首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
The main aim of this study was to compare the motility and functional integrity of bull spermatozoa after single and double freezing and thawing. The viability and morphological integrity of spermatozoa selected by PureSperm density gradient centrifugation after cryopreservation of bovine semen in two commercial extenders (Experiment 1) and the function of bull spermatozoa before and after a second freezing and thawing assisted by PureSperm selection (Experiment 2) were examined. On average, 35.8 +/- 12.1% of sperm loaded onto the PureSperm density gradient were recovered after centrifugation. In Experiment 1, post-thaw motility and acrosome integrity were higher for spermatozoa frozen in Tris-egg yolk extender than in AndroMed, whether the assessments were made immediately after thawing [80.4 +/- 12.7 vs 47.6 +/- 19.0% motile and 78.8 +/- 8.3 vs 50.1 +/- 19.5% normal apical ridge (NAR), p < 0.05] or after preparation on the gradient (83.3 +/- 8.6 vs 69.4 +/- 15.9% motile and 89.5 +/- 7.2 vs 69.1 +/- 11.4% NAR, p < 0.05). For semen frozen in Tris-egg yolk extender, selection on the PureSperm gradient did not influence total motility but significantly improved the proportion of acrosome-intact spermatozoa. After the gradient, both the total motility and percentage of normal acrosomes increased for spermatozoa frozen in AndroMed (Minitüb Tiefenbach, Germany). In Experiment 2, there was no difference in sperm motility after the first and second freeze-thawing (82.9 +/- 12.7 vs 68.8 +/- 18.7%). However, the proportion of acrosome-intact spermatozoa was significantly improved by selection through the PureSperm gradient, whether measured by phase contrast microscopy (78.9 +/- 9.7 vs 90.4 +/- 4.0% NAR, p < 0.05) or flow cytometry (53.4 +/- 11.7 vs 76.3 +/- 6.0% viable acrosome-intact spermatozoa, p < 0.001). The improvement in the percentage of spermatozoa with normal acrosomes was maintained after resuspension in the cooling extender and cooling to 4 degrees C (88.2 +/- 6.2) and after re-freezing and thawing (83.6 +/- 6.56% NAR). However, flow cytometric assessment of the sperm membranes revealed a decline in the percentage of viable spermatozoa with intact membranes after the second freezing and thawing compared with after gradient centrifugation (76.3 +/- 6.0% vs 46.6 +/- 6.6%, p < 0.001) to levels equivalent to those obtained after the first round of freeze-thawing (53.4 +/- 11.7% viable acrosome-intact spermatozoa). Sperm movement characteristics assessed by computer-assisted analysis were unaffected in the population selected on the PureSperm gradients but declined after cooling of the selected and extended spermatozoa to 4 degrees C. There was no further change in these kinematic measurements after the cooled spermatozoa had undergone the second round of freeze-thawing. These results demonstrate that bull semen can be frozen and thawed, followed by a second freeze-thawing cycle of a population of spermatozoa selected by PureSperm, with retained motility and functional integrity. This points to the possibility of using double frozen spermatozoa in bovine artificial insemination programmes and to the potential benefits of PureSperm density gradient centrifugation for the application of cryopreserved bull spermatozoa to other biotechnological procedures such as flow cytometric sex sorting followed by re-freezing and thawing.  相似文献   

2.
The present study attempted to select the subpopulation of stallion spermatozoa that best survived a conventional freezing and thawing procedure, using centrifugation of post-thawed semen samples through a single layer of a glycidoxypropyltrimethoxysilane-coated silica colloid with a species-specific formulation (Androcoll-E™). After freezing and thawing, four sperm subpopulations were identified, listed as FT1 to FT4. While subpopulations FT1 and FT2 were characterized by low sperm velocity, high velocities characterized the ones called FT3 and FT4. The single-layer centrifugation (SLC)-handled sperm sample was enriched in subpopulation FT3, reaching a proportion of 82.6% of the present spermatozoa, in contrast with the non-filtered control post-thawed semen, where this sperm subpopulation only accounted for 16.3% of the total. It is concluded that in the equine industry, the SLC is a practical, easy-to-perform approach to improve the quality of equine frozen–thawed semen samples.  相似文献   

3.
The current study investigated the changes in sperm quality (motility, velocity, and chromatin integrity) occurring during storage at room temperature or 5°C for up to 48 hours in spermatozoa after extension or single-layer centrifugation (SLC) through Androcoll-E. In unselected samples, all parameters of sperm quality deteriorated significantly during storage (P < .01), although the deterioration was faster at room temperature (22–30°C) than for cool storage (P < .01). The SLC-selected spermatozoa had higher motility, velocity, and chromatin integrity than the overall unselected population (motility: selected 85 ± 10%, unselected 56 ± 13%; P < .001; velocity: selected 85.1 ± 13 μm/second, unselected 63.5 ± 15 μm/second; P < .001; and DFI selected 12.2 ± 4.8 μm/second, unselected 23.6 ± 7.4 μm/second; P < .001). Furthermore, sperm quality did not deteriorate with storage in the SLC-selected samples, either at room temperature (22–30°C for 24 hours) or cooled to 4°C (for at least 48 hours), whereas a significant deterioration in sperm quality was observed in the unselected sperm samples (P < .01). Thus, room temperature storage of SLC-selected spermatozoa may be an option for insemination doses from stallions whose spermatozoa do not tolerate cooling. In addition, a new sperm analyzer, the Qualisperm, showed good correlation with subjective motility assessment (r = 0.8, P < .001), was user-friendly, and provided a reasonable volume of data. This instrument may be a useful adjunct to sperm quality assessment at the stud.  相似文献   

4.
In the absence of commercially viable methods for cryopreserving turkey spermatozoa, new processing methods are required to extend the functional life of stored turkey spermatozoa for artificial insemination. The present study evaluates the efficacy of a new extender (Turkey Semen Extend) and investigates the use of density gradient centrifugation in processing turkey spermatozoa for artificial insemination. The new extender is compared with two commercially available turkey semen extenders, Beltsville Poultry Semen Extender and Ovodyl. Turkey spermatozoa in Turkey Semen Extend were still motile 20 h after collection, representing a considerable improvement over the other semen extenders (40%, 0% and 8% for Turkey Semen Extend, Beltsville Poultry Semen Extender and Ovodyl, respectively). A field trial on a commercial turkey farm showed improved fertilization rates following insemination of turkey hens with semen extended in Turkey Semen Extend (89.7%) compared with Beltsville Poultry Semen Extender (86.9%). This difference is statistically significant (p < 0.05). Processing on a density gradient, optimized for turkey spermatozoa, also increased sperm survival (50% gradient-prepared spermatozoa still motile after 18 h compared with <10% non-processed spermatozoa). Preliminary studies indicate that gradient preparation of spermatozoa may aid survival during cryopreservation.  相似文献   

5.
The aim of this study was to determine whether there was an increase in pregnancy rates when frozen-thawed stallion semen was processed by single layer centrifugation (SLC) through a colloid before insemination. In addition, changes in semen parameters, including motility, were determined before and after SLC. Twenty light-horse mares (aged 3-16 years) and one Thoroughbred stallion (aged 16 years) having average fertility with fresh and cooled semen (>50% per cycle) and displaying a postthaw motility of >35% were used. Control mares were inseminated using 4- × 0.5-mL straws (200 × 106/mL) of frozen-thawed semen. Treatment mares were inseminated with 4 × 0.5 mL of frozen-thawed semen after processing by SLC. Pregnancy rates were compared using Fisher exact test, and continuous parameters were evaluated by a Student t test. The pregnancy rates at day 14 were not different for the mares inseminated with control versus SLC-processed semen, despite the difference in sperm number (171 × 106 ± 21, 59 × 106 ± 25 progressively motile sperm). After frozen-thawed semen was processed by SLC, the percentage progressively motile sperm improved (P < .05), and SLC processing resulted in a 21.8% recovery of spermatozoa. In summary, centrifugation of frozen-thawed semen through a single layer of colloid increased the percentage of motile spermatozoa, but did not improve pregnancy rates after deep horn insemination.  相似文献   

6.
This study was designed to evaluate the effect of single layer centrifugation (SLC) and subsequent cold storage on stallion sperm capacitation‐like status and acrosome reaction. Three stallions were included in the study, with three ejaculates per stallion. The samples were examined 4, 24 and 72 h after collection, extension and SLC, with storage at 6°C. Sperm capacitation‐like status was investigated using the fluorescent dye chlortetracycline (CTC). There was no difference in capacitation‐like status between colloid‐selected and non‐selected spermatozoa. Sperm motility decreased significantly during cold storage, whereas the proportion of apparently capacitated spermatozoa increased. There was no change in the proportion of acrosome‐reacted spermatozoa. In conclusion, SLC through Androcoll?‐E does not adversely affect the capacitation‐like status of stallion spermatozoa, although it did increase with time during cold storage.  相似文献   

7.
在细胞松弛素B的参与下,通过Ficoll密度梯度离心法可有效制备小鼠无核ES细胞,在适宜条件下,悬液培养中40%的小鼠ES细胞可发生去核作用,经Hoechst染色和形态观察确定:80%的去核ES细胞在30min内可恢复其原有形态,但其生活力不会超过48h,这为研究ES细胞的胞质功能及核质互作效应提供了一种可行的细胞去核方法。  相似文献   

8.
With the aim of investigating properties of stallion seminal plasma to eventually improve semen-handling techniques, sperm motility and plasma membrane integrity were analysed in different fractions of the ejaculates after storage. Semen was collected using a computer-controlled automated phantom that separates the ejaculates into five successive cups. Samples containing seminal plasma and skim milk extender were compared with samples stored in skim milk extender after the removal of seminal plasma by centrifugation. Fractionated ejaculates were stored cooled for 24 h after dilution with extender (Expt 1) or frozen in liquid nitrogen (Expt 2). In Expt 1, cup 1 was pre-sperm fluid, cups 2 and 3 sperm-rich fractions, and cup 4 sperm-poor fractions. In Expt 2, cups 1 and 2 were sperm-rich fractions, and cups 3 and 4 sperm-poor fractions. One sample (WE) represented the whole ejaculate in both experiments. Motility parameters were determined with a Hamilton-Thorn Motility Analyzer, and plasma membrane integrity was assessed using carboxyfluorescein diacetate and propidium iodide staining and fluorescence microscopy. The removal of seminal plasma lowered motility values, but not plasma membrane integrity, in both experiments. No significant differences between cups were observed after cooled storage. The cups differed significantly in most post-thaw motility parameters, and the sperm-rich fraction showed higher post-thaw motility than the whole ejaculate.  相似文献   

9.
以淋巴细胞分离液和生理盐水为介质,分别按不同比例配制成3种不同密度(1.060g/ml、1.070g/ml、1.073/ml)的分离液,并通过无菌采集患卡氏住白细胞虫病的病鸡血液获得了卡氏住白细胞虫的配子体。采用单密度梯度离心法和多密度梯度离心法对该配子体进行了浓集和纯化。进行最佳离心速度和离心时间的筛选结果显示,1500r/min离心25分钟分离效果最佳;经多密度法离心后可同时获得浓集和纯化的配子体;经单密度法离心后,只能得到浓集的配子体;对浓集的虫体进一步纯化,结果显示纯化率可达95%以上。通过密度梯度离心的结果判定,配子体的密度介于1.070-1.073g/ml之间。实验结果表明若需要大量分离纯化配子体,应以单密度法分二步进行为佳;若只需少量纯化的虫体,则可用多密度法一步来完成。  相似文献   

10.
Barriers to the use of density gradient centrifugation for preparing animal spermatozoa for artificial insemination (AI) include the scarcity of animal-specific formulations and the daunting prospect of processing large volumes of ejaculate in small aliquots (1.5 ml extended semen). Recently, new colloid formulations have been tested in vitro in a modified procedure, centrifugation on a single layer of colloid. The present study investigated the fertilizing ability during in vitro fertilization (IVF) of frozen-thawed bovine spermatozoa following centrifugation through a single layer of glycerolpropylsilane (GS)-coated silica colloid with a species-specific formulation (patent applied for; treatment, T). Controls (C) included centrifugation through gradients of either the same colloid (C1) or Percoll™ (C2). Sperm recovery surpassed 50% for both C1–C2 and T (n.s.). Mean values of various parameters of computerized analysis of sperm motility did not differ between T and C1 (n.s.), and only the proportions of path straightness and linearity were lower in T vs C2 (p < 0.05). In T, the mean (±SD) percentages of fertilization rate, blastocyst development rate and the total number of blastomeres were 58.1 ± 23.3%, 24.5 ± 14.3% and 94.6 ± 23.4%, respectively. The proportions did not differ significantly from controls (C1/C2). Therefore, centrifugation through a single layer of colloid offers an alternative method to density gradient centrifugation for selection of viable, potentially fertile frozen-thawed bull spermatozoa. This single-layer technique is gentle, versatile and convenient because it facilitates scaling-up the process of sperm preparation to allow larger numbers of spermatozoa (for instance, whole ejaculates) to be processed for AI.  相似文献   

11.
This study was conducted in an attempt to see whether single-layer centrifugation (SLC) increases the susceptibility of stallion spermatozoa to lipid peroxidation (LPO), in different extenders after removing all seminal plasma (SP). The susceptibility of stallion spermatozoa to LPO was studied before and after SLC. Each ejaculate was split, and aliquots extended with one of the three different extenders: INRA 96, Kenney's, or Equipro, and stored for 24 hours at 5°C (i). From the extended samples, an aliquot was kept as a control and the other was subjected to SLC through Androcoll-E. The selected spermatozoa were re-suspended in the appropriate extenders, without (ii) or with (iii) addition of 50% (v/v) pooled homologous SP for 24 hours at 5°C. Using ferrous sulfate as pro-oxidant, the susceptibility for LPO was flow-cytometrically assessed using the probe Bodipy581/591-C11. Sperm motility, monitored with a Qualisperm motility analyzer, increased after SLC treatment (P < .001). No significant correlations were found between motility and induced LPO with ferrous sulfate. The SP and extenders, per se, did not have a significant protective effect against LPO, but the interaction between SP and Kenney increased the susceptibility to LPO. However, the selected spermatozoa through Androcoll-E and the subsequent dilution in INRA had a significant protective effect against LPO (P < .05), especially when the oxidative insults were higher (80 μM).  相似文献   

12.
Pregnancy rates in donkeys after artificial insemination with cryopreserved semen are still low, compared to the horse species. Addition of autologous seminal plasma to frozen‐thawed semen appeared to improve pregnancy rates. The aims of this study were to evaluate (1) sperm motility and plasma membrane integrity after thawing (T0) and after one and 2 h (T1 and T2) of post‐thaw incubation in either 0% (SP0) or 70% (SP70) autologous seminal plasma and (2) sperm motility, plasma membrane integrity and DNA quality (%COMP‐αt) after thawing (T0) and after 2 and 4 h (T2 and T4) of post‐thaw incubation in either 0% (SP0), 5% (SP5) or 20% (SP20) homologous seminal plasma. In experiment 1, seminal plasma decreased total and progressive sperm motility and plasma membrane intact spermatozoa immediately after dilution and at all following time points (p < 0.05). In experiment 2, total and progressive motility did not differ between treatments immediately after dilution and between SP0 and SP5 at T2, while they were lower in both SP5 and SP20 than in SP0 at T4. Plasma membrane intact sperm cells did not differ between SP0 and SP5 and were lower in SP20 at all time points. DNA quality was not affected by treatment immediately after dilution and was significantly worse for SP20 after 4 h of incubation (p < 0.05). The post‐thaw addition of seminal plasma at the tested concentrations did not improve donkey frozen semen characteristics in vitro over time.  相似文献   

13.
14.
Depending on the mammal species, the use of seminal plasma during semen processing for cryopreservation has been found to have both beneficial and detrimental effects. This study was designed to determine the effects of the second (SF) and third [prostatic fluid, (PF)] ejaculate fractions on plasma membrane and acrosome integrity, mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) translocation and sperm motility in chilled canine spermatozoa by flow cytometry. After pooling the second sperm‐rich fraction of ejaculates from six dogs, samples for each assay were preserved at 5°C for 72 h in egg yolk‐TRIS extender (EYT) alone (control) or supplemented with seminal fluid from the second (EYT‐SF) or third (EYT‐PF) ejaculated fractions. After cold storage, groups EYT‐SF and EYT‐PF showed significantly higher percentages of sperm cells with an intact acrosome [68.8 ± 1.4%, 69.6 ± 2.6% (p < 0.01)] and intact plasma membrane [48.1 ± 2.8%, 50.4 ± 8.2% (p < 0.001)] than that observed in EYT [51.7 ± 3.2% and 33.3 ± 4.1% respectively]. Only in EYT‐SF was PS translocation significantly reduced compared to EYT‐PF and EYT [3.9 ± 0.4%, 10.2 ± 2.2% and 9.0 ± 1.5%, respectively (p < 0.001)]. However, significantly diminished sperm motility was observed in EYT‐SF and EYT‐PF compared to EYT [36.8 ± 2.1%, 35.5 ± 2.3% and 78.4 ± 4.7% (p < 0.001)]. No significant differences were detected in ΔΨm (p > 0.05). In conclusion, supplementing semen extenders with seminal fluid from the second or third fractions of the ejaculate supplementation helps to preserve the integrity of the plasma and acrosome membranes along with the mitochondrial membrane potential but seems to compromise the motility of canine spermatozoa chilled for 72 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号