首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown deep-sea-derived Streptomyces koyangensis SCSIO 5802 to produce two types of active secondary metabolites, abyssomicins and candicidins. Here, we report the complete genome sequence of S. koyangensis SCSIO 5802 employing bioinformatics to highlight its potential to produce at least 21 categories of natural products. In order to mine novel natural products, the production of two polycyclic tetramate macrolactams (PTMs), the known 10-epi-HSAF (1) and a new compound, koyanamide A (2), was stimulated via inactivation of the abyssomicin and candicidin biosynthetic machineries. Detailed bioinformatics analyses revealed a PKS/NRPS gene cluster, containing 6 open reading frames (ORFs) and spanning ~16 kb of contiguous genomic DNA, as the putative PTM biosynthetic gene cluster (BGC) (termed herein sko). We furthermore demonstrate, via gene disruption experiments, that the sko cluster encodes the biosynthesis of 10-epi-HSAF and koyanamide A. Finally, we propose a plausible biosynthetic pathway to 10-epi-HSAF and koyanamide A. In total, this study demonstrates an effective approach to cryptic BGC activation enabling the discovery of new bioactive metabolites; genome mining and metabolic profiling methods play key roles in this strategy.  相似文献   

2.
Streptomyces sp. SCSIO ZS0520 is a deep-sea hydrothermal vent-derived actinomycete. Our previous metabolism investigation showed that Streptomyces sp. SCSIO ZS0520 is a producer of cytotoxic actinopyrones. Here, another four types of secondary metabolites were identified, including six salinomycin isomers (2–7), the macrolide elaiophylin (8), the triterpene N-acetyl-aminobacteriohopanetriol (9), and the pyrone minipyrone (10). Among them, compounds 2–6 and 10 are new compounds. To understand the biosynthetic pathway of these compounds, a bioinformatic analysis of the whole genome was carried out, which identified 34 secondary metabolite biosynthetic gene clusters. Next, the biosynthetic pathways responsive to four types of products were deduced on the basis of gene function predictions and structure information. Taken together, these findings prove the metabolite potential of ZS0520 and lay the foundations to solve the remaining biosynthetic issues in four types of marine natural products.  相似文献   

3.
Two new phenylhydrazone derivatives and one new alkaloid, penzonemycins A–B (1–2) and demethylmycemycin A (3), together with three known compounds including an alkaloid (4) and two sesquiterpenoids (5–6), were isolated from the Streptomyces sp. SCSIO 40020 obtained from the Pearl River Estuary sediment. Their structures and absolute configurations were assigned by 1D/2D NMR, mass spectroscopy and X-ray crystallography. Compound 1 was evaluated in four human cancer cell lines by the SRB method and displayed weak cytotoxicity in three cancer cell lines, with IC50 values that ranged from 30.44 to 61.92 µM, which were comparable to those of the positive control cisplatin. Bioinformatic analysis of the putative biosynthetic gene cluster indicated a Japp–Klingemann coupling reaction involved in the hydrazone formation of 1 and 2.  相似文献   

4.
The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS) domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides.  相似文献   

5.
Mangrove-derived actinomycetes are promising sources of bioactive natural products. In this study, using homologous screening of the biosynthetic genes and anti-microorganism/tumor assaying, 163 strains of actinomycetes isolated from mangrove sediments were investigated for their potential to produce halogenated metabolites. The FADH2-dependent halogenase genes, identified in PCR-screening, were clustered in distinct clades in the phylogenetic analysis. The coexistence of either polyketide synthase (PKS) or nonribosomal peptide synthetase (NRPS) as the backbone synthetases in the strains harboring the halogenase indicated that these strains had the potential to produce structurally diversified antibiotics. As a validation, a new enduracidin producer, Streptomyces atrovirens MGR140, was identified and confirmed by gene disruption and HPLC analysis. Moreover, a putative ansamycin biosynthesis gene cluster was detected in Streptomyces albogriseolus MGR072. Our results highlight that combined genome mining is an efficient technique to tap promising sources of halogenated natural products synthesized by mangrove-derived actinomycetes.  相似文献   

6.
Deep-sea sediment-derived bacterium may make full use of self-genes to produce more bioactive metabolites to adapt to extreme environment, resulting in the discovery of novel metabolites with unique structures and metabolic mechanisms. In the paper, we systematically investigated the metabolites in structurally diversity and their biosynthesis from the deep-sea sediment-derived bacterium Agrococcus sp. SCSIO 52902 based on OSMAC strategy, Molecular Networking tool, in combination with bioinformatic analysis. As a result, three new compounds and one new natural product, including 3R-OH-1,6-diene-cyclohexylacetic acid (1), linear tetradepsipeptide (2), N1,N5-di-p-(EE)-coumaroyl-N10-acetylspermidine (3) and furan fatty acid (4), together with nineteen known compounds (5–23) were isolated from the ethyl acetate extract of SCSIO 52902. Their structures were elucidated by comprehensive spectroscopic analysis, single-crystal X-ray diffraction, Marfey’s method and chiral-phase HPLC analysis. Bioinformatic analysis revealed that compounds 1, 3, 9 and 13–22 were closely related to the shikimate pathway, and compound 5 was putatively produced by the OSB pathway instead of the PKS pathway. In addition, the result of cytotoxicity assay showed that compound 5 exhibited weak cytotoxic activity against the HL-60 cell line.  相似文献   

7.
8.
Tetrodotoxins (TTXs), potent neurotoxins, have become an increasing concern in Europe in recent decades, especially because of their presence in mollusks. The European Food Safety Authority published a Scientific Opinion setting a recommended threshold for TTX in mollusks of 44 µg equivalent kg−1 and calling all member states to contribute to an effort to gather data in order to produce a more exhaustive risk assessment. The objective of this work was to assess TTX levels in wild and farmed mussels (Mytilus galloprovincialis) harvested in 2018–2019 along the coastal area of the Marche region in the Central Adriatic Sea (Italy). The presence of Vibrio spp. carrying the non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes, which are suspected to be involved in TTX biosynthesis, was also investigated. Out of 158 mussel samples analyzed by hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry (HILIC-MS/MS), 11 (7%) contained the toxins at detectable levels (8–26 µg kg−1) and 3 (2%) contained levels above the EFSA safety threshold (61–76 µg kg−1). Contaminated mussels were all harvested from natural beds in spring or summer. Of the 2019 samples, 70% of them contained V. alginolyticus strains with the NRPS and/or PKS genes. None of the strains containing NRPS and/or PKS genes showed detectable levels of TTXs. TTXs in mussels are not yet a threat in the Marche region nor in Europe, but further investigations are surely needed.  相似文献   

9.
Red yeasts of the genus Rhodotorula are of great interest to the biotechnological industry due to their ability to produce valuable natural products, such as lipids and carotenoids with potential applications as surfactants, food additives, and pharmaceuticals. Herein, we explored the biosynthetic potential of R. mucilaginosa 50-3-19/20B collected from the Mid-Atlantic Ridge using modern genomics and untargeted metabolomics tools. R. mucilaginosa 50-3-19/20B exhibited anticancer activity when grown on PDA medium, while antimicrobial activity was observed when cultured on WSP-30 medium. Applying the bioactive molecular networking approach, the anticancer activity was linked to glycolipids, namely polyol esters of fatty acid (PEFA) derivatives. We purified four PEFAs (1–4) and the known methyl-2-hydroxy-3-(1H-indol-2-yl)propanoate (5). Their structures were deduced from NMR and HR-MS/MS spectra, but 1–5 showed no anticancer activity in their pure form. Illumina-based genome sequencing, de novo assembly and standard biosynthetic gene cluster (BGC) analyses were used to illustrate key components of the PEFA biosynthetic pathway. The fatty acid producing BGC3 was identified to be capable of producing precursors of PEFAs. Some Rhodotorula strains are able to convert inulin into high-yielding PEFA and cell lipid using a native exo-inulinase enzyme. The genomic locus for an exo-inulinase enzyme (g1629.t1), which plays an instrumental role in the PEFA production via the mannitol biosynthesis pathway, was identified. This is the first untargeted metabolomics study on R. mucilaginosa providing new genomic insights into PEFA biosynthesis.  相似文献   

10.
Chrysomycin A is one of the most promising therapeutic candidates for treating infections caused by multidrug-resistant Gram-positive bacteria. By hybridizing next-step generation (Illumina) and third-generation (PacBio) sequencing technologies, a high-quality chromosome-level genome together with a plasmid was firstly assembled for chrysomycin A-producing marine strain 891. Phylogenetic analysis of the 16S rRNA gene and genome sequences revealed that this strain unambiguously belonged to the genus Streptomyces, and its genomic features and functional genes were comprehensively analyzed and annotated. AntiSMASH analysis of this strain unveiled one key biosynthetic gene cluster, T2PKS, responsible for the biosynthesis of chrysomycin, the biosynthesis pathway of which was putatively proposed. These findings definitely shed light on further investigation for construction of a robust industrial strain with high-yield chrysomycin A production using genetic engineering techniques and combinatorial biology approaches.  相似文献   

11.
A new versatile actinobacterium designated as strain NJES-13 was isolated from the feces of the Antarctic emperor penguin. This new isolate was found to produce two active gephyromycin analogues and bioflocculanting exopolysaccharides (EPS) metabolites. Phylogenetic analysis based on pairwise comparison of 16S rRNA gene sequences showed that strain NJES-13 was closely related to Mobilicoccus pelagius Aji5-31T with a gene similarity of 95.9%, which was lower than the threshold value (98.65%) for novel species delineation. Additional phylogenomic calculations of the average nucleotide identity (ANI, 75.9–79.1%), average amino acid identity (AAI, 52.4–66.9%) and digital DNA–DNA hybridization (dDDH, 18.6–21.9%), along with the constructed phylogenomic tree based on the up-to-date bacterial core gene (UBCG) set from the bacterial genomes, unequivocally separated strain NJES-13 from its close relatives within the family Dermatophilaceae. Hence, it clearly indicated that strain NJES-13 represented a putative new actinobacterial species isolated from the gut microbiota of mammals inhabiting the Antarctic. The obtained complete genome of strain NJES-13 consisted of a circular 3.45 Mb chromosome with a DNA G+C content of 67.0 mol%. Furthering genome mining of strain NJES-13 showed the presence of five biosynthetic gene clusters (BGCs) including one type III PKS responsible for the biosynthesis of the core of gephyromycins, and a series of genes encoding for bacterial EPS biosynthesis. Thus, based on the combined phylogenetic and active metabolites characterization presented in this study, we confidently conclude that strain NJES-13 is a novel, fresh actinobacterial candidate to produce active gephyromycins and microbial bioflocculanting EPS, with potential pharmaceutical, environmental and biotechnological implications.  相似文献   

12.
New carboxamides, (±)-vochysiamide C (1) and (+)-vochysiamide B (2), and a new polyketide, 4S,3aS,9aR-3a,9a-deoxy-3a hydroxy-1-dehydroxyarthrinone (3), were isolated and identified from the sponge-derived fungus Arthrinium sp. SCSIO 41421, together with other fifteen known natural products (4–18). Their structures including absolute configurations were determined by detailed NMR, MS spectroscopic analyses, calculated electronic circular dichroism (ECD), as well as quantum-chemical NMR calculations. Preliminary bioactivity screening and molecular docking analysis revealed that several natural products exhibited obvious enzyme inhibitory activities against acetylcholinesterase (AChE), such as 2,3,6,8-tetrahydroxy-1-methylxanthone (4) with an inhibitory rate 86% at 50 μg/mL.  相似文献   

13.
Three new napyradiomycins (1–3) were isolated from the culture broth of a marine-derived actinomycete strain SCSIO 10428, together with six known related analogues napyradiomycin A1 (4), 18-oxonapyradiomycin A1 (5), napyradiomycin B1 (6), napyradiomycin B3 (7), naphthomevalin (8), and napyradiomycin SR (9). The strain SCSIO 10428 was identified as a Streptomyces species by the sequence analysis of its 16S rRNA gene. The structures of new compounds 1–3, designated 4-dehydro-4a-dechloronapyradiomycin A1 (1), 3-dechloro-3-bromonapyradiomycin A1 (2), and 3-chloro-6,8-dihydroxy-8-α-lapachone (3), respectively, were elucidated by comparing their 1D and 2D NMR spectroscopic data with known congeners. None of the napyradiomycins 1–9 showed antioxidative activities. Napyradiomycins 1–8 displayed antibacterial activities against three Gram-positive bacteria Staphylococcus and Bacillus strains with MIC values ranging from 0.25 to 32 μg mL−1, with the exception that compound 3 had a MIC value of above 128 μg mL−1 against Staphylococcus aureus ATCC 29213. Napyradiomycins 2, 4, 6, and 7 exhibited moderate cytotoxicities against four human cancer cell lines SF-268, MCF-7, NCI-H460, and HepG-2 with IC50 values below 20 μM, while the IC50 values for other five napyradiomycins 1, 3, 5, 8 and 9 were above 20 μM.  相似文献   

14.
A new strain belonging to the genus Collimonas was isolated from the sea surface microlayer off the coast of Trøndelag, Norway. The bacterium, designated Collimonas CT, produced an antibacterial compound active against Micrococcus luteus. Subsequent studies using LC-MS identified this antibacterial compound as violacein, known to be produced by several marine-derived bacteria. Fragments of the violacein biosynthesis genes vioA and vioB were amplified by PCR from the Collimonas CT genome and sequenced. Phylogenetic analysis of these sequences demonstrated close relatedness of the Collimonas CT violacein biosynthetic gene cluster to those in Janthinobacterium lividum and Duganella sp., suggesting relatively recent horizontal gene transfer. Considering diverse biological activities of violacein, Collimonas CT shall be further studied as a potential producer of this compound.  相似文献   

15.
Hahella is one characteristic genus under the Hahellaceae family and shows a good potential for synthesizing new natural products. In this study, we examined the distribution of the secondary metabolite biosynthetic gene cluster (SMBGC) under Hahella with anti-SMASH. The results derived from five genomes released 70 SMBGCs. On average, each strain contains 12 gene clusters, and the most abundant ones (45.7%) are from the family of non-ribosomal peptide synthetase (NRPS) and non-ribosomal peptide synthetase hybrid with polyketide synthase (NRPS/PKS), indicating a great potential to find bioactive compounds. The comparison of SMBGC between H. chejuensis and other species showed that H. chejuensis contained two times more gene clusters than H. ganghwensis. One strain, designed as NBU794, was isolated from the mangrove soil of Dongzhai Port in Haikou (China) by iChip. The 16S rRNA gene of NBU794 exhibited 99% identity to H. chejuensis KCTC 2396 and clustered with the H. chejuensis clade on the phylogenetic trees. Genome mining on strain NBU794 released 17 SMBGCs and two groups of bioactive compounds, which are chejuenolide A-C and nine prodiginines derivatives. The prodiginines derivatives include the well-known lead compound prodigiosin and two new compounds, 2-methyl-3-pentyl-4-O-methyl-prodiginine and 2-methyl-3-octyl-prodiginine, which were identified through fragmentation analysis based on LC-MS/MS. The anti-microbial activity assay showed prodigiosin and 2-methyl-3-heptyl-prodiginine exhibited the best performance in inhibiting Escherichia coli, Salmonella paratyphi B, MASA Staphylococcus aureus, Bacillus subtilis, and Candida albicans. Moreover, the yield of prodigiosin in H. chejuensis NBU794 was also evaluated, which could reach 1.40 g/L under the non-optimized condition and increase to 5.83 g/L in the modified ISP4 medium with macroporous adsorption beads added, indicating that NBU794 is a promising source of prodigiosin.  相似文献   

16.
Three complex polyoxygenated diterpenoids possessing uncommon tetradecahydro-2,13:6,9-diepoxybenzo[10]annulene scaffold, namely ximaoornatins A–C (1–3), one new eunicellin-type diterpene, litophynin K (4), and a related known compound, litophynol B (5) were isolated from the South China Sea soft coral Sinularia ornata. The structures and absolute configurations of 1–4 were established by extensive spectroscopic analysis, X-ray diffraction analysis, and/or modified Mosher’s method. A plausible biosynthetic relationship of 1 and its potential precursor 4 was proposed. In a bioassay, none of the isolated compounds showed obvious anti-inflammatory activity on LPS-induced TNF-α release in RAW264.7 macrophages and PTP1B inhibitory effects.  相似文献   

17.
The mangrove-sediment-derived actinomycete strain Streptomyces psammoticus SCSIO NS126 was found to have productive piericidin metabolites featuring anti-renal cell carcinoma activities. In this study, in order to explore more diverse piericidin derivatives, and therefore to discover superior anti-tumor lead compounds, the NS126 strain was further fermented at a 300-L scale under optimized fermentation conditions. As a result, eight new minor piericidin derivatives (piericidins L-R (1–7) and 11-demethyl-glucopiericidin A (8)) were obtained, along with glucopiericidin B (9). The new structures including absolute configurations were determined by spectroscopic methods coupled with experimental and calculated electronic circular dichroism. We also proposed plausible biosynthetic pathways for these unusual post-modified piericidins. Compounds 1 and 6 showed selective cytotoxic activities against OS-RC-2 cells, and 2–5 exhibited potent cytotoxicity against HL-60 cells, with IC50 values lower than 0.1 μM. The new piericidin glycoside 8 was cytotoxic against ACHN, HL-60 and K562, with IC50 values of 2.3, 1.3 and 5.5 μM, respectively. The ability to arrest the cell cycle and cell apoptosis effects induced by 1 and 6 in OS-RC-2 cells, 2 in HL-60 cells, and 8 in ACHN cells were then further investigated. This study enriched the structural diversity of piericidin derivatives and confirmed that piericidins deserve further investigations as promising anti-tumor agents.  相似文献   

18.
A new linear polyketide, named aspormisin A (1), together with five known polyketides (2–6), were isolated from the alga-derived fungus Aspergillus ochraceopetaliformis SCSIO 41020. Their structures were elucidated through a detailed comprehensive spectroscopic analysis, as well as a comparison with the literature. An anti-inflammatory evaluation showed that compounds 2, 5, and 6 possessed inhibitory activity against the excessive production of nitric oxide (NO) and pro-inflammatory cytokines in LPS-treated RAW 264.7 macrophages in a dose-dependent manner without cytotoxicity. Further studies revealed that compound 2 was active in blocking the release of pro-inflammatory cytokines (IL-6, MCP-1, and TNF-α) induced by LPS both in vivo and in vitro. Our findings provide a basis for the further development of linear polyketides as promising anti-inflammatory agents.  相似文献   

19.
The siderophore avaroferrin (1), an inhibitor of Vibrio swarming that was recently identified in Shewanella algae B516, was produced by heterologous expression of the biosynthetic gene cluster cloned from a deep-sea sediment metagenomic DNA, together with two analogues, bisucaberin (2) and putrebactin (3). Avaroferrin (1) is a macrocyclic heterodimer of N-hydroxy-N-succinyl cadaverine (4) and N-hydroxy-N-succinyl-putrescine (5), whereas analogues 2 and 3 are homodimers of 4 and 5, respectively. Heterologous expression of two other related genes from culturable marine bacteria resulted in production of compounds 1–3, but in quite different proportions compared with production through expression of the metagenomic DNA.  相似文献   

20.
A pair of novel lipopeptide epimers, sinulariapeptides A (1) and B (2), and a new phthalide glycerol ether (3) were isolated from the marine algal-associated fungus Cochliobolus lunatus SCSIO41401, together with three known chromanone derivates (4–6). The structures of the new compounds, including the absolute configurations, were determined by comprehensive spectroscopic methods, experimental and calculated electronic circular dichroism (ECD), and Mo2 (OAc)4-induced ECD methods. The new compounds 1–3 showed moderate inhibitory activity against acetylcholinesterase (AChE), with IC50 values of 1.3–2.5 μM, and an in silico molecular docking study was also performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号