首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
切沟对沟岸地土壤水分的影响   总被引:1,自引:0,他引:1  
In order to preliminarily look at rules for soil moisture changes in the bank of the gully and to provide some recommendations for vegetative restoration in gully bank regions in the Loess Plateau, changes of soil moisture with depth and distance to the gully edge and their dynamic changes with time were observed to study the soil water characteristics in the bank of the gully. The results showed that soil water content increased with increasing distance from the gully edge, whereas for the same time period, the closer the distance to the gully wall, the greater the water loss; and that the influential distance of side evaporation decreased as depth increased.  相似文献   

2.
Knowledge of plant responses to soil water availability is essential for the development of effcient irrigation strategies.However,notably different results have been obtained in the past on the responses of various physiological indices for different plants to soil water availability.In this study,the responses of various plant processes to soil water availability were compared with data from pot and field plot experiments conducted on maize(Zea mays L.).Consistent results were obtained between pot and field plot experiments for the responses of various relative plant indices to changes in the fraction of available soil water(FASW).A threshold value,where the relative plant indices began to decrease with soil drying,and a lower water limit,where the decline of relative plant indices changed to a very slow rate,were found.Evaporative demand not only influenced the transpiration rate over a daily scale but also determined the difference in transpirational response to soil water availability among the transient,daily and seasonal time scales.At the seasonal scale,cumulative transpiration decreased linearly with soil drying,but the decrease of transpiration from FASW = 1 in response to water deficits did not affect dry weight until FASW = 0.75.On the other hand,the decrease in dry weight was comparable with plant height and leaf area.Therefore,the plant responses to soil water availability were notably different among various plant indices of maize and were influenced by the weather conditions.  相似文献   

3.
《土壤圈》2016,(2)
Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil,which help drive the formation of soil structure,through water expansion by crystallization and the movement of water and salts by thermal gradients.However,most of these studies are published in Russian or Chinese and are less accessible to international researchers.This review brought together a wide range of studies on the effects of freezing and thawing on soil structure.The following findings are summarized:i) soil structure after freeze-thaw cycles changes considerably and the changes are due to the mechanical fragmentation of soil coarse mineral particles and the aggregation of soil fine particles;ii) the particle size of soil becomes homogeneous and the variation in soil structure weakens as the number of freeze-thaw cycles increases;iii) in the freezing process of soil,an important principle in the variation of soil particle bonding is presented as:condensation → aggregation→crystallization;iv) the freeze-thaw cycling process has a strong effect on soil structure by changing the granulometric composition of mineral particles and structures within the soil.The freeze-thaw cycling process strengthens particle bonding,which causes an overall increase in aggregate stability of soil,showing a process from destruction to reconstruction.  相似文献   

4.
Soil erosion gradation is a robust and objective quantitative indicator of soil erosion intensity. Recent applications of soil erosion gradation have focused on monitoring soil erosion with models or simulation of soil erosion through gradation trends. However, soil erosion simulation accuracy is generally being reduced due to the rare consideration of the relationship between soil erosion gradation and erosion evolution. In this study, we investigated different soil erosion intensity grades to demonstrate their sensitivity to types and rates of erosion. Specifically, the objective was to define the relationship between soil erosion gradation and soil erosion evolution in Changting, an undeveloped area in Fujian Province, China, for four time intervals (1975, 1990, 1999, and 2006). The time series of erosion gradation were developed by modeling analysis with integration of several erosion indicators, and the relationships between the erosion grades and evolution types and rates were quantified. Comparison of the collapsing forces with natural and restoring forces based on human activity demonstrated that there existed an obvious spatial uncertainty in the erosion evolution types, both positive and negative succession coexisted, and the evolution rates were mostly influenced by the force of policy orientation. The impacts of these driving forces were eventually reflected in the erosion intensity gradation and erosion evolution. The correlation between the negative succession rate and erosion intensity gradation was weak and showed a poor contribution to the average succession rate, while the negative correlation between the positive succession rate and erosion intensity gradation would be increasingly clear as time passed.  相似文献   

5.
红壤中水热耦合转化的实验和数值模拟研究   总被引:1,自引:0,他引:1  
Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions.A coupled model was constructed using soil physical theory,empirical equations and experimental data to predict the coupled transfer.The results show that transport of soil water was affected by temperaature gradient,and the largest net water transport was found in the soil column with initial water content of 0.148m^3m^-3,At the same time,temperature changes with the transport of soil water was in a nonlinear shape as heat parameters wre function of water content,and the changes of temperature were positively correlated with the net amount of water transported.Numerical modelling results show that the predicted values of temperature distribution were close to the observed values,while the predicted values of water content exhibited limited deviation at both ends of the soil column due to the slight temperature changes at both ends .It WAS indicated that the model proposed here was applicable.  相似文献   

6.
The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing trend, which has seriously threatened water use in Beijing. In order to analyze the influents of land use and cover change (LUCC) upon inflow to Miyun Reservoir, terrain and land use information from remote sensing were utilized with a revised evapotranspiration estimation formula; a water loss model under conditions of human impacts was introduced; and a distributed monthly water balance model was established and applied to the Chaobai River Basin controlled by the Miyun Reservoir. The model simulation suggested that not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation development projects should be considered. Although these development projects were of great benefit to human and ecological protection, they could reallocate water resources in time and space, and in a sense thereby influence the stream flow.  相似文献   

7.
公路旁土壤中水分和重金属的迁移   总被引:14,自引:0,他引:14  
Roads with very high traffic loads in regions where soils are low in both pH and sorption capacity might be a source of percolation water loaded with heavy metals. Looking at some "worst case" scenarios, this study focused on the input of traffic related pollutants and on Pb, Cd, Cu, Zn, Ni and Cr concentrations in the soil matrix and soil solution, respectively. The analysis also included pH and electrical conductivity and at some sites DOC. The investigations were carried out on sandy soils with more or less low pH values at four motorway sites in Germany. The average of daily traffic was about 50 000 up to 90 000 vehicles. Soil pore water was collected in two soil depths and at four distances from the road. The pH in general decreased with increasing distance from the roadside. The elevated pH near the roadside was presumably caused by deposition of dust and weathering residues of the road asphalt, as well as by infiltration of salt that was used during winter time. At these road sites, increased heavy metal concentrations in the soil matrix as well as in the soil solution were found. However, the concentrations seldom exceeded reference values of the German Soil Protection Act. The soil solution concentrations tended to increase from the road edge to 10 m distance, whereas the concentration in the soil matrix decreased. Elevated DOC concentrations corresponded with elevated Cu concentrations but did not substantially change this tendency. High soil water percolation rates were found near the roads. Thus, even low metal concentrations of percolation water could yield high metal loads in a narrow area beside the road.  相似文献   

8.
A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns with different soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-water dynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensional movement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in the plow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil water absorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater than those with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant root water uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columns with crop planting. Comparison between the simulated and the determined values showed that model simulation results were ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model. Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done. The most important thing is to refine the parameters and select precise boundary conditions.  相似文献   

9.
共施磷酸二氢钙和硫酸铵对土壤中钾形态转化的影响   总被引:4,自引:0,他引:4  
Soil potassium (K) deficiency has been increasing over recent decades as a result of higher inputs of N and P fertilizers concomitant with lower inputs of K fertilizers in China; however, the effects of interactions between N, P, and K of fertilizers on K status in soils have not been thoroughly investigated for optimizing N, P, and K fertilizer use effciency. The influence of ammonium sulfate (AS), monocalcium phosphate (MCP), and potassium chloride application on K fractions in three typical soils of China was evaluated during 90-d laboratory soil incubation. The presence of AS significantly altered the distribution of native and added K in soils, while addition of MCP did not significantly affected K equilibrium in most cases. Addition of AS significantly increased water-soluble K (WSK), decreased exchangeable K (EK) in almost all the soils except the paddy soil that contained considerable amounts of 2:1 type clay minerals with K added, retarded the formation of fixed K in the soils with K added, and suppressed the release of fixed K in the three soils without K added. These interactions might be expected to influence the K availability to plants when the soil was fertilized with AS. To improve K fertilizer use effciency, whether combined application of AS and K was to be recommended or avoided should depend on K status of the soil, soil properties, and cropping systems.  相似文献   

10.
树的年轮和土壤中元素含量的长期分布情况   总被引:19,自引:0,他引:19  
Soil erosion accelerates soil degradation. Some natural soils and cultivated soils on sloping land in southern Jiangsu Province, China were chosen to study soil degradation associated with erosion. Soil erosion intensity was investigated using the ^137Cs tracer method. Soil particle-size distribution, soil organic matter (OM), total nitrogen (TN) and total phosphorus (TP) were measured, and the effects of erosion on soil physical and chemical properties were analyzed statistically using SYSTAT8.0. Results indicated that erosion intensity of cultivated soils was greater than that of the natural soils, suggesting that cultivation increased soil loss. Erosion also led to an increase of coarser soil particle proportion, especially in natural soils. In addition, silt was the primary soil particle lost due to erosion. However, in cultivated fields, coarser soil particles over time were attributed not only to soil erosion but also to mechanical eluviation as a result of farming activities. Moreover, erosion caused a decrease in soil OM, TN and TP as well as thinning of the soil layer.  相似文献   

11.
土壤中溶解性溶质流失特征试验   总被引:2,自引:2,他引:0  
该文以含有一定初始溶质的壤土和沙土为试验材料,为了研究不同条件下土壤溶质的流失特征,考虑到农田在产生地表径流前存在地表积水的过程,进行了室内土壤测试试验。试验结果表明:在相同条件下,既存在地表径流又存在地下排水时,损失的土壤溶质仅有小部分存在于地表径流水中,流失在地下排水中的溶质占损失的土壤溶质的主要成分。因此在实际田间操作中,当不能同时采用降低地表径流和地下排水的方法来提高土壤溶质的利用程度时,应首先考虑降低地下排水的措施。而在暴雨范围内,降雨强度越小、土壤初始含水率越低、地下排水条件越好、土壤质地越粗等都将导致土壤溶质在地表径流和地下排水中流失的质量越大,从而降低土壤溶质的有效利用程度,该成果可以为提高土壤溶质的利用效率和降低农业污染提供一定的参考意义。  相似文献   

12.
紫色土水分和壤中流对降雨强度的响应   总被引:2,自引:1,他引:2  
为研究降雨强度对紫色土坡耕地不同深度土壤水分含量和壤中流的影响,初步揭示紫色土水分和壤中流之间的相互耦合关系,通过原位人工模拟降雨试验,在60,90,120 mm/h 3种降雨强度条件下,采用Minitrase TDR可埋式探头对紫色土坡耕地土壤剖面浅层(0—20cm)、中层(20—40cm)、深层(40—60cm)的土壤水分含量进行了实时连续测定,并在降雨过程中分层收集测量壤中流,开展了降雨—产流过程的观测试验。结果表明:(1)当雨强较小时,浅层土壤含水率变化曲线呈现上升期和稳定期,随着雨强和深度的增加则呈上升期、稳定期或始终处于稳定期;(2)随深度和降雨强度的增加,土壤含水率稳定时间增加,含水率变化越小,响应越不明显;(3)在不同降雨强度条件下,各土层均有壤中流产生,低雨强条件下壤中流都是单峰产流过程,中雨强和高雨强下为双峰产流过程;(4)壤中流产流时间随雨强增大而显著减小,随深度增加而显著增加;(5)降雨强度与土壤水分含量和壤中流参数三者间相互有显著相关性。  相似文献   

13.
暗管排水排盐技术是通过控制地下水位与高效利用降水或灌溉水资源改变土壤水盐运移规律,从而影响土壤盐分分布规律和土壤特性,达到改良盐碱地的效果。本文在对暗管排水排盐技术自身发展及其应用的关键条件总结概述的基础上,对其改良盐碱地机理与农田生态系统响应两方面的科学研究进展进行了综述。暗管排水排盐技术改良盐碱地机理方面的研究主要集中在暗管埋设对"四水"转化规律的改变以及由此带来的地下水埋深控制或灌溉制度变化、控制性排水和定水位排水条件下的土壤水盐运移规律、暗管埋设条件下土壤水盐运移模型模拟等方面。农田生态系统对暗管埋设排水的响应方面的研究主要集中在以土壤理化性状和土壤养分为主的土壤特性响应、作物生长发育和产量品质的生理生态适应性、农田生态系统土地与种植结构和服务功能的改变等方面。本文最后展望了未来研究的关注点。  相似文献   

14.
针对江苏沿海垦区地势平坦、降雨量大,农业生产易受涝渍灾害影响,而新开垦农田土壤贫瘠、有机质含量极低的问题,该研究基于江苏省东台市内省水科院农田暗管排水试验基地的气象、土壤、作物等数据,联合运用田间水文模型-DRAINMOD和土壤有机碳模型-DNDC(Denitrification-Decomposition Model),研究了轮作和秸秆还田方式对暗管排水农田土壤有机碳(Soil Organic Carbon,SOC)累积过程的影响。结果显示:对于地下水位埋深较浅的沿海垦区,在DRAINMOD准确预测暗管排水农田地下水位动态的基础上,运用DNDC模型可以更好地预测土壤有机碳的累积过程;以2021年土壤有机碳含量(2.95 g/kg)为初始值,DNDC模型32 a长序列模拟发现,冬小麦-玉米轮作配施全量秸秆还田措施效果最佳,可提升耕层土壤有机碳含量至17.85 g/kg;冬小麦-玉米-冬小麦-绿肥(紫花苜蓿)轮作配施全量秸秆还田措施可提升耕层土壤有机碳含量至16.12 g/kg,具有很好的固碳效果。与研究区现有明沟排水系统相比,暗管排水可快速降低地下水位,减少涝渍胁迫,作物产量提升3.90%,耕层固碳速率提升39.39%。暗管排水条件下,湿润年频繁降雨造成了土壤干湿交替变化,由此激发了高强度土壤的呼吸作用,导致了一定程度的SOC损失;建议采用农田控制排水措施来抑制过度排水,减少高强度土壤呼吸对SOC累积过程的不利影响。研究成果可为沿海垦区农田地力提升和农业碳中和提供参考。  相似文献   

15.
新疆浅层暗管排水降低土壤盐分提高棉花产量   总被引:11,自引:8,他引:3  
土壤盐渍化问题严重制约着干旱区农业可持续发展,为达到土壤脱盐的效果,增加作物产量,该文针对膜下滴灌棉田,采用完全随机试验方案,在装有暗管的中度和轻度盐渍化土壤上种植棉花,分析暗管降盐技术对轻度和中度盐渍化农田土壤盐分变化规律及棉花产量的影响。结果表明:轻度和中度盐渍化农田土壤盐分剖面特征均由表聚型向脱盐型变化,中度盐渍化土壤0~20 cm土层盐分下降最快,其他土层盐分含量均呈现显著下降趋势;轻度和中度土壤最高脱盐率分别为50.96%和90.89%,中度盐渍化土壤盐分可降低至轻度水平;暗管排水的电导率变化范围为7.53~11.16 dS/m,pH值变化范围7.08~8.20;轻度和中度盐渍化棉田增产幅度分别为25.3%和55%。研究表明与滴灌配套的浅层暗管排水降盐技术可有效治理盐碱土壤,提高作物产量,该研究可为盐渍化土地的可持续利用提供依据。  相似文献   

16.
控制暗管排水下土壤剖面水盐分布与变化特征   总被引:2,自引:1,他引:1  
控制暗管排水可改变土壤水盐运移从而影响灌区盐渍化程度和土壤水分状况。为探讨土壤水盐分布与变化及其受控制排水与间距的影响,以河套灌区义长试验站暗管排水试区为对象,选取玉米生长期内典型灌溉周期开展研究。分析了控制排水及其间距变化下土壤水盐剖面静态分布与动态变化及灌水前后土壤水盐变异特性。结果表明:与自由排水比,控制排水提高了土壤剖面8.27%的相对含水率,增大了灌水期的含水率增幅,减少了间歇期的含水率降幅;控制排水还提高了土壤剖面盐分的分布均匀性,灌后的水平与垂向变异系数分别降低了45.88%和32.55%;同时,控制排水降低了土壤剖面36.73%的盐分含量,增大了灌水期29.17%的剖面脱盐区域,减少了间歇期14.29%的剖面积盐区域。控制排水基础上减少间距降低了灌水期的含水率增幅并增加了间歇期的含水率降幅,提高了灌前土壤盐分的水平分布均匀性却降低了灌后土壤盐分的水平分布均匀性。控制排水较高的盐分分布均匀性和脱盐效率及保墒效应有助于控制土壤次生盐渍化和提高农业用水效率。  相似文献   

17.
为探讨干旱区盐渍化农田水利改良措施的可行性,在新疆玛纳斯河流域安集海灌区进行了田间暗管与竖井排水工程试验,分别在距离暗管0.5 m(P1)、7.5 m(P2),距离竖井0.5 m(S1)、30 m(S2)和60 m(S3),以及未铺管区(CK)域设置7处观测区,评估农田排水措施在盐渍土改良期间的排水功能、土壤脱盐效果,同时监测棉花生长与地下水位动态。结果表明:5 a排水改良期间,0~80 cm深度土壤含盐量的总体降幅达到29.2 g/kg,棉花干物质量和籽棉产量年际增幅分别为22%和28%,浅层地下水位年际降幅1.16 m;改进的暗管与竖井协同排水相比单独应用暗管排水量与地下水位年际降幅分别增加了118%,进一步减少了盐分淋溶时期的深层渗漏量。研究结果可为干旱盐渍区的水土资源合理利用提供科学和理论依据。  相似文献   

18.
ABSTRACT

There is a growing concern about excessive use of nitrogen (N) and water in agricultural system with unscientific management in Indian and developing countries of the world. Field experiments were conducted on the lateritic sandy loam soils of Kharagpur, West Bengal, India, during spring–summer (February-June) seasons for three years (2015–2017) to evaluate okra crop response under subsurface drip and conventional furrow irrigation with varying amount of nitrogen treatments. Irrigation treatments had three levels of soil water depletion from field capacity (i.e., 20%, 35%, and 50%) under subsurface drip system. There was no soil water depletion under conventional furrow irrigation system. There were four levels of nitrogen fertilizer treatments (i.e., 0, 80, 100, and 120 kg ha?1). This was supplied using urea as a nitrogenous fertilizer. The yield response of okra crop under subsurface drip was found to be 56.4% higher than that of the furrow irrigation treatment. Best yield response and maximum water use efficiency and nitrogen use efficiency were recorded under 20% soil water depletion with 100 kg ha?1 of nitrogen fertigation. Among the various soil moisture depletions, subsurface drip at 20% soil water depletion treatment responded least quantity of water lost through deep drainage and nitrogen loss beyond the root zone as compared to other irrigation treatments. The water loss through subsurface drainage was observed as 33.11 mm lesser under subsurface drip as compared to that of the furrow irrigation, and this may due to low-volume and frequent irrigation water application with subsurface drip. Hence, irrigation through subsurface drip should be used for improving water and nitrogen fertilizer use efficiency of okra crop cultivation.  相似文献   

19.
为了研究土质状况对暗管土工布外包料反滤效果的影响机制,该研究选取安徽蚌埠地区粉土、宁夏平罗地区砂粉土和4种热熔纺黏丝无纺布进行了室内土柱试验,对比测试了两种土壤在不同土工布防护措施下的流量、土壤和土工布渗透性变化过程,并对土工布的透水和防淤堵性能做出评价,同时从颗粒迁移的角度出发,对流量随时间变化出现先下降后上升再下降的现象(“驼峰”现象)进行了成因分析。结果表明,砂粉土土质与单位面积质量为68 g/m2的土工布、粉土土质与单位面积质量为90 g/m2的土工布之间的适配性较好,土工布能够通过颗粒筛选的方式将织物上方土壤特征粒径d90值(小于该粒径值的土壤颗粒质量分数为90%)提升20%以上,诱导其表面高透水性土壤骨架的形成。“驼峰”现象是土壤颗粒迁移和土工布颗粒筛选二者共同作用下的结果,表征了土壤与土工布之间出现了良好的适配性。研究成果可为安徽蚌埠、宁夏平罗以及相似土质地区暗管排水土工布外包滤料的选择提供技术支持。  相似文献   

20.
因干旱和半干旱下游灌区地势较低,排水出路不畅,排水系统往往成为承泄区外来水(上游灌溉退水和排水)的蓄水场所,使排水沟水位高于农田地下水位,反渗补给农田地下水,作物利用部分排水以后,如何维持农田良性的水盐平衡成为下游灌区一个迫切需要解决的科学问题。该文基于农田水盐平衡原理,以陕西一半干旱区下游灌区为例,在实测资料的基础上,首先利用田间水文模型DRAINMOD模拟了排水沟蓄水条件下,农田水位变化情况,然后计算分析了农田与排水沟的水盐交换关系。结果表明:在一个完整的种植年内单位长度排水沟上累计承接区外来水量为9.3 m3,减去流出水量,累计蓄积区外来水量为5.5 m3,农田单位面积上反渗累计补给田间地下水量为49.2 mm;累计农田排水量仅为2.3 mm。与作物蒸散发相比,现状条件下补给量虽然较小,但对维持和补给农田地下水起到了一定的作用。所产生的补给作用虽然增加了排水沟内盐分向田间地下水中的运动,但作物利用地下水过程中根区没有出现严重的盐分累积,对田间地下水盐分浓度影响也不大。所以,通过合理调控措施,充分利用区外来水,可以提高水资源利用效率。但排水系统长期运行条件下,高水位对农田水盐平衡的影响尚需进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号