首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the epidemic of equine influenza which occurred in India in 1987, serum samples were collected at late acute/early convalescent phase (7–9 days), at 5 weeks and at 18–23 weeks after onset of illness, from six affected horses from the Union Territory of Changigarh, and Nawanshahr, Punjab State, India, and were examined for antibodies to A/eq-1 and A/eq-2 influenza viruses by hemagglutination inhibition (HI) tests. It was found that the antibody response to A/eq-1 virus strains, Ludhiana/87 and Prague/56, was stronger and antibodies persisted at high levels in four animals. The fifth animal showed a diagnostic decrease in HI titers while the sixth animal seroconverted. The corresponding HI titers to A/eq-2/Ludhiana virus showed a 4-fold decrease in all six animals.Another nine equine animals in the single convalescent serum samples had detectable or high HI titers against A/eq-1 and A/eq-2 viruses.In serum samples from horses and ponies, taken 5 weeks to 9 months after onset of illness, little or no difference in antibody titers to A/eq-2/Miami/63 and A/eq-2/Fontainebleau/79 strains was found.It seems clear that the antibody titers that ensued were indicative of recent influenza infections. Apparently, two distinct equine influenza viruses, A/eq-1 and A/eq-2, were involved during the epidemic, infecting the equine animals simultaneously in the region.  相似文献   

2.
This study has tested the effect of using homologous or heterologous equine influenza A virus isolates to evaluate serum antibody levels to influenza A virus in vaccinated and naturally-infected horses. In addition, the potential effect of antigenic selection of virus variants in egg versus tissue culture propagation systems was studied. Serum antibody levels in samples from horses recently infected with a local influenza A virus isolate (A/equine 2/Saskatoon/1/90) or recently vaccinated with a prototype isolate (A/equine 2/Miami/1/63) were assessed by hemagglutination inhibition and by single radial hemolysis using cell or egg-propagated A/equine 2/Saskatoon/1/90, A/equine 2/Miami/1/63 or A/equine 2/Fontainebleau/1/79. There were no significant differences in hemagglutination inhibition or single radial hemolysis antibody levels obtained with homologous or heterologous isolates or between viruses propagated in either eggs or cell culture. However there was a trend to higher titers in the hemagglutination inhibition assay when cell-propagated virus was used. These results suggest that antigenic variation in equine influenza A virus isolates and host-cell selection of antigenic variants during virus propagation may not be of sufficient magnitude to influence serological evaluation of antibody responses by hemagglutination inhibition or single radial hemolysis.  相似文献   

3.
OBJECTIVE: To evaluate efficacy of a commercial vaccine for prevention of infectious upper respiratory tract disease (IURD) caused by equine influenza virus. DESIGN: Double-masked, randomized, controlled field trial. ANIMALS: 462 horses stabled at a Thoroughbred racetrack. PROCEDURE: Vaccine or saline solution placebo was administered 4 times in the population at 6-week intervals. The vaccine contained 3 strains of inactivated influenza virus, and inactivated equine herpesvirus type 4. Horses received 1 or 2 doses of vaccine or placebo prior to onset of a natural influenza epidemic, and were examined 5 d/wk to identify and monitor horses with IURD. Serum antibody concentrations were determined, and virus isolation was performed. RESULTS: Vaccination of horses prior to the influenza epidemic did not result in significant decrease in risk of developing respiratory tract disease. Severity of clinical disease was not different between affected vaccinated horses with IURD and controls with IURD, but median duration of clinical disease was 3 days shorter in vaccinated horses. Serum concentrations of antibodies to H3N8 influenza viruses were lower prior to initial vaccination in horses that were sick during the epidemic, and did not increase in these horses in response to vaccination. On arrival at the racetrack, young horses had lower antibody concentrations than older horses, and did not respond to vaccination as well. CONCLUSIONS AND CLINICAL RELEVANCE: Vaccination was of questionable benefit. A greater degree of protection must be obtained for influenza vaccines to be effective in protecting horses from IURD. Objective field evaluations of commercial vaccines are needed to adequately document their efficacy.  相似文献   

4.
The objective of this project was to develop and implement an active surveillance program for the early and rapid detection of equine influenza viruses in Ontario. For this purpose, from October 2003 to October 2005, nasopharyngeal swabs and acute and convalescent serum samples were collected from 115 client-owned horses in 23 outbreaks of respiratory disease in Ontario. Sera were paired and tested for antibody to equine influenza 1 (AE1-H7N7), equine influenza 2 (AE2-H3N8), equine herpesvirus 1 and 4 (EHV1 and EHV4), and equine rhinitis A and B (ERAV and ERBV). Overall, the cause-specific morbidity rate of equine influenza virus in the respiratory outbreaks was 56.5% as determined by the single radial hemolysis (SRH) test. The AE2-H3N8 was isolated from 15 horses in 5 outbreaks. A 4-fold increase in antibody levels or the presence of a high titer against ERAV or ERBV was observed in 10 out of 13 outbreaks in which AE2-H3N8 was diagnosed as the primary cause of disease. In conclusion, AE2-H3N8 was found to be an important contributor to equine respiratory viral disease. Equine rhinitis A and B (ERAV and ERBV) represented an important component in the equine respiratory disease of performing horses.  相似文献   

5.
In Italy epizootics of equine influenza often occur, but no virus isolation has been reported since 1971. This paper describes the antigenic and biochemical characterization of two equine influenza viruses isolated in Italy from 1985 to 1989. The virus isolates were shown to differ antigenically from earlier strains of the same subtype, A/equine/Miami/1/63 (H3N8). Monoclonal antibody analysis showed that the haemagglutinins of these strains were serologically indistinguishable from A/equine/Fontainebleau/1/79, a variant of A/equine/Miami, never isolated in Italy before. One of the two virus isolates was obtained from a horse immunized with a bivalent inactivated influenza vaccine, not containing A/equine/Fontainebleau/79 antigens.

The vaccine failure underlines the importance of antigenic relatedness between currently circulating viruses and vaccine strains. Therefore, to improve the protection afforded by equine immunization, the vaccine composition should be decided according to the results of a virological surveillance activity, systematically conducted among horses.  相似文献   


6.
BACKGROUND: The proportion of geriatric horses within the equine population has increased in the past decade, but there is limited information on the immune function of these animals. HYPOTHESIS: Aged horses will have a lesser increase in serum antibody response to vaccination. ANIMALS: Thirty-four aged healthy horses (> or = 20 years) and 29 younger adult horses (4-12 years) of various breeds. METHODS: All horses were vaccinated with vaccines of killed rabies and influenza virus. Horses in each age group were allocated to receive either rabies or influenza booster vaccine 4 weeks after the initial vaccination. Serum samples were taken at 0, 4, 8, and 24 weeks. Rabies serum neutralization titers and equine influenza virus specific antibody sub-isotypes (IgGa, IgGb, IgG(T), and IgA) as well as single radial hemolysis (SRH) titers were determined. RESULTS: Rabies antibody titers were similar in the 2 age groups at all sampling times. Aged horses had higher IgGa and IgGb influenza antibody titers before vaccination than younger horses but similar titers after vaccination (P= .004 and P= .0027, respectively). Younger horses had significantly greater increases in titer than aged horses at all sampling times for IgGa (P= .001) and at 8 and 24 weeks for IgGb (P= .041 and .01, respectively). There was no detectable serum IgG(T) at any time point. A significant booster vaccine effect was seen for both antirabies and anti-influenza titers. Anti-influenza titer before vaccination also had a significant effect on subsequent antibody response. CONCLUSIONS AND CLINICAL IMPORTANCE: Healthy aged horses generated a primary immune response to a killed rabies vaccine similar to that of younger adult horses. Aged horses had a significantly reduced anamnestic response to influenza vaccine.  相似文献   

7.
Antigenic variation among equine H 3 N 8 influenza virus hemagglutinins   总被引:1,自引:0,他引:1  
To provide information on the antigenic variation of the hemagglutinins (HA) among equine H 3 influenza viruses, 26 strains isolated from horses in different areas in the world during the 1963-1996 period were analyzed using a panel of monoclonal antibodies recognizing at least 7 distinct epitopes on the H 3 HA molecule of the prototype strain A/equine/Miami/1/63 (H 3 N 8). The reactivity patterns of the virus strains with the panel indicate that antigenic drift of the HA has occurred with the year of isolation, but less extensively than that of human H 3 N 2 influenza virus isolates, and different antigenic variants co-circulate. To assess immunogenicity of the viruses, antisera from mice vaccinated with each of the 7 representative inactivated viruses were examined by neutralization and hemagglutination-inhibition tests. These results emphasize the importance of monitoring the antigenic drift in equine influenza virus strains and to introduce current isolates into vaccine. On the basis of the present results, equine influenza vaccine strain A/equine/Tokyo/2/71 (H 3 N 8) was replaced with A/equine/La Plata/1/93 (H 3 N 8) in 1996 in Japan. The present results of the antigenic analysis of the 26 strains supported the results of a phylogenetic analysis, that viruses belonging to each of the Eurasian and American equine influenza lineages have independently evolved. However, the current vaccine in Japan consists of two American H 3 N 8 strains; A/equine/Kentucky/1/81 and A/equine/La Plata/1/93. It is also therefore recommended that a representative Eurasian strain should be included as a replacement of A/equine/Kentucky/1/81.  相似文献   

8.
An inactivated, aluminum hydroxide adjuvant equine influenza vaccine was tested in horses and guinea pigs to determine the levels of antigen that would elicit maximum serological responses. Vaccine containing serial twofold increments of A/Equi-1/Prague and A/Equi-2/Miami strains of equine influenza virus was administered to random groupings of both types of test animals. The hemagglutination inhibition antibody response for each group was then measured. Results in horses and guinea pigs were compared to determine if the equine serological values could be related to a potency test in laboratory animals. The highest mean hemagglutination inhibition antibody response in horses occurred in groups vaccinated, respectively, with 128 or 256 hemagglutination units of A/Equi-1 and 512 or 1024 hemagglutination units of A/Equi-2 antigen. Groups vaccinated with further two- or fourfold increases in these antigens had mean hemagglutination inhibition titers that were somewhat lower than the maximum levels. When graded doses of vaccine were given to guinea pigs, their hemagglutination inhibition antibody titers reached a plateau of maximum values, similar to the serological response in vaccinated horses. Test horses remained clinically free from signs of equine influenza during the year following vaccination and no untoward post-vaccination reactions were observed.  相似文献   

9.
Influenza A viruses of the H3N8 subtype are a major cause of respiratory disease in horses. Subclinical infection with virus shedding can occur in vaccinated horses, particularly where there is a mismatch between the vaccine strains and the virus strains circulating in the field. Such infections contribute to the spread of the disease. Rapid diagnostic techniques are available for detection of virus antigen and can be used as an aid in control programmes. Improvements have been made to methods of standardising inactivated virus vaccines, and a direct relationship between vaccine potency measured by single radial diffusion and vaccine-induced antibody measured by single radial haemolysis has been demonstrated. Improved adjuvants and antigenic presentation systems extend the duration of immunity induced by inactivated virus vaccines, but high levels of antibody are required for protection against field infection. In addition to circulating antibody, infection with influenza virus stimulates mucosal and cellular immunity; unlike immunity to inactivated virus vaccines, infection-induced immunity is not dependent on the presence of circulating antibody to HA. Live attenuated or vectored equine influenza vaccines, which may better mimic the immunity generated by influenza infection than inactivated virus vaccines, are now available. Mathematical modelling based upon experimental and field data has been applied to examine issues relating to vaccine efficacy at the population level. A vaccine strain selection system has been implemented and a more global approach to the surveillance of equine influenza is being developed.  相似文献   

10.
REASONS FOR PERFORMING STUDY: Horses vaccinated against common agents of infectious upper respiratory disease (IURD) may not have detectable serum antibody and may not be protected from clinical disease. OBJECTIVES: The objectives of this study were to 1) investigate the serological response of horses to vaccination against influenza virus (H3N8 and H7N7) and equine herpesviruses (EHV) in a field setting and 2) evaluate associations among vaccination status, serum antibody concentrations, and occurrences of IURD in monitored horses. METHODS: In this study, horses on 6 Colorado premises were vaccinated parenterally against influenza virus and EHV, and serological response evaluated. Horses were monitored, and biological samples collected from individuals with clinical IURD and control horses. RESULTS: Of 173 horses, 61 (35.3%), 21 (12.1%) and 4 (2.3%) seroconverted in response to vaccination against EHV, influenza virus H7N7 and influenza virus H3N8, respectively. CONCLUSIONS: Outbreaks of IURD in study horses were associated with influenza virus H3N8 and Streptococcus equi infection, and serological response to vaccination with conventional products was poor. POTENTIAL RELEVANCE: These results confirm that horses may not respond with detectable serological responses to conventional vaccination against common respiratory viruses and, therefore, suggest that alternate methods of protecting horses against common respiratory viruses should be sought.  相似文献   

11.
The complement fixation-inhibition (CFI) test was described for the detection of antibodies to arboviruses in bird sera. The CFI antibody present in bird sera inhibited the standard complement-fixation reaction of a reference complement-fixing antigen-antibody pair. Using reference antigens (St. Louis encephalitis, eastern equine encephalomyelitis, western equine encephalomyelitis, and yellow fever) prepared from infected mouse brains and reference antisera prepared in rabbits or horses, reproducible CFI antibody titers were obtained in artificially immunized chickens. Time-course studies on the CFI immune response in birds inoculated with live St. Louis encephalitis virus indicated that the CFI antibody was distinct from the antibody detected by the hemagglutination-inhibition test.  相似文献   

12.
Paired sera from 28 nonvaccinated horses with serologically confirmed western equine encephalitis (WEE) virus infections were evaluated for immunoglobulin (Ig)M and IgG directed against WEE virus, by use of enzyme immunoassay. Twenty-one of the horses developed greater than or equal to 4-fold increases or decreases in serum IgM titers in paired serum samples, confirming the diagnosis of WEE in these horses. Of the remaining 7 horses, 1 had stable IgM titers, 1 had a 2-fold increase in IgM titer between paired sera, 2 had 2-fold decreases in IgM titer, and for 3 horses adequate volumes were not available for both sera of the pair. Twenty-nine of 56 blood samples collected from these 28 horses had been collected within the first 3 days after clinical disease was recognized; all 28 horses and 48 of 53 available serum samples had IgM antibody to WEE virus. Immunoglobulin M also was detected in sera of 27 of 45 other nonvaccinated horses that had illnesses clinically compatible with WEE. Sera with IgM did not have cross-reacting IgM against eastern equine encephalitis virus. Therefore, the sensitivity, specificity, and lack of persistence of IgM was useful in the rapid diagnosis of WEE virus infections in horses.  相似文献   

13.
OBJECTIVE: To compare exercise-induced immune modulation in young and older horses. ANIMALS: 6 young and 6 aged horses that were vaccinated against equine influenza virus. PROCEDURE: Venous blood samples were collected for immunologic assessment before and immediately after exercise at targeted heart rates and after exercise for determination of plasma lactate and cortisol concentrations. Mononuclear cells were assayed for lymphoproliferative responses and incubated with interleukin-2 (IL-2) to induce lymphokine-activated killer (LAK) cells. Antibodies to equine influenza virus were measured. RESULTS: Older horses had significantly lower proliferative responses to mitogens than younger horses prior to exercise. Exercise caused a significant decrease in lymphoproliferative response of younger horses, but not of older horses. Activity of LAK cells increased slightly with exercise intensity in younger horses. Cortisol concentrations increased in both groups after exercise; younger horses had higher concentrations after exercise at heart rates of 180 and 200 beats/min than those of older horses. Plasma lactate concentrations increased with exercise intensity but there were no differences between older and younger horses. Older horses had lower antibody titers to equine influenza virus than younger horses. Exercise did not affect antibody titers. CONCLUSION: Although lymphoproliferative responses and antibody titers of older horses were less than those of younger horses, older horses were more resistant to exercise-induced changes in immune function, possibly because of lower cortisol concentrations. CLINICAL RELEVANCE: Stress and aging are known to affect immune function. Older horses had reduced immune function, but were more resistant to exercise-induced immune suppression than younger horses.  相似文献   

14.
Reported here are the results of antigenic and genetic characterisation of equine influenza strains causing local outbreaks reported to the Equine Diagnostic Centre in Berlin, Germany. In 2000, equine influenza virus was detected in a nasal swab from a non-vaccinated horse using a rapid diagnostic kit, but was not successfully isolated. Partial direct sequencing of the haemagglutinin (HA1) gene, indicated that the virus was a European lineage H3N8 subtype strain representative of strains isolated in several European countries during 2000. In 2002, two equine influenza viruses were isolated from nasal swabs both taken from unvaccinated horses with acute respiratory symptoms housed at the same stables. Antigenic characterisation using a panel of ferret antisera suggested that these isolates also belonged to the European lineage of H3N8 viruses. Analysis of deduced HA1 amino acid sequences confirmed that the HA1 of both isolates were identical and belonged to the European lineage. However, from phylogenetic analysis, both strains appeared to be more closely related to viruses isolated between 1989 and 1995 than to viruses isolated more recently in Europe. These results suggested that viruses with fewer changes than those on the main evolutionary lineage may continue to circulate. The importance of expanding current equine influenza surveillance efforts is emphasised.  相似文献   

15.
Between March and May 2003, equine influenza virus infection was confirmed as the cause of clinical respiratory disease among both vaccinated and unvaccinated horses of different breeds and types in at least 12 locations in the UK. In the largest outbreak, 21 thoroughbred training yards in Newmarket, with more than 1300 racehorses, were affected, with the horses showing signs of coughing and nasal discharge during a period of nine weeks. Many of the infected horses had been vaccinated during the previous three months with a vaccine that contained representatives from both the European (A/eq/Newmarket/2/93) and American (A/eq/Newmarket/1/93) H3NN8 influenza virus lineages. Antigenic and genetic characterisation of the viruses from Newmarket and elsewhere indicated that they were all closely related to representatives of a sublineage of American viruses, for example, Kentucky/5/02, the first time that this sublineage had been isolated in the uk. In the recently vaccinated racehorses in Newmarket the single radial haemolysis antibody levels in acute sera appeared to be adequate, and there did not appear to be significant antigenic differences between the infecting virus and A/eq/Newmarket/1/93, the representative of the American lineage virus present in the most widely used vaccine, to explain the vaccine failure. However, there was evidence for significantly fewer infections among two-year-old horses than older animals, despite their having similar high levels of antibody, consistent with a qualitative rather than a quantitative difference in the immunity conveyed by the vaccination.  相似文献   

16.
The clinical diagnosis of equine influenza was first based on the spectacular contagiousness of the disease, the general clinical resemblances to human influenza and the almost complete absence of complications usually observed in infectious viral arteritis, viral rhinopneumonitis or in other respiratory infections of the horses. The specific viral etiology of the epizootic was ascertained through the isolation of a type A influenza virus and further substantiated by evaluation of the immunological response of the sick horses, as demonstrated by complement fixation and hemagglutination-inhibition tests, using normal and convalescent sera.  相似文献   

17.
Mycoplasma felis was identified as the cause of acute pleuritis in 2 show-jumping horses. The pleural exudate was proteinaceous, contained large numbers of neutrophils, and had a markedly increased lactate concentration. M. felis was isolated in pure culture from pleural fluid. Rising serum antibody titers to M. felis as well as a precipitous decline in titers to equine influenza virus were demonstrated in both horses. Pleural effusion in both horses and a pneumothorax detected in one of the horses resolved following a single drainage of pleural fluid and intravenous fluid, antibiotic, and analgesic therapy.  相似文献   

18.
From outbreaks of upper respiratory infection of horses in the Toronto area between 1960 and 1963, several viruses have been isolated. The viruses, isolated in tissue cultures or eggs, include an equine strain of Myxovirus parainfluenzae 3; two strains of equine influenza virus, A/equi-1/Prague/56, and A/equi-2/Miami/63; equine rhinopneumonitis virus, and two newly recognized viruses of the horse, equine rhinoviruses. In addition serological evidence suggested a widespread infection with these viruses in the population under study. Because of the identical clinical picture seen and the complex etiology of the disease, immunization against upper respiratory disease of the horse does not appear to be completely feasible at this time.  相似文献   

19.
A survey was conducted by testing 115 paired equine serum and cerebrospinal fluid samples by hemagglutination-inhibition for antibodies to Powassan and snowshoe hare viruses, and by virus neutralization for antibodies to equine herpesvirus type 1. Twenty-five samples were from horses with spontaneous neurological disease and the remainder from horses euthanized because of various nonneurological disorders. All sera and cerebrospinal fluids were negative for antibodies to Powassan virus. Fifty-one sera (44.3%) and 15 cerebrospinal fluids (13.0%) had antibodies to snowshoe hare virus. Ninety-eight sera (85.2%) and four cerebrospinal fluids (3.5%) were positive for antibodies to equine herpesvirus type 1. Powassan virus was inoculated intracerebrally into one, and intravenously into four ponies. Neurological signs associated with a nonsuppurative encephalomyelitis occurred in three ponies. Antibodies to Powassan virus were detected in sera of all animals but in cerebrospinal fluids of only two. Powassan virus was isolated from brain and spinal cord of only the intracerebrally inoculated animal.  相似文献   

20.
AIM: To identify viruses associated with respiratory disease in young horses in New Zealand.

METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3).

RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV. Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV-2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR)=2.67, 95% CI=1.59-4.47, p=0.017].

CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV-2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号