首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two experiments were performed to develop prediction equations of saleable beef and to validate the prediction equations. In Exp. 1, 50 beef cattle were finished to typical slaughter weights, and multiple linear regression equations were developed to predict kilograms of trimmed boneless, retail product of live cattle, and hot and cold carcasses. A four-terminal bioelectrical impedance analyzer (BIA) was used to measure resistance (Rs) and reactance (Xc) on each animal and processed carcass. The IMPS cuts plus trim were weighed and recorded. Distance between detector terminals (Lg) and carcass temperature (Tp) at time of BIA readings were recorded. Other variables included live weight (BW), hot carcass weight (HCW), cold carcass weight (CCW), and volume (Lg2/Rs). Regression equations for predicting kilograms of saleable product were [11.87 + (.409 x BW) - (.335 x Lg) + (.0518 x volume)] for live (R2 = .80); [-58.83 + (.589 x HCW) - (.846 x Rs) + (1.152 x Xc) + (.142 x Lg) + (2.608 x Tp)] for hot carcass (R2 = .95); and [32.15 + (.633 x CCW) + (.33 x Xc) - (.83 x Lg) + (.677 x volume)] for cold carcass (R2 = .93). In Exp. 2, 27 beef cattle were finished in a manner similar to Exp. 1, and the prediction equations from Exp. 1 were used to predict the saleable product of these animals. The Pearson correlations between actual saleable product and the predictions based on live and cold carcass data were .91 and .95, respectively. The Spearman and Kendall rank correlations were .95 and .83, respectively, for the cold carcass data. These results provide a practical application of bioelectrical impedance for market-based pricing. They complement previous studies that assessed fat-free mass.  相似文献   

2.
Growth, development, and carcass composition in five genotypes of swine.   总被引:3,自引:0,他引:3  
An experiment with 127 barrows representing five genotypes, 1) H x HD, 2) SYN, 3) HD x L[YD], 4) L x YD, and 5) Y x L (H = Hampshire, D = Duroc, SYN = synthetic terminal sire line, L = Landrace, and Y = Yorkshire), was conducted to evaluate growth and development of swine from 59 to 127 kg live weight. Animals were allowed ad libitum access to a pelleted finishing diet containing 18.5% CP, .95% lysine, and 10.5% fat, with an energy density of 3,594 kcal of ME/kg. Pigs were serially slaughtered at either 59, 100, 114, or 127 kg live BW. After slaughter, carcasses were chilled and backfat was measured at four locations. The right side of each carcass was fabricated into primal cuts of ham, loin, Boston Butt, picnic, and belly. Composition of each primal cut was determined by physical dissection into lean, fat, bone, and skin. Estimated allometric growth coefficients for carcass length, carcass weight, and longissimus muscle area relative to BW; carcass lean, fat, bone, and skin relative to both BW and carcass weight; and lean in each of the primal cuts relative to total carcass lean did not differ (P greater than .05) among genotypes. Relative to BW, the pooled growth coefficient(s) for carcass weight was (were) greater (P less than .001) than unity, whereas those for carcass length, longissimus muscle area, and backfat at first rib were smaller (P less than .001) than unity. Those for other backfat measurements were close to 1.00. Relative to either BW or carcass weight, the pooled coefficient(s) for fat was (were) greater (P less than .001) than unity, whereas those for lean, bone, and skin were smaller (P less than .001) than unity. Growth of lean, backfat, bone, and skin in the carcass were nearly linearly associated with increases in BW. The increase in fat weight was curvilinear as the pig grew and was accelerated in later growth stages, indicating that carcass fat percentage increased with increased BW.  相似文献   

3.
Seventy-two Duroc x Hampshire x Yorkshire pigs were used to evaluate bioelectrical impedance procedures to predict fat-free mass of live pigs. Pigs were allotted by sex, ancestry, and weight. Pigs (12 gilts and 12 barrows) averaging 50+/-2.4 kg were slaughtered to establish a baseline for body composition. A pen of six gilts and a pen of six barrows were randomly selected for slaughter when the pen averaged either 70, 90, 110, or 130 kg. Pigs were weighed, then a four-terminal plethysmograph was used to measure resistance (omega) and reactance (omega), and length (cm) was measured between detector terminals. Pigs were slaughtered 12 h later, and carcasses were chilled for 24 h. The right side was ground twice and mixed and samples were frozen for later analyses of fat content. Actual fat-free mass (ActFFM) was determined from the weights and percentage of fat. Predicted fat-free mass (PredFFM) was calculated using the following equation: Pred FFM = .486 (live weight) - .881 (resistance) + .48 (length) + .86 (reactance) + 7.959. The correlation coefficients between ActFFM and PredFFM ranged from .66 to .91 overall. Correlation coefficients approximating slaughter weight (90 kg) were .94 (P < .02). Fat-free mass was underestimated by the prediction equation at all slaughter weights, but the predicted fat-free mass was highly correlated to the actual fat-free mass, except for the 110-kg gilts (r = .68, P = .15) and the 130-kg barrows (r = .65, P = .16). The data support the use of bioelectrical impedance to measure fat-free mass over a wide range of weights for finishing pigs.  相似文献   

4.
The objective of this experiment was to study the usefulness of bioelectrical impedance analysis (BIA) in determining soft tissue composition (STC) and carcass fat-free mass (CFFM) of Holstein steers at different ages. Growth data and prediction of STC and CFFM were determined for four groups of Holstein steers: 12 of 3 mo, 12 of 6 mo, 15 of 9 mo, and 16 of 12 mo of age. Average weight for animals at 3, 6, 9, and 12 mo were 96.6, 204.7, 354.1, and 465.9 kg, respectively. Average fat content of carcass soft tissue at 3, 6, 9, and 12 mo were 2.6, 9.8, 18.2, and 24.6%, respectively. Average protein content of the carcass soft tissue was 20.7% at 3 mo, 20% at 6 mo, 18.30% at 9 mo, and 16.9% at 12 mo of age. Feed and water were withheld for 20 h before the BIA was applied. Steers were sedated and forced to recumbency in a lateral position on their right sides over a nonconductive surface. Two electrodes were placed on each limb of the right side (metatarsal and metacarpal regions on back and front foot, respectively). Resistance (Rs) and reactance (Xc) were obtained by attaching four terminals to the electrodes. Impedance and other predictors such as Vol1 (L/Rs), Vol2 (L2/(RS2+Xc2).5, Vol3 (geometrical animal volume), L (2 x height + body length), and L2 were calculated from Rs and Xc, and body measurements and were used to generate prediction equations for CFFM and carcass soft tissue composition. Carcass fat-free mass was predicted accurately for all age groups and the pooled data (r2 = .99 at 3 mo, .99 at 6 mo, .97 at 9 mo, .77 at 12 mo, and .98 for the pooled data). Correlation coefficients between impedance readings and CFFM and carcass composition were calculated. Carcass CFFM and kilograms of H2O for the pooled data (across age groups) were both correlated highly to Vol1 (.97), Vol2 (.95), L (.97), and L2 (.97).  相似文献   

5.
To determine growth performance during and after injection of recombinant porcine somatotropin (rpSt), crossbred Yorkshire gilts and barrows (n = 54/gender, 27 to 42 kg BW) were blocked by BW and gender (n = 3 blocks/gender). Within each block, three pigs/gender were assigned randomly to each of six pens/block. A diet containing 24.8% CP was fed ad libitum. During the live weight period of 30 to 110 kg, pigs either remained as controls (one pen/block) or were injected (i.m.) daily with rpSt (120 micrograms/kg BW) during either 30 to 60, 30 to 100, 30 to 110, 60 to 100 or 60 to 110 kg BW. Thus, three gilts and three barrows in each of three pens received each treatment. Pigs were slaughtered at either 60 kg BW (1 d after rpSt injection) or 110 kg BW (1 d, 10 d or 70 d after rpSt injection). Relative to controls, pigs injected with rpSt exhibited faster and more efficient growth during the injection period (P less than .05) but slower and less efficient growth during 10 d after cessation of injection (P less than .05). Carcasses of pigs slaughtered 1 d or 10 d after rpSt injection were leaner than controls (P less than .05), but among the pigs treated with rpSt, carcasses of pigs withdrawn from rpSt for 10 d contained more fat (P less than .05) and had a lower percentage of muscle (P less than .05) than carcasses of pigs withdrawn from rpSt for 1 d. Growth and carcass measurements were similar (P greater than .05) between controls and pigs killed 70 d after rpSt injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Duroc, Meishan, Fengjing, and Minzhu boars were mated to crossbred gilts during two breeding seasons. From each sire breed group each season, six pens of approximately eight barrows each were slaughtered. A pen of pigs from each sire breed group was slaughtered at 7-d intervals from 168 to 203 d of age each season. Breed of sire effects were significant for all age-adjusted carcass traits except carcass length, fat thickness at the last rib, color score, and firmness score. At 184 d of age, Duroc crosses had the heaviest (P less than .05) slaughter and carcass weights; Minzhu crosses were lighter (P less than .05) than Meishan crosses but not lighter than Fengjing crosses. Differences among age-constant traits reflect differences in BW. After adjustment to a constant carcass weight of 78 kg, the three Chinese breeds had very similar carcass characteristics. Carcasses sired by Durocs had significantly less backfat and larger longissimus muscle area than carcasses sired by the Chinese breeds. Weight of each trimmed wholesale lean cut and their total weight were significantly higher for Duroc crosses than for Chinese crosses. Breed of sire means did not differ significantly for belly weight, but Duroc crosses had less (P less than .05) weight of leaf fat. Relative to Chinese crosses, longissimus muscles from Duroc crosses had more marbling (P less than .05). Sire breed groups did not differ significantly for color or firmness score. Pigs sired by Meishan, Fengjing, and Minzhu produced carcasses with significantly less lean content at a carcass weight of 78 kg than did pigs sired by Duroc.  相似文献   

7.
Backfat thickness, carcass length, area of M. longissimus and carcass composition were determined for 253 Large White barrows and gilts to examine the genetic influence on the main characteristics of the carcass and the correlation of these traits with body measurements and fat characteristics at 8 d of age. Pigs were born to 32 sows mated to the same boar. At the age of 8 d, weight, body length and backfat thickness and cellularity were measured. Pigs were slaughtered at 95 and 145 kg live weight. Heritability and genetic correlations were estimated with dam component of variance. Higher adiposity of carcasses was noted for barrows than for gilts and for those animals slaughtered at the heavier vs at the lighter weight. High h2 values were observed for carcass length (.89 +/- .29), area of the M. longissimus (.67 +/- .26) and backfat thickness at the gluteus medius (.77 +/- .28). Percentage of commercial cuts also had high heritabilities. Phenotypic and genetic correlations between the characteristics at 8 d and backfat thickness, carcass length and M. longissimus area at slaughter were not statistically significant. However, significant phenotypic correlations were found between cellularity of the outer and inner layers at 8 d and percentage of major cuts (e.g., rp = .27 with total fat cuts); cellularity of the outer layer at 8 d also was correlated genetically with carcass composition (e.g., rg = .50 +/- .19 with total fat cuts). Genetic predisposition toward intensive fat deposition was more clearly predicted by cellularity than by thickness of adipose tissue in newborn pigs.  相似文献   

8.
Forty-four intact, male lambs (20 Timahdit and 24 D'man) were used to assess the effects of 22% (from approximately 25 to approximately 20 kg) and 31% (from approximately 25 to approximately 17 kg) live weight loss and the subsequent refeeding to initial BW on changes in body components. Body composition was determined using a serial slaughter technique at 17, 20, and 25 kg live weight during normal growth, weight loss, and refeeding phases. Reduction in live weight from 25 to 20 kg was associated with greater loss of visceral organs (30%) and internal fat (75%) than carcass loss (19%). Further body weight loss (from 20 to 17 kg) involved carcasses to a greater extent than internal organs. The composition of BW loss consisted of 53% water, 28% fat, and 15% protein. Refeeding was associated with a rapid increase in organ weights and less fat regeneration. Although total internal organs recovered only 90% of their original weight, liver and kidneys regained all their weight. At the same slaughter weight, carcass and noncarcass components of refed lambs were leaner because of lower fat content in these components.  相似文献   

9.
A randomized complete-block design was used to evaluate the effects of the beta-adrenergic agonist, cimaterol (CL 263,780), on growth rate, feed efficiency and carcass composition of finishing swine. The drug was fed at four levels (0, .25, .5 and 1.0 ppm) to a total of 240 pigs from 64.5 to 103.7 kg live weight. Growth rate and feed efficiency were measured during the 7-wk feeding trial. Feeding cimaterol depressed feed intake, improved feed efficiency and did not alter rate of gain. Carcass evaluation showed that pigs continuously fed cimaterol had 13.2, 9.3 and 9.2% less fat measured at the 10th rib, P2 and average backfat (BF) locations, respectively, compared with controls. Cimaterol-fed pigs had increased loin eye areas (10.9%), and increased semitendinosus (11.8%) and biceps femoris (8.9%) weights compared with controls. The semitendinosus muscles of the cimaterol-fed pigs had less fat and the femur bones were shorter and lighter weight than controls. There were no detected differences in structural soundness of the live pigs, but postmortem evaluation of the hooves indicated that pigs fed 1.0 ppm cimaterol had a higher incidence of hoof lesions. Pigs withdrawn from cimaterol for 7 d were comparable in performance and carcass characteristics with those continuously fed the drug except that carcass fat measurements had generally returned to control values. The data indicate that cimaterol improved the feed efficiency of finishing pigs and increased the lean:fat ratio of their carcasses. Withdrawal of cimaterol caused compensatory fat deposition.  相似文献   

10.
A 2-yr study was conducted to evaluate the interactions of castration, feeding length, and dietary CP on growth and carcass characteristics of male cattle (bulls and steers) that vary in expression of muscular hypertrophy. Crossbred cows were bred by AI to Hereford, Limousin, or Piedmontese bulls, which represented genotypes with normal, moderate, and hypermuscularity, respectively, but with similar mature weights. Male calves (131 in yr 1 and 120 in yr 2) were placed in pens with individual electronic feeding gates. Calves were fed growing diets until they reached 386 kg BW and then were individually switched to finishing diets for 90 or 132 d. Interactions were observed among sire breed, gender, and feeding length on carcass composition. Bulls were more efficient than steers in producing live weight gain. Length of finishing period accounted for a larger source of variation than gender for weight characteristics, whereas gender was the larger source of variation for carcass composition. Concentration or degradability of dietary CP influenced rate of gain from weaning to 386 kg. Interactions resulting from varying management on carcass characteristics among calves of different sire breeds indicate that unique strategies may be beneficial for the production of meat from these breeds.  相似文献   

11.
An experiment was conducted using 17 male buffalo calves to assess the effects of plane of nutrition on slaughtering traits and meat characteristics. To attain 250 kg body weight (BW), the calves were allocated into three groups: high (H), low‐high (L‐H) and low (L) corresponding to concentrate levels receiving the concentrate at 1.50% of BW, 0.75% of BW until 190 kg BW and 1.50% thereafter, and 0.75% of BW, respectively. The animals had ad libitum access to urea‐treated rice straw. No significant differences of hot carcass weight, dressing percentage and lean fat–bone yields were observed among the treatment groups. The L group had heavier brisket weight and lower percentage of round weight in the hot carcass than the H and L‐H groups (P < 0.05). The H group had heavier hearts than the L group, and the H and L‐H groups had heavier livers and kidneys than the L group (P < 0.05). There was no significant difference of rib eye area, pH and the contents of moisture, crude protein and fat in loin meat among the groups. The findings indicated that the effects of plane of nutrition affected the weight or percentages of some cut yields in the hot carcasses and internal organs.  相似文献   

12.
Crossbred pigs (n = 200) from Duroc sires mated to Landrace x Large White dams, with a mean BW of 107.0 +/- 2.4 kg and intended for highquality dry-cured hams (Teruel ham) from Spain, were used to investigate the effects of sex (barrows and gilts) and slaughter weight (SW; 120, 125, 130, 135, and 140 kg of BW) on growth performance and carcass characteristics. For productive performance, there were 5 treatments based on 5 SW; each treatment was replicated 4 times and the replicate was a pen made up of 5 barrows and 5 gilts allotted together. For carcass traits, there were 10 treatments based on 2 sexes and 5 SW; each treatment was replicated 20 times and the replicate was a carcass. Barrows had fatter carcasses (P < 0.001) and wider hams (P < 0.01) but a lower yield of trimmed shoulder (P < 0.05), loin (P < 0.001), and ham (P < 0.001) than gilts. Also, castrates tended to show a greater proportion of final suitable carcasses for Teruel ham (P < 0.10) than females because more barrows than gilts fulfilled the minimum requirement of carcass weight and fat thickness in the gluteus medius (GM) muscle (P < 0.01). An increase in SW tended to decrease ADG and G:F (P < 0.10). In addition, dressing percentage, fat, and dimensions of carcass and ham increased as SW increased (P < 0.001). Although the weight of trimmed primal cuts (shoulder, loin, and ham) increased with SW, the yield of trimmed loin or ham decreased (P < 0.01). The proportion of final suitable carcasses for Teruel ham improved as SW increased up to 130 kg of BW but not thereafter (P < 0.001) because of an increase in percentage carcasses that fulfilled the minimum carcass and ham weight (P < 0.001) and fat in GM (P < 0.05). We can conclude that barrows were better than gilts when intended for Teruel ham. Furthermore, an increase in SW up to 130 kg in pigs impaired growth performance but improved some aspects of carcass quality that are required by the Teruel ham industry.  相似文献   

13.
Liquid scintillation detection of potassium-40 was used to estimate pork carcass composition of 124 boars, barrows and gilts. Pigs were fed to five live weights (23, 45, 68, 91 and 114 kg) and 40K emissions were determined on live pigs in a whole body counter (WBC) equipped with a two-pi liquid scintillation detector. Then, pigs were slaughtered conventionally and the right side of each carcass was weighed, 40K emissions of this carcass side was determined in the WBC and total grams of potassium were calculated. The right side of each carcass was ground, sampled and analyzed for fat, protein, moisture and potassium. Fat, protein, moisture and overall potassium percentage means were 23.9 +/- 7.2, 16.5 +/- .94, 57.0 +/- 6.5 and .25 +/- .02, respectively. Whole body counter carcass potassium was highly correlated (P less than .01) to chemically determined carcass potassium (r = .70). Percentage of fat, protein and moisture prediction equations were formed by stepwise regression using the linear, quadratic and interactive effects of live animal and carcass side weight. Whole body counter live animal and carcass potassium and sex were utilized as independent variables. Carcass weight and 40K determined potassium of the carcass explained more of the variation in carcass composition than did live animal weight and 40K determined potassium of the live animal.  相似文献   

14.
Data from 11 generations of a selection study were analyzed to estimate genetic correlations between boars and gilts, boars and barrows, and gilts and barrows for carcass traits in the Lacombe and Yorkshire breeds of swine. Genetic correlations were estimated to determine if genotype X sex interactions existed and to assess the need for separate genetic parameters for boars and gilts in selection response equations. Genotype X sex interactions were found for total carcass fat/kg of cold carcass weight, area of lean in the ham face/kg of cold carcass weight and percent lean in the ham face/kg of cold carcass weight. Carcass length, longissimus muscle area/kg of cold carcass weight percent ham of side and percent lean in the ham face did not have genotype X sex interactions. Selection based on pooled genetic parameters over sex were favored over selection based on separate genetic parameters regardless of the presence or absence of genotype X sex interactions.  相似文献   

15.
Commercial slaughter steers (n = 329) and heifers (n = 335) were selected to vary in slaughter frame size and muscle thickness score, as well as adjusted 12th rib fat thickness. After USDA carcass grade data collection, one side of each carcass was fabricated into boneless primals/subprimals and minor tissue components. Cuts were trimmed to 2.54, 1.27, and .64 cm of external fat, except for the bottom sirloin butt, tritip, and tenderloin, which were trimmed of all fat. Four-variable regression equations were used to predict the percentage (chilled carcass weight basis) yield of boneless subprimals at different fat trim levels (.64, 1.27, and 2.54 cm) as influenced by sex class, frame size, muscle score, and adjusted 12th rib fat thickness. Carcass component values, total carcass value, carcass value per 45.36 kg of carcass weight, and live value per 45.36 kg of live weight were calculated for each phenotypic group and external fat trim level. Carcass fatness and muscle score had the most influence on live and carcass value (per 45.36 kg weight basis). Carcasses with .75 and 1.50 cm of fat at the 12th rib were more valuable as the trim level changed from 2.54 cm to .64 cm; however, for carcasses with 2.25 cm of fat at the 12th rib, value was highest at the 2.54 cm trim level. Value was maximized when leaner cattle were closely trimmed. There was no economic incentive for trimming light-muscled or excessively fat carcasses to .64 cm of external fat.  相似文献   

16.
The objectives were to develop equations for predicting fat-free lean in swine carcasses and to estimate the prediction bias that was due to genetic group, sex, and dietary lysine level. Barrows and gilts (n = 1,024) from four projects conducted by the National Pork Board were evaluated by six procedures, and their carcass fat-free lean was determined. Pigs of 16 genetic groups were fed within weight groups one of four dietary regimens that differed by 0.45% in lysine content and slaughtered at weights between 89 and 163 kg. Variables in equations included carcass weight and measures of backfat depth and LM. Fat-free lean was predicted from measures of fat and muscle depth measured with the Fat-O-Meater (FOM), Automated Ultrasonic System (AUS), and Ultrafom (UFOM) instruments, carcass 10th-rib backfat and LM area (C10R), carcass last-rib backfat (CLR), and live animal scan of backfat depth and LM area with an Aloka 500 instrument (SCAN). Equations for C10R (residual standard deviation, RSD = 2.93 kg) and SCAN (RSD = 3.06 kg) were the most precise. The RSD for AUS, FOM, and UFOM equations were 3.46, 3.57, and 3.62 kg, respectively. The least precise equation was CLR, for which the RSD was 4.04 kg. All procedures produced biased predictions for some genetic groups (P < 0.01). Fat-free lean tended to be overestimated in fatter groups and underestimated in leaner ones. The CLR, FOM, and AUS procedures overestimated fat-free lean in barrows and underestimated it in gilts (P < 0.01), but other procedures were not biased by sex. Bias due to dietary lysine level was assessed for the C10R, CLR, FOM, and SCAN procedures, and fat-free lean in pigs fed the lowlysine dietary regimen was overestimated by CLR, FOM, and SCAN (P < 0.05). Positive regressions of residuals (measured fat-free lean minus predicted fat-free lean) on measured fat-free lean were found for each procedure, ranging from 0.204+/-0.013 kg/kg for C10R to 0.605+/-0.049 kg/kg for UFOM, indicating that all procedures overestimated fat-free lean in fat pigs and underestimated it in lean pigs. The pigs evaluated represent the range of variation in pigs delivered to packing plants, and thus the prediction equations should have broad application within the industry. Buying systems that base fat-free lean predictions on measures of carcass fat depth and muscle depth or area will overvalue fat pigs and undervalue lean pigs.  相似文献   

17.
Effect of breed-type and feeding regimen on goat carcass traits   总被引:1,自引:0,他引:1  
Meat-type (Boer x Spanish and Spanish) goats from two feeding regimens (feedlot and range) were slaughtered and live and carcass weights were obtained. At 24 h after death, various yield and quality measurements were collected. One side from each carcass was fabricated into major wholesale cuts for dissection into major carcass components. Feedlot goats had heavier (P<.05) live and carcass weights and carcasses that yielded more (P<.05) dissectible fat and lean and less (P<.05) bone, as a percentage of carcass weight, than did the carcasses of range goats. In the feedlot environment, Boer x Spanish goats had greater (P<.05) live weights, carcass weights, actual and adjusted fat thicknesses, carcass conformation scores, and leg circumference scores than did Spanish goats of similar age. The only breed-type differences that were significant after adjusting for live weight using analysis of covariance were that Boer x Spanish goats in the feedlot treatment had greater (P<.05) actual and adjusted fat thickness and carcass conformation than Spanish goats on the feedlot treatment. The Boer x Spanish goat carcass trait advantage could mainly be attributed to their larger size and enhanced capacity for growth.  相似文献   

18.
Three groups (n = 147) of New Zealand mixed breed lambs averaging 170 d of age and 31.7 kg in weight were killed after a diet of pasture to determine whether the total depth of soft tissues over the 12th rib 11 cm from the dorsal midline (GR) could be measured in live lambs with sufficient accuracy to warrant its use as a selection tool for breeding flock replacements. Relationships among live and carcass measurements and carcass chemical composition also were determined. An ultrasonic measurement of GR in the live lambs was a more accurate predictor of carcass GR (r = .87) and percentage carcass fat (r = .80) than was a measurement of GR made with a needle (r = .80 and .67, respectively). Both measurements were sufficiently accurate to permit culling of over-fat lambs from breeding flock replacement prospects. The best single indicator of percentage carcass fat (r = .87) was a shoulder fat measurement, followed closely by carcass GR (r = .85). Both were superior to USDA yield grade for estimating carcass chemical composition in these young, lightweight lambs. These two measurements also were most highly related to percentage carcass protein (r = -.78 and r = -.77, respectively). These results indicate possibilities for improving the method of evaluating the composition of U. S. lamb carcasses.  相似文献   

19.
The objective of this research was to make available bioelectrical impedance technology for the prediction of kilograms of lean and kilograms of fat-free muscle of Boston butts. Seventy butts were removed from 70 pork carcasses according to standard procedures (NAMP, #406), with the exception that the fat was not removed. After the weight in kilograms (BUTT) and internal temperature in degrees centigrade (TEMP) were recorded, each butt was measured for resistance (Rs, ohms), reactance (Xc, ohms), and distance (L, centimeters) between detector terminals four different ways: parallel or perpendicular to the top of the carcass and on either lean surface or fat surface of the cut. Each cut was physically separated into lean, fat, and bone. Chemical composition (moisture, protein, and fat) was determined on the lean portion. Variable selection analysis was used to develop equations for predicting kilograms of lean and kilograms of fat-free muscle of Boston butts. Results of measurements of the four sites were quite similar; however, measuring perpendicularly on the lean surface is recommended. The prediction equation for kilograms of lean from measurements thus taken is as follows: .461-.0304 x TEMP + .576 x BUTT - .0118 x Rs + .00845 x Xc + .0630 x L. The respective coefficients of these independent variables for predicting kilograms of fat-free muscle are .537, -.0415, .479, -.0139, .00804, and .0764. In an industry application of these coefficients, recording temperature would not be imperative because the temperature range would be sufficiently narrow to render temperature of little practical influence when separating butts according to leanness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A growth performance and carcass evaluation study was conducted to determine the maximal inclusion rate of corn distillers dried grain with solubles (DDGS) in grower-finisher pig diets when formulated on a total AA basis. A total of 240 (28.4 +/- 0.8 kg of BW) crossbred pigs [(Yorkshire x Landrace) x Duroc] were allotted randomly within sex and weight outcome groups to 1 of 24 pens. Pens were assigned randomly within the initial BW groups to 1 of 4 dietary treatment sequences in a 5-phase grower-finisher feeding program in a 4 x 3 factorial arrangement of treatments. The inclusion level of DDGS (0, 10, 20, or 30%) in the diet and the initial BW class [low (23.2 kg), medium (28.1 kg), or high (33.8 kg)] served as the main factors for the grower-finisher performance study. All diets were formulated to contain similar concentrations of total Lys, ME, calcium, and phosphorus within each phase. Pigs were slaughtered and carcass data were collected when the average BW of pigs in a pen reached 114 +/- 2.25 kg. Dietary treatment and initial weight groups did not interact for any response variables, and only the main effects of dietary treatment are presented. Pigs fed the 20 or 30% DDGS diets had reduced ADG (P < 0.05) compared with that of the 0 or 10% DDGS groups, but ADFI was unaffected by dietary treatment. Gain:feed decreased when pigs were fed 30% DDGS (P < 0.05) compared with the 0, 10, and 20% DDGS dietary inclusion levels. Loin depth was lower in pigs fed the 30% DDGS diets (P < 0.05), but backfat depth and percentage of carcass lean did not differ among treatments. Iodine number of carcass fat increased linearly (P < 0.01) with increasing dietary DDGS concentration, and belly firmness adjusted for belly thickness was reduced (P < 0.05) for pigs fed the 30% DDGS diets compared with pigs fed the 0 or 20% DDGS diets. Color measurements, ultimate pH, and visual evaluations (color, firmness, and marbling scores) of the LM did not differ among treatments. Cooking loss, 24-h drip loss, and total moisture loss were not affected by DDGS in the diets. However, differences were detected between 0 and 20% DDGS treatments for 11-d purge loss (P < 0.05). Dietary treatment did not affect Warner-Bratzler shear force of cooked loin chops. Results from this study indicate that when diets for grower-finisher pigs are formulated on a total AA basis, less than 20% DDGS should be included in the diet for optimal performance and carcass composition. Feeding DDGS in swine finishing diets did not have any detrimental effects on pork muscle quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号