首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究在前期研究工作的基础上,通过添加特异的调控元件对牛结蛋白(Desimn)基因启动子进行改造,以期获得活性较高且具有肌肉组织特异性的启动子。本研究以300bp的牛结蛋白基因启动子为基础,对其进行改造,即通过串联多拷贝的正调控元件的方式,成功构建了3个改造后的结蛋白基因启动子片段:pGL3-desmin300-desmin180、pGL3-MD-αD1-desmin300和pGL3-αD2-αD1-desmin300。结果表明,pGL3-desmin300-desmin180、pGL3-MD-αD1-desmin300和pGL3-αD2-αD1-desmin300的启动子活性分别是野生型启动子pGL3-desmin300的1.67、2.56和2.88倍,说明改造后的启动子片段具有较高的启动活性。同时,牛骨胳肌卫星细胞和成纤维细胞试验结果表明,以上3组改造后的启动子片段具有较强的肌肉特异性,以上高效肌肉特异性启动子片段的应用为提高肌肉产量的转基因家畜肉的生产提供重要帮助。  相似文献   

2.
3.
牛MyoG基因启动子的克隆及功能的初步分析   总被引:2,自引:0,他引:2  
本研究旨在比较日本和牛MyoG基因的不同长度片段启动子的活性强弱并初步探讨其中的机制。根据GenBank已公布的牛MyoG基因的启动子序列,设计特异性PCR引物扩增日本和牛MyoG基因的一系列启动子缺失序列,构建重组克隆载体pMD18-T-MyoGpro,对阳性克隆进行限制性酶切鉴定、测序及生物信息学分析,进而构建一系列启动子缺失片段的pGL3-MyoGpro双荧光素酶表达载体,转染牛肌源干细胞(MDSCs)和牛胎儿成纤维细胞,并进行双报告基因活性检测。结果表明,日本和牛MyoG基因的166~2 125bp启动子都能不同程度的启动双荧光素酶报告基因在牛肌源干细胞中的表达,且具有肌肉特异性。通过生物信息学分析得知日本和牛MyoG启动子序列中有1个TATA盒,15个E-box,并可能含有MyoD、MEF2、MEF3、MTBF、TEF1、PRDF、Sp1、多个SRF、ERE、GRE及多个Oct-1等转录因子调控结合位点,本试验通过比较不同长度启动子片段的活性并结合对上述转录因子的分析,认为这些转录因子可能对启动子活性起着重要的调控作用。对牛MyoG基因启动子的克隆与功能和序列分析为进一步研究MyoG基因的表达调控奠定了基础。  相似文献   

4.
本研究旨在确定徐淮山羊c-Myc基因启动子区域,找出该基因启动子的核心调控区,初步探讨c-Myc基因的表达调控机制。根据UCSC基因组数据库已公布的绵羊c-Myc基因的启动子序列,设计特异性PCR引物扩增c-Myc基因的一系列启动子缺失片段,定向克隆至pEGFP-N1和PGL3-c-Myc,分别转染gFF、COS7及P19细胞,并进行TSA和NFAT1诱导,同时对-402~-249bp区域的转录因子SP1结合位点进行定点突变,最后进行双荧光报告基因活性检测。结果表明,徐淮山羊c-Myc基因5′侧翼区-1 334~+1bp区域的启动子活性最强,-402~+1bp区域为c-Myc基因启动子基本活性区域。进一步研究发现,-1 334~-971bp、-587~-147bp区域存在正调控元件,-1 976~-1 334bp、-971~-587bp区域存在负调控元件。TSA和NFAT1均能增强cMyc启动子的活性,SP1结合位点定点突变后,启动子活性降低。本试验通过构建包含c-Myc基因启动子不同片段的重组报告基因载体并比较其转录活性,确定了c-Myc基因启动子的核心区域,发现转录因子SP1是c-Myc基因启动子核心区域的调控元件,为进一步研究c-Myc基因的表达调控机制奠定了基础。  相似文献   

5.
为研究绵羊肌球蛋白轻链1(Myosin Light Chain 1,MYL1)基因在骨骼肌中的表达调控和功能,本实验选择3只11月龄小尾寒羊,对其启动子区域进行了克隆和序列特征分析;利用Western blotting法对其编码蛋白在小尾寒羊不同组织(肝、胃、心、肺、背最长肌、脾、卵巢)中的表达进行比较分析。结果表明:MYL1基因含有多个启动子,其最佳启动子可能位于2102~2152 bp处,并且可结合有AP-2、TFIID等多种转录因子;其编码蛋白的分子量约21 ku;该蛋白只在小尾寒羊骨骼肌中表达,在其他组织中均不表达。本研究认为MYL1基因具有多个启动子,虽然其转录后存在多个可变剪接体,但翻译蛋白只有1种,属于绵羊骨骼肌组织特异性表达的基因。  相似文献   

6.
本研究旨在初步对小鼠TLE4基因的转录调控机制进行探讨。利用PCR方法扩增TLE4基因5′上游启动区2 849 bp(-2 521 bp~+327 bp)的片段,然后通过步移缺失获得了7段长度不等的启动子片段并分别克隆到荧光素酶(LUC)报告基因表达质粒中。通过双荧光素酶报告活性分析检测TLE4基因启动子区不同长度片段在小鼠畸胎瘤细胞(F9)及小鼠胚胎干细胞(ES)中瞬时转染后的活性。2种细胞的检测结果显示,在TLE4基因启动子区(-2 521 bp~-2 137 bp)存在负性调控元件,而在启动区(-2 137 bp~-1 794 bp)活性最强。对TLE4基因启动区(-2 137 bp~-1 794 bp)进一步缺失分析发现在该基因启动区(-2 027 bp~-1 927 bp)活性较强,分析预测该序列含有一个功能性的(HSF)的结合位点。结果推测HSF对TLE4基因的表达调控及功能行使具有重要作用。  相似文献   

7.
通过巢式PCR方法获得猪PI。E1基因5’端上游启动子序列,通过T/A克隆法对PI。E1基因的启动子进行克隆,并对PCR鉴定为阳性的克隆子进行测序,参考人、啮齿类的羧酸酯酶家族的启动子结构,并利用启动子在线分析软件对其进行生物信息学分析。结果成功克隆得到PI。E1基因5’端上游1153bp的调控片段,分析表明该调控区没有CpG岛,也不存在典型的TATA盒结构;有2个转录起始位点分别位于翻译起始密码子ATG上游-39bp和-37bp处,潜在的转录因子结合位点有C/EBP、Spl、USF、CdxA、GATA-X、GATA-1、GATA-2、GATA-3、MZFl、AML-la、SRY、Nkx-2、LyLl、deltaE等。另外还发现了7种基序分别为EGF-1、INTEGRINBETA、CTCKl、ANA—PHYIJATOXIN-1、THIOLASE-3、TUBUI,IN、VWFC-1。研究结果可为进-步揭示PLEl基因转录调控机制提供理论参考。  相似文献   

8.
旨在研究鸡脂滴包被蛋白基因(Perilipin1,Plin)启动子的结构及特征。本研究采用PCR方法扩增了鸡Perilipin1基因5′侧翼区约2kb的DNA片段,并对其进行了克隆、测序及生物信息学分析;同时,构建了其全长及系列截短突变的报告基因表达载体,瞬时转染鸡胚成纤维细胞系(DF-1),用双荧光素酶报告基因系统测定了荧光素酶活性,确定了该基因的核心启动子区域。生物信息学分析结果表明,鸡Perilipin1基因的启动子区不存在典型的TATA box结构和CpG岛,但可能存在TFIID、Sp1、AP2、PPAR、RXR、SREBP1、C/EBP、GATA、ER、KLF5等多个转录因子结合位点;报告基因分析结果表明,本研究克隆的鸡Perilipin1基因启动子能够极显著地启动报告基因的表达(P0.01),并且随着启动子片段由5′端逐渐截短,报告基因活性表现出逐渐增强的趋势,其中-360/-11片段具有最强的报告基因活性。综上表明,鸡Perilipin1基因-360/-11区域的启动子片段具有最强的转录活性,包含该基因的核心启动子序列。  相似文献   

9.
FT(flowering locus T)是高等植物开花过程中关键的信号整合因子,主要在叶片维管束中合成,通过运输抵达茎顶端分生组织发挥作用。为了研究桑树FT基因的转录调控机制,以白桑种(Morus alba Linn.)品种新一之幼嫩叶片的基因组DNA为模板,根据NCBI数据库公布川桑(Morus notabilis)全基因组中FT同源序列的上游序列设计引物,PCR扩增获得FT基因的启动子片段,其长度为921 bp,命名为MaF TP。通过PLACE和PlantC ARE在线启动子预测工具分析,该序列中除含有TATA-box、CAAT-box等真核生物启动子的核心元件外,还存在脱落酸的响应元件ABRE,生长素响应元件AuxRR-core,水杨酸响应元件TCA-element,生理节律相关顺式作用元件circadian,光响应元件I-box、G-box、MNF1等,以及胚乳表达必需的顺式作用元件Skn-1-motif和抗逆性相关的顺式作用元件W-box、MBS、TC-rich repeats,表明FT基因的转录表达可能受光照、干旱、节律性、脱落酸、生长素、水杨酸等因素的调控,并参与胚乳的形成。将5'端缺失的5段FT启动子序列(从大到小依次为MaF TP903、MaF TP762、MaF TP542、MaF TP289、MaF TP162)分别与报告基因GUS融合构建表达载体,利用农杆菌转化烟草(Nicotiana benthamiana)植株,通过GUS染色对不同长度的启动子活性进行分析,结果表明:除了MaF TP903的活性较弱外,其余启动子缺失片段均能驱动GUS基因高效表达,且表达量相近。依据研究结果推测:MaF TP启动子的762~903 bp区段可能存在MaF T基因转录表达的负调控元件。  相似文献   

10.
家蚕(Bombyxmori)丝素蛋白H链基因(fib-H)具有在后部丝腺组织专一性、高效性表达的特点。为利用其时空调控机制,通过PCR扩增方法克隆fib-H启动子片段,并进行序列分析,进而构建由fib-H启动子控制报告基因DsRed的重组载体pSK-FH-DsRed-PolyA,通过家蚕BmN细胞和丝腺进行瞬时表达。结果表明:克隆的fib-H启动子序列具有典型的丝腺特异性表达启动子的特征,并可以驱动DsRed报告基因在BmN细胞和家蚕后部丝腺组织中瞬时表达。  相似文献   

11.
旨在克隆测定牛肌原调节蛋白2基因(Myozenin2,MYOZ2)启动子的全长序列,进行活性区域分析,为牛MYOZ2基因功能和表达调控机理研究提供理论依据。通过5′RACE方法确定牛MYOZ2基因转录起始位点;采用PCR技术,以牛基因组为模板克隆MYOZ2基因启动子序列。利用在线软件分析启动子区域中可能包含的转录因子结合位点。依据分析结果重新设计引物,构建7个包含不同缺失片段的双荧光素酶报告基因载体,转染C2C12细胞系,利用双荧光素酶系统检测不同片段的启动子活性。结果表明,克隆得到牛MYOZ2基因启动子序列2 065bp,确定MYOZ2基因的转录起始位点;MYOZ2基因片段-84/+125荧光素酶相对活性极显著高于空载体pGL3-Basic(P0.01),MYOZ2基因片段-683/+125荧光素酶相对活性极显著高于基因片段-263/+125(P0.01)。MYOZ2基因启动子核心区域位于-84/+125bp,而且MEF2,SRF,MyoD,YY1等转录因子可能参与MYOZ2基因的转录调控。  相似文献   

12.
 采用SMART RACE 方法,从东方山羊豆盐诱导抑制性差减杂交cDNA 文库中分离到了一个脱水蛋白(GoDHN)基因。该基因cDNA 全长1169bp,开放阅读框843bp,编码281 个氨基酸,编码的蛋白质分子量为28.71kDa。经实时荧光定量PCR 分析,GoDHN 基因在东方山羊豆的茎和叶中表达量明显高于根中表达量,并且基因表达受ABA、NaCl和PEG 的诱导,随着诱导时间的增加,表达量呈持续增长趋势。这些结果表明,DHN 基因在东方山羊豆的抗逆性中可能起到重要的调控作用。本研究成功构建了pCAMBIA1302-DHN 植物表达载体,为下一步转基因研究奠定了基础。  相似文献   

13.
本研究旨在克隆和分析猪硒蛋白S基因(Selenoprotein S,SelS)启动子序列,并初步探讨潜在转录因子结合位点对其表达的影响.通过SON-PCR技术克隆猪SelS基因启动子序列,利用PromoterScan、Promoter 2.0等在线工具预测其启动子特征,利用细菌脂多糖(Lipopolysaccharides,LPS)刺激PK15细胞,研究NF-kappaB转录因子对猪SelS基因启动子活性的影响.试验获得了猪SelS基因约3kd的启动子序列,部分序列比对发现猪、人、牛和小鼠物种间相似性仅7%~51%.预测猪SelS基因转录起始位点在-398 bp,猪和人SelS基因启动子存在系列保守的转录因子结合位点,包括NF-kappaB、CCAAT box、SP1、USF等,但均未发现典型的TATA box.细胞试验表明,NF-kappaB转录因子可以上调猪SelS基因的表达.结果提示,物种间SelS基因启动子相似性较低,但猪和人SelS基因的转录因子非常保守,LPS诱导试验提示,猪SelS基因表达可能受NF-kappaB转录因子的调控.  相似文献   

14.
为了进一步探明盐生草HgNHX1基因启动子的功能,从盐生草基因组中克隆了HgNHX1基因上游 5'侧翼调控区1523 bp的序列,即HgNHX1基因启动子(pHgNHX1)序列,并利用PlantCARE、PLACE等在线软件对HgNHX1基因5' 端上游序列进行预测和分析,发现该启动子中除具有TATA-box、CAAT-box等核心启动子元件外,还含有多个与盐、干旱、缺水、冷、伤害等逆境胁迫诱导有关的作用元件;同时具有生长素、脱落酸、赤霉素及乙烯等植物激素诱导响应的功能元件,表明分离得到的DNA片段具有典型启动子的一般特征。构建pBI-HgNHX1启动子植物表达载体并转化拟南芥和烟草,利用组织染色法鉴定转基因烟草和拟南芥的 β-葡萄糖苷酸酶基因(GUS)表达模式,发现在转基因拟南芥的各个器官均有GUS 酶的活性,说明pHgNHX1具有一定的组成型启动子活性。  相似文献   

15.
16.
本文旨在研究鸡脂蛋白酯酶基因(lipoprotein lipase,LPL)启动子的结构和启动子活性。采用PCR方法扩增了鸡LPL基因5′侧翼区2kb的DNA片段,对其进行克隆、测序及序列分析后,构建了其全长及系列截断突变的报告基因表达载体,瞬时转染鸡胚成纤维细胞(DF-1),用双荧光素酶报告系统测定了荧光素酶活性。生物信息学分析发现,鸡LPL基因启动子区存在Oct-1、GCbox、CCAAT、GATA、AP1等调控元件,在启动子-575~+137bp区域内存在一个CpG岛。报告基因分析表明,鸡LPL基因的启动子-359~+163bp区域就具有启动子活性,启动子-601~+163bp区域具有最强的启动子活性。结果显示,鸡LPL基因受多种转录因子和上游序列的调控,本研究为深入研究鸡LPL基因的表达调控机制奠定了基础。  相似文献   

17.
基因启动子(promoter)是DNA上决定RNA聚合酶转录起始位点的序列,是基因的一个重要组成部分,控制基因表达的起始和表达的程度,而基因表达的最终产物是RNA和蛋白质,这两大类物质对维持生命活动不可缺少。因此,对基因的启动子进行克隆并研究其功能对研究基因表达调控机制具有重要意义。本文主要就两种常用的启动子克隆技术和启动子调控功能的研究进展做了简要综述,并对启动子的研究前景做了展望。  相似文献   

18.
东方山羊豆水通道蛋白基因的克隆及初步分析   总被引:1,自引:0,他引:1  
根据已知EST片段结合RT-PCR和RACE技术,从东方山羊豆(Galega Orientalis)中克隆到一个水通道蛋白(AQP)基因,命名为GoAQP(GenBank登录号:HM 803185)。测序和生物信息学分析表明,此序列全长1258bp,开放读码框(ORF)870 bp,编码289个氨基酸。GoAQP包含MIP家族信号序列HINPAVT/SFG,高等植物PIP高度保守序列GGANXXXXGY和TGI/TNPARSL/FGAAI/VI/VF/YN。与拟南芥AQP基因家族的系统进化分析表明,GoAQP属于PIP1亚型AQP蛋白。Real-Time PCR检测结果表明,GoAQP基因在根中表达量最高,茎中表达量最少;且受NaCl和PEG胁迫表达上调,NaCl表达呈双峰分布。因此GoAQP基因可能参与了东方山羊豆耐盐性调控。同时成功构建超表达载体pCAMBIA-1302-GoAQP,为转基因验证基因功能创造了基础。  相似文献   

19.
为了分析绵羊清道夫受体MARCO基因的启动子序列特点,初步研究其功能及转录调控机理,以绵羊肺组织DNA为模板,通过PCR扩增绵羊MARCO基因启动子序列,对其序列进行生物信息学分析,并构建双荧光素酶报告基因载体。结果显示,成功克隆绵羊MARCO基因启动子,大小为1 002 bp;预测了其核心活性区域,发现有1个潜在的活性区域位于5′端-790~-741,同时发现了1个TATA-box元件和多个转录因子结合位点,未发现CpG岛。结果表明,位于绵羊MARCO基因启动子区域的TATA-box元件和Sp1、NF-1、NF-κB、C/EBPalp、c-Jun等转录因子,可能影响绵羊MARCO基因启动子的激活,为后续研究MARCO基因的转录调控机理提供了参考依据。  相似文献   

20.
试验旨在了解角蛋白5(keratin 5, K5)可能的调控序列。本研究根据UCSC公布的牛K5基因5'侧翼区设计PCR引物,扩增了内蒙古绒山羊K5基因部分启动子序列。通过产物纯化、连接、转化,并对测序结果进行了生物信息学分析。结果扩增得到内蒙古绒山羊K5基因启动子序列长度为1452 bp(GenBank登录号为:JQ277735),与牛和人相应序列的相似性分别为91.5%和74%。转录起始位点位于翻译起始密码子ATG上游-101 bp位置;含有两个TATA 盒,分别位于翻译起始位点上游-129—-124 bp(ATAAAA)和-178—-174 bp(TTAAT)位置;通过在线分析软件预测发现(按5'→3')SRY,MZF1,v-Myb,SRY,AP-1,CDP CR,HNF-4,AML-1a,HSF2,AP-4,AP2,AP2,Sp1,Nkx-2,Sp1和GATA-1转录因子结合位点。其中,转录因子SRY(TGTGTTT),和CDP CR(GATTGATGGC)是绒山羊特有的;转录因子HNF-4,AML-1a,HSF2,AP-4,AP2,Sp1,Nkx-2和GATA-1(AGCCATCATG)在绒山羊、牛和人K5启动子上的结合位点高度保守。两个最小增强子分别位于翻译起始位点ATG上游-140—-91 bp和-114—-67 bp位置,含有24 bp(GCGGCTCCCAGGTAACAGAGCCGC)重叠区,预测其与绒山羊K5基因的转录调控有关。试验确定了内蒙古绒山羊K5基因启动子的转录起始位置、转录因子结合位点及最小增强子序列,为进一步研究绒山羊K5基因的表达调控机制奠定了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号