糖电泳分析,均呈现一条约960bp和1740bp的条带,将其克隆入pGEM-T-easy载体中,进行了序旬测定,将PRV-SH株的gI基因与Rice株gI基因比较发现,核苷酸的同源性为94.7%,氨基酸的同源性为91.3%,证实为gI基因,将PRV-SH gE基因序列与Ea株、Ruce株gE基因序列进行比较,结果显示,该序列与PRV Ea株、Rice株gE基因的同源性分别为98.5%、97.5%;的氨基酸序列与Ea株,Rice株和I型单纯疱疹病毒(HSV-1)17株gE的同源性分别为97.2%、94.8%和15.6%。  相似文献   

6.
DNA-mediated immunization was assessed in a murine model of equine herpesvirus 1 (EHV-1) abortion. Whilst there are differences between the model and natural infection in the horse, literature suggests that EHV-1 infection of pregnant mice can be used to assess the potential ability of vaccine candidates to protect against abortion. Female BALB/c mice were inoculated twice, 4 weeks apart, with an expression vector encoding EHV-1 glycoprotein D (gD DNA). They were mated 15 days after the second inoculation, challenged at day 15 of pregnancy and killed 3 days later. The gD DNA-inoculated mice had fewer foetuses which were damaged or had died in utero (6% in gD DNA, 21% vector DNA and 28% in nil inoculated groups challenged with EHV-1), a reduction in the stunting effect of EHV-1 infection on foetuses (gD DNA: 0.40g+/-0.06, vector DNA: 0.34g+/-0.10), reduced placental and herpesvirus-specific lung histopathology and a lower titre of virus (TCID(50)+/-SEM/lung) in maternal lung than control groups (gD DNA 4.7+/-0.3, vector 5.3+/-0.2, nil 5.6+/-0.2). Maternal antibody to EHV-1 gD was demonstrated in pups born to a dam inoculated 123 days earlier with gD DNA. Although protection from abortion was incomplete, immunization of mice with gD DNA demonstrated encouragingly the potential of this vaccine strategy.  相似文献   

7.
为获得具有生物活性的伪狂犬病病毒(Pseudorabies virus,PRV)gE/gI蛋白,建立PRV抗体快速检测方法。将含有PRV gE、gI基因的质粒pFastBacdual-GP67-gE/gI转化至宿主菌,经位点特异性重组和蓝白斑筛选后获得重组杆粒rBacmid-gE/gI,转染Sf9细胞,获得重组杆状病毒。采用悬浮的Sf9细胞进行发酵并纯化产物,SDS-PAGE和Western blot分析镍柱纯化后的重组蛋白。结果显示,重组杆粒在4800 bp处克隆出预期大小的条带,表示重组杆粒构建成功。SDS-PAGE和Western blot表明,在50 ku和65 ku处出现预期大小的条带,能与PRV标准阳性血清特异性反应,不与PRV gE/gI缺失疫苗免疫血清反应。结果表明gE/gI重组蛋白具有良好的反应原性,为PRV抗体快速检测及区分PRV野毒感染和疫苗免疫奠定了基础。  相似文献   

8.
The aim of this study was to investigate the role of immediate early gene (gene63) in the pathogenesis of equine herpesvirus 1 (EHV-1) acute and latent infections in equine and murine models. EHV-1 gene63 mutant virus (g63mut) along with EHV-1 (Ab4) was used for intracerebral and intranasal infection of 3 and 17-day-old mice. Both viruses were recovered at the same frequency from tissues after infection. Two Welsh ponies were infected via the intranasal route with each of the viruses. Acute infection was monitored by virus isolation from nasal swabs and peripheral blood leukocytes. Six weeks post infection, peripheral blood leukocytes were taken from ponies and in vitro reactivation was positive for both viruses. At autopsy, both viruses were isolated by co-cultivation from bronchial and submandibular lymph nodes. These findings indicate that the mutation of EHV-1 gene63 does not play a role in the establishment and reactivation from latency.  相似文献   

9.
为建立马疱疹病毒Ⅰ型(EHV-1)的检测方法,本研究以EHV-1 gB基因的一段保守区域(1207 bp~1509 bp)作为检测的目的片段设计引物,通过对其反应条件的优化,建立了特异性检测EHV-1的SYBR Green I 荧光定量PCR方法.实验结果表明:该方法检测目的基因的灵敏度下限为10拷贝/μL,比常规PCR方法高100倍;与马疱疹病毒4型(EHV-4)及其他马传染病病原体无交叉反应;组内及组间的变异系数均小于2%.该方法检测速度快及高敏感性的特点为马鼻肺炎的防制提供了有力保障,同时也为进一步开展马鼻肺炎相关的研究提供了有效的辅助检测方法技术.  相似文献   

10.
The envelope glycoprotein D of equine herpesvirus 1 (EHV-1 gD) has been shown in laboratory animal models to elicit protective immune responses against EHV-1 challenge, and hence is a potential vaccine antigen. Here we report that intramuscular inoculation of EHV-1 gD produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD-specific ELISA antibody in the serum of over 90% of adult mixed breed horses. The virus-neutralizing antibody responses to EHV-1 gD were similar to those observed after inoculation with a commercially available killed EHV-1/4 whole virus vaccine. Intramuscular inoculation of EHV-1 gD DNA encoded in a mammalian expression vector was less effective in inducing antibody responses when administered as the sole immunogen, but inoculation with EHV-1 gD DNA followed by recombinant EHV-1 gD induced increased gD ELISA and virus-neutralizing antibody titres in six out of seven horses. However, these titres were not higher than those induced by either EHV-1 gD or the whole virus vaccine. Isotype analysis revealed elevated gD-specific equine IgGa and IgGb relative to IgGc, IgG(T) and IgA in horses inoculated with EHV-1 gD or with the whole virus vaccine. Following inoculation of pregnant mares with EHV-1 gD, their foals had significantly higher levels of colostrally derived anti-gD antibody than foals out of uninoculated mares. The EHV-1 gD preparation did not induce a significant mean antibody response in neonatal foals following inoculation at 12 h post-partum and at 30 days of age, irrespective of the antibody status of the mare. The ability of EHV-1 gD to evoke comparable neutralizing antibody responses in horses to those of a whole virus vaccine confirms EHV-1 gD as a promising candidate for inclusion in subunit vaccines against EHV-1.  相似文献   

11.
We have shown previously that equine herpesvirus 1 (EHV-1) glycoprotein D (gD) DNA elicited protective immune responses against EHV-1 challenge in murine respiratory and abortion models of EHV-1 disease. In this study, 20 horses, all with pre-existing antibody to EHV-4 and two with pre-existing antibody to EHV-1, were inoculated intramuscularly with three doses each of 50, 200 or 500microg EHV-1 gD DNA or with 500microg vector DNA. In 8 of 15 horses, inoculation with EHV-1 gD DNA led to elevated gD-specific antibody and nine horses exhibited increased virus neutralising (VN) antibody titres compared to those present when first inoculated. A lack of increase in gC-specific antibody during the 66 weeks of the experiment showed that the increase in gD-specific antibodies was not due to a natural infection with either EHV-1 or EHV-4. The increase in EHV-1 gD-specific antibodies was predominantly an IgGa and IgGb antibody response, similar to the isotype profile reported following natural EHV-1 infection.  相似文献   

12.
We demonstrated that pigs are susceptible to acute infection by equine herpesvirus type 9 (EHV-9). Six 8-week-old SPF pigs were inoculated intranasally and four were inoculated orally with different doses of EHV-9, and observed for 6 days. Although neurological signs did not develop in any of the infected pigs, the six intranasally infected pigs and one of the orally infected pigs developed lesions of encephalitis consisting of neuronal necrosis, neuronophagia, and intranuclear inclusion bodies, distributed mainly in the rhinencephalon. EHV-9 antigen was localized in the necrotic neuronal cells and was closely associated with the presence of inclusion bodies. These findings clearly demonstrate that pigs are fully susceptible to EHV-9 infection following intranasal inoculation (but less so following oral inoculation), and that EHV-9 in pigs has a highly neurotropic nature.  相似文献   

13.
The prevalence of equine respiratory virus infections among a suspected population of race horses was examined using polymerase chain reaction (PCR). One or more of five equine respiratory viruses were detected in the nasal swabs of 45 of 89 horses (50.6%), and the detection rate of equine herpesvirus type 1 (EHV-1), equine herpesvirus type 4 (EHV-4), equine herpesvirus type 5 (EHV-5), equine rhinitis A virus (ERAV) and equine rhinitis B virus (ERBV) were 5.6%, 7.9%, 39.0%, 2.2%, and 6.7%, respectively. Among the 45 infected horses, 7 were co-infected with EHV and/or equine rhinitisvirus (ERV). Equine influenzavirus and equine arteritisvirus were not detected in any samples. Specific antibodies to EHV-1 and/or EHV-4 were detected in 59 of 73 tested sera (80.8%), using a virus neutralization test. This investigation suggests that equine respiratory viruses are endemic at Seoul Race Park and that the impact of viral infections on race horses’ health in Republic of Korea should be evaluated.  相似文献   

14.
In this study, experimental canarypox virus (ALVAC) and plasmid DNA recombinant vaccines expressing the gB, gC and gD glycoproteins of EHV-1 were assessed for their ability to protect conventional ponies against a respiratory challenge with EHV-1. In addition, potential means of enhancing serological responses in horses to ALVAC and DNA vaccination were explored. These included co-administration of the antigen with conventional adjuvants, complexation with DMRIE-DOPE and co-expression of the antigen along with equine GM-CSF. Groups of EHV primed ponies were vaccinated twice intra-muscularly with one dose of the appropriate test vaccine at an interval of 5 weeks. Two to 3 weeks after the second vaccination, ponies were infected intra-nasally with the virulent Ab4 strain of EHV-1 after which they were observed clinically and sampled for virological investigations. The results demonstrated that DNA and ALVAC vaccination markedly reduced virus excretion after challenge in terms of duration and magnitude, but failed to protect against cell-associated viremia. Noteworthy was the almost complete absence of virus excretion in the group of ponies vaccinated with ALVAC-EHV in the presence of Carbopol adjuvant or DNA plasmid formulated with aluminium phosphate. The administration of the DNA vaccine in the presence of GM-CSF and formulated in DMRIE-DOPE and of the ALVAC vaccine in the presence of Carbopol adjuvant significantly improved virus neutralising antibody responses to EHV-1. These findings indicate that DNA and ALVAC vaccination is a promising approach for the immunological control of EHV-1 infection, but that more research is needed to identify the immunodominant protective antigens of EHV-1 and their interaction with the equine immune system.  相似文献   

15.
16.
Some aspects of the biology of equine herpesvirus type 2 (EHV-2) were investigated by examination of the persistent cell-associated viremia stage of the infection. The EHV-2 infection of leukocytes was latent, because free virus was not retrieved without first cultivating harvested leukocytes in vitro. A virus infective center (IC) assay was developed to enumerate latently infected cells in the leukocyte population. This assay proved to be simple and reproducible and revealed a linear relationship between IC plaques formed and the number of cells inoculated, except where large numbers of cells (greater than 4 X 10(6)) were inoculated per 10 cm2 dish. This reduction at high cell densities of IC/10(6) cells inoculated was dependent on cells obtained from an EHV-2-infected horse. There was considerable variation in the numbers of IC/10(6) leukocytes harvested from different horses, but little variation in the harvests from the same horse at different times. There seemed to be a direct relationship between serum-neutralization titers and IC numbers. Transfer of viable infected leukocytes to 2 fetuses failed to establish EHV-2 infection. Infection of equine fetal kidney cells with EHV-2 virus failed to produce detectable Fc receptors on the cell surface.  相似文献   

17.
AIM: To report the first isolation of equine herpesvirus 5 (EHV-5) in New Zealand as part of a study of equine respiratory viruses in New Zealand. METHODS: Nasal swabs and peripheral blood leukocytes were collected from 114 foals and adult horses, inoculated on to equine fetal kidney, rabbit kidney and Vero cell lines and observed for cytopathic effect. EHV-5 isolates were identified using an EHV-5 specific polymerase chain reaction. All samples positive for EHV-5 were also checked for the presence of EHV-2, EHV-1 or EHV-4 DNA using published type-specific primers. The polymerase chain reaction results were further confirmed by dot blot and Southern hybridisation with specific DIG-labelled probes. RESULTS: EHV-5 was isolated from nasal swabs or peripheral blood leukocytes of 38 out of 114 horses sampled. From horses sampled more than once, EHV-5 was often isolated on more than one occasion. Most of the horses were infected with both EHV-2 and EHV-5 viruses. It was not possible to make an association between EHV-5 isolation and the presence of respiratory disease. CONCLUSION: EHV-5 is present in the New Zealand horse population. The exact role it plays in causing, or predisposing to, respiratory disease remains to be elucidated.  相似文献   

18.
According to published gE and gI gene sequences of pseudorabies virus (PRV) in GenBank, we designed two pairs of primers for PCR amplification of gE and gI genes of PRV NP isolate, after PCR products recycling, cloning and sequencing, the sequencing results were consistent with expectations of PRV gE and gI genes.Homology comparison analysis results revealed that compared with the domestic PRV strains, the homologies of gE and gI amino acids of PRV NP isolate were 95.7% to 99.8% and 89.9% to 99.5%, respectively.Phyogenetic tree analysis and amino acid sequence alignment results found that the gE amino acid sequence site changes of PRV NP isolate were the same with the PRV strains which were isolated from domestic in 2012, thus we could speculate that PRV NP isolate had mutanted.This study had laid the foundation for the epidemiological investigation and analysis of PRV, also provided the scientific basis for the development of scientific, effective and new pseudorabies vaccine.  相似文献   

19.
The pathogenesis of Venezuelan equine encephalitis (VEE) virus infection was compared in intraperitoneally inoculated mice (n = 24, 6 to 8 weeks old) and hamsters (n = 9, 90-110 g) using histopathology and immunohistochemical localization of VEE virus antigen. Infected mice developed paralysis, and the majority died by 9 days after inoculation. In contrast, hamsters did not survive beyond 3 days after inoculation, and they did not develop any neurologic signs. VEE virus antigen, demonstrated by immunoperoxidase staining, and pathologic changes were present in extraneural organs of both mice and hamsters. There was more severe involvement in hamsters, particularly in Peyer's patches of the distal small intestine. There was a severe encephalomyelitis in mice, but pathologic changes were not well established in the brains of hamsters before death. VEE virus antigen was widespread in the central nervous system of both mice and hamsters. VEE virus was found to be highly neurotropic in hamsters and had a similar distribution in the brain as in mice, but hamsters died from their extraneural disease before major central nervous system disease developed.  相似文献   

20.
Peripheral blood mononuclear cells (PBMC) from an adult horse and from foals demonstrated natural killer (NK)-type cytotoxicity against a range of xenogeneic and allogeneic cell targets. The human tumour cell line, Chang liver was consistently the most susceptible. Chang liver, rabbit kidney (RK-13), equine sarcoid (ES) and embryonic equine kidney (EEK) cells were more susceptible when presented to horse PBMC than monolayer cultures. Embryonic equine lung (EEL) and murine YAC-1 cells conversely, were more susceptible in a trypsinized state. Horse PBMC demonstrated higher levels of NK-type activity against EEK, EEL and RK-13 cells infected with equine herpesvirus 1 (EHV-1) compared with uninfected cells. Similarly, EEK and EEL cells infected with Semliki forest virus (SFV) were more susceptible. Cytotoxicity against EHV-1-infected EEK cells developed faster, between 4 and 8 h of incubation and reaching a maximum at 24 h. By contrast, cytotoxicity against uninfected fibroblasts was not significant until approximately 16 h of incubation with maximum cytotoxicity observed between 32 h and 48 h. Specific pathogen-free (SPF) foals were inoculated with live EHV-1. PBMC isolated from these foals at different days after inoculation did not display appreciably reduced or elevated NK cytotoxicities against Chang liver cells and EHV-1-infected EEK targets, when compared with that of a PBMC reference from a healthy adult horse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号